/* * This file is part of the render object implementation for KHTML. * * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * Copyright (C) 2003 Apple Computer, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "RenderFlexibleBox.h" #include "RenderLayer.h" #include "RenderView.h" #include "TextRun.h" #include #include #ifdef ANDROID_LAYOUT #include "Document.h" #include "Settings.h" #endif using namespace std; namespace WebCore { class FlexBoxIterator { public: FlexBoxIterator(RenderFlexibleBox* parent) : m_box(parent) , m_lastOrdinal(1) { if (m_box->style()->boxOrient() == HORIZONTAL && !m_box->style()->isLeftToRightDirection()) m_forward = m_box->style()->boxDirection() != BNORMAL; else m_forward = m_box->style()->boxDirection() == BNORMAL; if (!m_forward) { // No choice, since we're going backwards, we have to find out the highest ordinal up front. RenderBox* child = m_box->firstChildBox(); while (child) { if (child->style()->boxOrdinalGroup() > m_lastOrdinal) m_lastOrdinal = child->style()->boxOrdinalGroup(); child = child->nextSiblingBox(); } } reset(); } void reset() { m_currentChild = 0; m_currentOrdinal = m_forward ? 0 : m_lastOrdinal + 1; } RenderBox* first() { reset(); return next(); } RenderBox* next() { do { if (!m_currentChild) { if (m_forward) { ++m_currentOrdinal; if (m_currentOrdinal > m_lastOrdinal) return 0; m_currentChild = m_box->firstChildBox(); } else { --m_currentOrdinal; if (!m_currentOrdinal) return 0; m_currentChild = m_box->lastChildBox(); } } else m_currentChild = m_forward ? m_currentChild->nextSiblingBox() : m_currentChild->previousSiblingBox(); if (m_currentChild && m_currentChild->style()->boxOrdinalGroup() > m_lastOrdinal) m_lastOrdinal = m_currentChild->style()->boxOrdinalGroup(); } while (!m_currentChild || (!m_currentChild->isAnonymous() && (m_currentChild->style()->boxOrdinalGroup() != m_currentOrdinal || m_currentChild->style()->visibility() == COLLAPSE))); return m_currentChild; } private: RenderFlexibleBox* m_box; RenderBox* m_currentChild; bool m_forward; unsigned int m_currentOrdinal; unsigned int m_lastOrdinal; }; RenderFlexibleBox::RenderFlexibleBox(Node* node) : RenderBlock(node) { setChildrenInline(false); // All of our children must be block-level m_flexingChildren = m_stretchingChildren = false; } RenderFlexibleBox::~RenderFlexibleBox() { } static int marginWidthForChild(RenderBox* child) { // A margin basically has three types: fixed, percentage, and auto (variable). // Auto and percentage margins simply become 0 when computing min/max width. // Fixed margins can be added in as is. Length marginLeft = child->style()->marginLeft(); Length marginRight = child->style()->marginRight(); int margin = 0; if (marginLeft.isFixed()) margin += marginLeft.value(); if (marginRight.isFixed()) margin += marginRight.value(); return margin; } void RenderFlexibleBox::calcHorizontalPrefWidths() { for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { // Positioned children and collapsed children don't affect the min/max width. if (child->isPositioned() || child->style()->visibility() == COLLAPSE) continue; int margin = marginWidthForChild(child); m_minPreferredLogicalWidth += child->minPreferredLogicalWidth() + margin; m_maxPreferredLogicalWidth += child->maxPreferredLogicalWidth() + margin; } } void RenderFlexibleBox::calcVerticalPrefWidths() { for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { // Positioned children and collapsed children don't affect the min/max width. if (child->isPositioned() || child->style()->visibility() == COLLAPSE) continue; int margin = marginWidthForChild(child); int width = child->minPreferredLogicalWidth() + margin; m_minPreferredLogicalWidth = max(width, m_minPreferredLogicalWidth); width = child->maxPreferredLogicalWidth() + margin; m_maxPreferredLogicalWidth = max(width, m_maxPreferredLogicalWidth); } } void RenderFlexibleBox::computePreferredLogicalWidths() { ASSERT(preferredLogicalWidthsDirty()); if (style()->width().isFixed() && style()->width().value() > 0) m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth = computeContentBoxLogicalWidth(style()->width().value()); else { m_minPreferredLogicalWidth = m_maxPreferredLogicalWidth = 0; if (hasMultipleLines() || isVertical()) calcVerticalPrefWidths(); else calcHorizontalPrefWidths(); m_maxPreferredLogicalWidth = max(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth); } if (hasOverflowClip() && style()->overflowY() == OSCROLL) { layer()->setHasVerticalScrollbar(true); int scrollbarWidth = verticalScrollbarWidth(); m_maxPreferredLogicalWidth += scrollbarWidth; m_minPreferredLogicalWidth += scrollbarWidth; } if (style()->minWidth().isFixed() && style()->minWidth().value() > 0) { m_maxPreferredLogicalWidth = max(m_maxPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->minWidth().value())); m_minPreferredLogicalWidth = max(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->minWidth().value())); } if (style()->maxWidth().isFixed() && style()->maxWidth().value() != undefinedLength) { m_maxPreferredLogicalWidth = min(m_maxPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->maxWidth().value())); m_minPreferredLogicalWidth = min(m_minPreferredLogicalWidth, computeContentBoxLogicalWidth(style()->maxWidth().value())); } int borderAndPadding = borderAndPaddingLogicalWidth(); m_minPreferredLogicalWidth += borderAndPadding; m_maxPreferredLogicalWidth += borderAndPadding; setPreferredLogicalWidthsDirty(false); } void RenderFlexibleBox::layoutBlock(bool relayoutChildren, int /*pageHeight FIXME: Implement */) { ASSERT(needsLayout()); if (!relayoutChildren && simplifiedLayout()) return; LayoutRepainter repainter(*this, checkForRepaintDuringLayout()); LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y()), hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode()); int previousWidth = width(); int previousHeight = height(); computeLogicalWidth(); computeLogicalHeight(); m_overflow.clear(); if (previousWidth != width() || previousHeight != height() || (parent()->isFlexibleBox() && parent()->style()->boxOrient() == HORIZONTAL && parent()->style()->boxAlign() == BSTRETCH)) relayoutChildren = true; #ifdef ANDROID_LAYOUT checkAndSetRelayoutChildren(&relayoutChildren); #endif setHeight(0); m_flexingChildren = m_stretchingChildren = false; initMaxMarginValues(); // For overflow:scroll blocks, ensure we have both scrollbars in place always. if (scrollsOverflow()) { if (style()->overflowX() == OSCROLL) layer()->setHasHorizontalScrollbar(true); if (style()->overflowY() == OSCROLL) layer()->setHasVerticalScrollbar(true); } if (isHorizontal()) layoutHorizontalBox(relayoutChildren); else layoutVerticalBox(relayoutChildren); int oldClientAfterEdge = clientLogicalBottom(); computeLogicalHeight(); if (previousHeight != height()) relayoutChildren = true; layoutPositionedObjects(relayoutChildren || isRoot()); if (!isFloatingOrPositioned() && height() == 0) { // We are a block with no border and padding and a computed height // of 0. The CSS spec states that zero-height blocks collapse their margins // together. // When blocks are self-collapsing, we just use the top margin values and set the // bottom margin max values to 0. This way we don't factor in the values // twice when we collapse with our previous vertically adjacent and // following vertically adjacent blocks. int pos = maxPositiveMarginBefore(); int neg = maxNegativeMarginBefore(); if (maxPositiveMarginAfter() > pos) pos = maxPositiveMarginAfter(); if (maxNegativeMarginAfter() > neg) neg = maxNegativeMarginAfter(); setMaxMarginBeforeValues(pos, neg); setMaxMarginAfterValues(0, 0); } computeOverflow(oldClientAfterEdge); statePusher.pop(); updateLayerTransform(); if (view()->layoutState()->pageLogicalHeight()) setPageLogicalOffset(view()->layoutState()->pageLogicalOffset(logicalTop())); // Update our scrollbars if we're overflow:auto/scroll/hidden now that we know if // we overflow or not. if (hasOverflowClip()) layer()->updateScrollInfoAfterLayout(); // Repaint with our new bounds if they are different from our old bounds. repainter.repaintAfterLayout(); setNeedsLayout(false); } // The first walk over our kids is to find out if we have any flexible children. static void gatherFlexChildrenInfo(FlexBoxIterator& iterator, bool relayoutChildren, unsigned int& highestFlexGroup, unsigned int& lowestFlexGroup, bool& haveFlex) { for (RenderBox* child = iterator.first(); child; child = iterator.next()) { // Check to see if this child flexes. if (!child->isPositioned() && child->style()->boxFlex() > 0.0f) { // We always have to lay out flexible objects again, since the flex distribution // may have changed, and we need to reallocate space. child->setOverrideSize(-1); if (!relayoutChildren) child->setChildNeedsLayout(true, false); haveFlex = true; unsigned int flexGroup = child->style()->boxFlexGroup(); if (lowestFlexGroup == 0) lowestFlexGroup = flexGroup; if (flexGroup < lowestFlexGroup) lowestFlexGroup = flexGroup; if (flexGroup > highestFlexGroup) highestFlexGroup = flexGroup; } } } void RenderFlexibleBox::layoutHorizontalBox(bool relayoutChildren) { int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); int yPos = borderTop() + paddingTop(); int xPos = borderLeft() + paddingLeft(); bool heightSpecified = false; int oldHeight = 0; int remainingSpace = 0; FlexBoxIterator iterator(this); unsigned int highestFlexGroup = 0; unsigned int lowestFlexGroup = 0; bool haveFlex = false; gatherFlexChildrenInfo(iterator, relayoutChildren, highestFlexGroup, lowestFlexGroup, haveFlex); RenderBlock::startDelayUpdateScrollInfo(); // We do 2 passes. The first pass is simply to lay everyone out at // their preferred widths. The second pass handles flexing the children. do { // Reset our height. setHeight(yPos); xPos = borderLeft() + paddingLeft(); // Our first pass is done without flexing. We simply lay the children // out within the box. We have to do a layout first in order to determine // our box's intrinsic height. int maxAscent = 0, maxDescent = 0; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { // make sure we relayout children if we need it. if (relayoutChildren || (child->isReplaced() && (child->style()->width().isPercent() || child->style()->height().isPercent()))) child->setChildNeedsLayout(true, false); if (child->isPositioned()) continue; // Compute the child's vertical margins. child->computeBlockDirectionMargins(this); if (!child->needsLayout()) child->markForPaginationRelayoutIfNeeded(); // Now do the layout. child->layoutIfNeeded(); // Update our height and overflow height. if (style()->boxAlign() == BBASELINE) { int ascent = child->firstLineBoxBaseline(); if (ascent == -1) ascent = child->height() + child->marginBottom(); ascent += child->marginTop(); int descent = (child->marginTop() + child->height() + child->marginBottom()) - ascent; // Update our maximum ascent. maxAscent = max(maxAscent, ascent); // Update our maximum descent. maxDescent = max(maxDescent, descent); // Now update our height. setHeight(max(yPos + maxAscent + maxDescent, height())); } else setHeight(max(height(), yPos + child->marginTop() + child->height() + child->marginBottom())); } if (!iterator.first() && hasLineIfEmpty()) setHeight(height() + lineHeight(true, style()->isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes)); setHeight(height() + toAdd); oldHeight = height(); computeLogicalHeight(); relayoutChildren = false; if (oldHeight != height()) heightSpecified = true; // Now that our height is actually known, we can place our boxes. m_stretchingChildren = (style()->boxAlign() == BSTRETCH); for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (child->isPositioned()) { child->containingBlock()->insertPositionedObject(child); RenderLayer* childLayer = child->layer(); childLayer->setStaticInlinePosition(xPos); if (childLayer->staticBlockPosition() != yPos) { childLayer->setStaticBlockPosition(yPos); if (child->style()->hasStaticBlockPosition(style()->isHorizontalWritingMode())) child->setChildNeedsLayout(true, false); } continue; } // We need to see if this child's height has changed, since we make block elements // fill the height of a containing box by default. // Now do a layout. int oldChildHeight = child->height(); child->computeLogicalHeight(); if (oldChildHeight != child->height()) child->setChildNeedsLayout(true, false); if (!child->needsLayout()) child->markForPaginationRelayoutIfNeeded(); child->layoutIfNeeded(); // We can place the child now, using our value of box-align. xPos += child->marginLeft(); int childY = yPos; switch (style()->boxAlign()) { case BCENTER: childY += child->marginTop() + max(0, (contentHeight() - (child->height() + child->marginTop() + child->marginBottom())) / 2); break; case BBASELINE: { int ascent = child->firstLineBoxBaseline(); if (ascent == -1) ascent = child->height() + child->marginBottom(); ascent += child->marginTop(); childY += child->marginTop() + (maxAscent - ascent); break; } case BEND: childY += contentHeight() - child->marginBottom() - child->height(); break; default: // BSTART childY += child->marginTop(); break; } placeChild(child, xPos, childY); xPos += child->width() + child->marginRight(); } remainingSpace = borderLeft() + paddingLeft() + contentWidth() - xPos; m_stretchingChildren = false; if (m_flexingChildren) haveFlex = false; // We're done. else if (haveFlex) { // We have some flexible objects. See if we need to grow/shrink them at all. if (!remainingSpace) break; // Allocate the remaining space among the flexible objects. If we are trying to // grow, then we go from the lowest flex group to the highest flex group. For shrinking, // we go from the highest flex group to the lowest group. bool expanding = remainingSpace > 0; unsigned int start = expanding ? lowestFlexGroup : highestFlexGroup; unsigned int end = expanding? highestFlexGroup : lowestFlexGroup; for (unsigned int i = start; i <= end && remainingSpace; i++) { // Always start off by assuming the group can get all the remaining space. int groupRemainingSpace = remainingSpace; do { // Flexing consists of multiple passes, since we have to change ratios every time an object hits its max/min-width // For a given pass, we always start off by computing the totalFlex of all objects that can grow/shrink at all, and // computing the allowed growth before an object hits its min/max width (and thus // forces a totalFlex recomputation). int groupRemainingSpaceAtBeginning = groupRemainingSpace; float totalFlex = 0.0f; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (allowedChildFlex(child, expanding, i)) totalFlex += child->style()->boxFlex(); } int spaceAvailableThisPass = groupRemainingSpace; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { int allowedFlex = allowedChildFlex(child, expanding, i); if (allowedFlex) { int projectedFlex = (allowedFlex == INT_MAX) ? allowedFlex : (int)(allowedFlex * (totalFlex / child->style()->boxFlex())); spaceAvailableThisPass = expanding ? min(spaceAvailableThisPass, projectedFlex) : max(spaceAvailableThisPass, projectedFlex); } } // The flex groups may not have any flexible objects this time around. if (!spaceAvailableThisPass || totalFlex == 0.0f) { // If we just couldn't grow/shrink any more, then it's time to transition to the next flex group. groupRemainingSpace = 0; continue; } // Now distribute the space to objects. for (RenderBox* child = iterator.first(); child && spaceAvailableThisPass && totalFlex; child = iterator.next()) { if (allowedChildFlex(child, expanding, i)) { int spaceAdd = (int)(spaceAvailableThisPass * (child->style()->boxFlex()/totalFlex)); if (spaceAdd) { child->setOverrideSize(child->overrideWidth() + spaceAdd); m_flexingChildren = true; relayoutChildren = true; } spaceAvailableThisPass -= spaceAdd; remainingSpace -= spaceAdd; groupRemainingSpace -= spaceAdd; totalFlex -= child->style()->boxFlex(); } } if (groupRemainingSpace == groupRemainingSpaceAtBeginning) { // This is not advancing, avoid getting stuck by distributing the remaining pixels. int spaceAdd = groupRemainingSpace > 0 ? 1 : -1; for (RenderBox* child = iterator.first(); child && groupRemainingSpace; child = iterator.next()) { if (allowedChildFlex(child, expanding, i)) { child->setOverrideSize(child->overrideWidth() + spaceAdd); m_flexingChildren = true; relayoutChildren = true; remainingSpace -= spaceAdd; groupRemainingSpace -= spaceAdd; } } } } while (groupRemainingSpace); } // We didn't find any children that could grow. if (haveFlex && !m_flexingChildren) haveFlex = false; } } while (haveFlex); m_flexingChildren = false; RenderBlock::finishDelayUpdateScrollInfo(); if (remainingSpace > 0 && ((style()->isLeftToRightDirection() && style()->boxPack() != BSTART) || (!style()->isLeftToRightDirection() && style()->boxPack() != BEND))) { // Children must be repositioned. int offset = 0; if (style()->boxPack() == BJUSTIFY) { // Determine the total number of children. int totalChildren = 0; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (child->isPositioned()) continue; ++totalChildren; } // Iterate over the children and space them out according to the // justification level. if (totalChildren > 1) { --totalChildren; bool firstChild = true; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (child->isPositioned()) continue; if (firstChild) { firstChild = false; continue; } offset += remainingSpace/totalChildren; remainingSpace -= (remainingSpace/totalChildren); --totalChildren; placeChild(child, child->x() + offset, child->y()); } } } else { if (style()->boxPack() == BCENTER) offset += remainingSpace / 2; else // END for LTR, START for RTL offset += remainingSpace; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (child->isPositioned()) continue; placeChild(child, child->x() + offset, child->y()); } } } // So that the computeLogicalHeight in layoutBlock() knows to relayout positioned objects because of // a height change, we revert our height back to the intrinsic height before returning. if (heightSpecified) setHeight(oldHeight); } void RenderFlexibleBox::layoutVerticalBox(bool relayoutChildren) { int xPos = borderLeft() + paddingLeft(); int yPos = borderTop() + paddingTop(); if (!style()->isLeftToRightDirection()) xPos = width() - paddingRight() - borderRight(); int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); bool heightSpecified = false; int oldHeight = 0; int remainingSpace = 0; FlexBoxIterator iterator(this); unsigned int highestFlexGroup = 0; unsigned int lowestFlexGroup = 0; bool haveFlex = false; gatherFlexChildrenInfo(iterator, relayoutChildren, highestFlexGroup, lowestFlexGroup, haveFlex); // We confine the line clamp ugliness to vertical flexible boxes (thus keeping it out of // mainstream block layout); this is not really part of the XUL box model. bool haveLineClamp = !style()->lineClamp().isNone(); if (haveLineClamp) applyLineClamp(iterator, relayoutChildren); RenderBlock::startDelayUpdateScrollInfo(); // We do 2 passes. The first pass is simply to lay everyone out at // their preferred widths. The second pass handles flexing the children. // Our first pass is done without flexing. We simply lay the children // out within the box. do { setHeight(borderTop() + paddingTop()); int minHeight = height() + toAdd; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { // Make sure we relayout children if we need it. if (!haveLineClamp && (relayoutChildren || (child->isReplaced() && (child->style()->width().isPercent() || child->style()->height().isPercent())))) child->setChildNeedsLayout(true, false); if (child->isPositioned()) { child->containingBlock()->insertPositionedObject(child); RenderLayer* childLayer = child->layer(); childLayer->setStaticInlinePosition(borderStart() + paddingStart()); if (childLayer->staticBlockPosition() != height()) { childLayer->setStaticBlockPosition(height()); if (child->style()->hasStaticBlockPosition(style()->isHorizontalWritingMode())) child->setChildNeedsLayout(true, false); } continue; } // Compute the child's vertical margins. child->computeBlockDirectionMargins(this); // Add in the child's marginTop to our height. setHeight(height() + child->marginTop()); if (!child->needsLayout()) child->markForPaginationRelayoutIfNeeded(); // Now do a layout. child->layoutIfNeeded(); // We can place the child now, using our value of box-align. int childX = borderLeft() + paddingLeft(); switch (style()->boxAlign()) { case BCENTER: case BBASELINE: // Baseline just maps to center for vertical boxes childX += child->marginLeft() + max(0, (contentWidth() - (child->width() + child->marginLeft() + child->marginRight())) / 2); break; case BEND: if (!style()->isLeftToRightDirection()) childX += child->marginLeft(); else childX += contentWidth() - child->marginRight() - child->width(); break; default: // BSTART/BSTRETCH if (style()->isLeftToRightDirection()) childX += child->marginLeft(); else childX += contentWidth() - child->marginRight() - child->width(); break; } // Place the child. placeChild(child, childX, height()); setHeight(height() + child->height() + child->marginBottom()); } yPos = height(); if (!iterator.first() && hasLineIfEmpty()) setHeight(height() + lineHeight(true, style()->isHorizontalWritingMode() ? HorizontalLine : VerticalLine, PositionOfInteriorLineBoxes)); setHeight(height() + toAdd); // Negative margins can cause our height to shrink below our minimal height (border/padding). // If this happens, ensure that the computed height is increased to the minimal height. if (height() < minHeight) setHeight(minHeight); // Now we have to calc our height, so we know how much space we have remaining. oldHeight = height(); computeLogicalHeight(); if (oldHeight != height()) heightSpecified = true; remainingSpace = borderTop() + paddingTop() + contentHeight() - yPos; if (m_flexingChildren) haveFlex = false; // We're done. else if (haveFlex) { // We have some flexible objects. See if we need to grow/shrink them at all. if (!remainingSpace) break; // Allocate the remaining space among the flexible objects. If we are trying to // grow, then we go from the lowest flex group to the highest flex group. For shrinking, // we go from the highest flex group to the lowest group. bool expanding = remainingSpace > 0; unsigned int start = expanding ? lowestFlexGroup : highestFlexGroup; unsigned int end = expanding? highestFlexGroup : lowestFlexGroup; for (unsigned int i = start; i <= end && remainingSpace; i++) { // Always start off by assuming the group can get all the remaining space. int groupRemainingSpace = remainingSpace; do { // Flexing consists of multiple passes, since we have to change ratios every time an object hits its max/min-width // For a given pass, we always start off by computing the totalFlex of all objects that can grow/shrink at all, and // computing the allowed growth before an object hits its min/max width (and thus // forces a totalFlex recomputation). int groupRemainingSpaceAtBeginning = groupRemainingSpace; float totalFlex = 0.0f; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (allowedChildFlex(child, expanding, i)) totalFlex += child->style()->boxFlex(); } int spaceAvailableThisPass = groupRemainingSpace; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { int allowedFlex = allowedChildFlex(child, expanding, i); if (allowedFlex) { int projectedFlex = (allowedFlex == INT_MAX) ? allowedFlex : (int)(allowedFlex * (totalFlex / child->style()->boxFlex())); spaceAvailableThisPass = expanding ? min(spaceAvailableThisPass, projectedFlex) : max(spaceAvailableThisPass, projectedFlex); } } // The flex groups may not have any flexible objects this time around. if (!spaceAvailableThisPass || totalFlex == 0.0f) { // If we just couldn't grow/shrink any more, then it's time to transition to the next flex group. groupRemainingSpace = 0; continue; } // Now distribute the space to objects. for (RenderBox* child = iterator.first(); child && spaceAvailableThisPass && totalFlex; child = iterator.next()) { if (allowedChildFlex(child, expanding, i)) { int spaceAdd = (int)(spaceAvailableThisPass * (child->style()->boxFlex()/totalFlex)); if (spaceAdd) { child->setOverrideSize(child->overrideHeight() + spaceAdd); m_flexingChildren = true; relayoutChildren = true; } spaceAvailableThisPass -= spaceAdd; remainingSpace -= spaceAdd; groupRemainingSpace -= spaceAdd; totalFlex -= child->style()->boxFlex(); } } if (groupRemainingSpace == groupRemainingSpaceAtBeginning) { // This is not advancing, avoid getting stuck by distributing the remaining pixels. int spaceAdd = groupRemainingSpace > 0 ? 1 : -1; for (RenderBox* child = iterator.first(); child && groupRemainingSpace; child = iterator.next()) { if (allowedChildFlex(child, expanding, i)) { child->setOverrideSize(child->overrideHeight() + spaceAdd); m_flexingChildren = true; relayoutChildren = true; remainingSpace -= spaceAdd; groupRemainingSpace -= spaceAdd; } } } } while (groupRemainingSpace); } // We didn't find any children that could grow. if (haveFlex && !m_flexingChildren) haveFlex = false; } } while (haveFlex); RenderBlock::finishDelayUpdateScrollInfo(); if (style()->boxPack() != BSTART && remainingSpace > 0) { // Children must be repositioned. int offset = 0; if (style()->boxPack() == BJUSTIFY) { // Determine the total number of children. int totalChildren = 0; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (child->isPositioned()) continue; ++totalChildren; } // Iterate over the children and space them out according to the // justification level. if (totalChildren > 1) { --totalChildren; bool firstChild = true; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (child->isPositioned()) continue; if (firstChild) { firstChild = false; continue; } offset += remainingSpace/totalChildren; remainingSpace -= (remainingSpace/totalChildren); --totalChildren; placeChild(child, child->x(), child->y() + offset); } } } else { if (style()->boxPack() == BCENTER) offset += remainingSpace / 2; else // END offset += remainingSpace; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (child->isPositioned()) continue; placeChild(child, child->x(), child->y() + offset); } } } // So that the computeLogicalHeight in layoutBlock() knows to relayout positioned objects because of // a height change, we revert our height back to the intrinsic height before returning. if (heightSpecified) setHeight(oldHeight); } void RenderFlexibleBox::applyLineClamp(FlexBoxIterator& iterator, bool relayoutChildren) { int maxLineCount = 0; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (child->isPositioned()) continue; if (relayoutChildren || (child->isReplaced() && (child->style()->width().isPercent() || child->style()->height().isPercent())) || (child->style()->height().isAuto() && child->isBlockFlow())) { child->setChildNeedsLayout(true, false); // Dirty all the positioned objects. if (child->isRenderBlock()) { toRenderBlock(child)->markPositionedObjectsForLayout(); toRenderBlock(child)->clearTruncation(); } } child->layoutIfNeeded(); if (child->style()->height().isAuto() && child->isBlockFlow()) maxLineCount = max(maxLineCount, toRenderBlock(child)->lineCount()); } // Get the number of lines and then alter all block flow children with auto height to use the // specified height. We always try to leave room for at least one line. LineClampValue lineClamp = style()->lineClamp(); int numVisibleLines = lineClamp.isPercentage() ? max(1, (maxLineCount + 1) * lineClamp.value() / 100) : lineClamp.value(); if (numVisibleLines >= maxLineCount) return; for (RenderBox* child = iterator.first(); child; child = iterator.next()) { if (child->isPositioned() || !child->style()->height().isAuto() || !child->isBlockFlow()) continue; RenderBlock* blockChild = toRenderBlock(child); int lineCount = blockChild->lineCount(); if (lineCount <= numVisibleLines) continue; int newHeight = blockChild->heightForLineCount(numVisibleLines); if (newHeight == child->height()) continue; child->setChildNeedsLayout(true, false); child->setOverrideSize(newHeight); m_flexingChildren = true; child->layoutIfNeeded(); m_flexingChildren = false; child->setOverrideSize(-1); // FIXME: For now don't support RTL. if (style()->direction() != LTR) continue; // Get the last line RootInlineBox* lastLine = blockChild->lineAtIndex(lineCount - 1); if (!lastLine) continue; RootInlineBox* lastVisibleLine = blockChild->lineAtIndex(numVisibleLines - 1); if (!lastVisibleLine) continue; const UChar ellipsisAndSpace[2] = { horizontalEllipsis, ' ' }; DEFINE_STATIC_LOCAL(AtomicString, ellipsisAndSpaceStr, (ellipsisAndSpace, 2)); DEFINE_STATIC_LOCAL(AtomicString, ellipsisStr, (&horizontalEllipsis, 1)); const Font& font = style(numVisibleLines == 1)->font(); // Get ellipsis width, and if the last child is an anchor, it will go after the ellipsis, so add in a space and the anchor width too int totalWidth; InlineBox* anchorBox = lastLine->lastChild(); if (anchorBox && anchorBox->renderer()->style()->isLink()) totalWidth = anchorBox->logicalWidth() + font.width(TextRun(ellipsisAndSpace, 2)); else { anchorBox = 0; totalWidth = font.width(TextRun(&horizontalEllipsis, 1)); } // See if this width can be accommodated on the last visible line RenderBlock* destBlock = toRenderBlock(lastVisibleLine->renderer()); RenderBlock* srcBlock = toRenderBlock(lastLine->renderer()); // FIXME: Directions of src/destBlock could be different from our direction and from one another. if (!srcBlock->style()->isLeftToRightDirection()) continue; bool leftToRight = destBlock->style()->isLeftToRightDirection(); if (!leftToRight) continue; int blockRightEdge = destBlock->logicalRightOffsetForLine(lastVisibleLine->y(), false); int blockLeftEdge = destBlock->logicalLeftOffsetForLine(lastVisibleLine->y(), false); int blockEdge = leftToRight ? blockRightEdge : blockLeftEdge; if (!lastVisibleLine->lineCanAccommodateEllipsis(leftToRight, blockEdge, lastVisibleLine->x() + lastVisibleLine->logicalWidth(), totalWidth)) continue; // Let the truncation code kick in. lastVisibleLine->placeEllipsis(anchorBox ? ellipsisAndSpaceStr : ellipsisStr, leftToRight, blockLeftEdge, blockRightEdge, totalWidth, anchorBox); destBlock->setHasMarkupTruncation(true); } } void RenderFlexibleBox::placeChild(RenderBox* child, int x, int y) { IntRect oldRect(child->x(), child->y() , child->width(), child->height()); // Place the child. child->setLocation(x, y); // If the child moved, we have to repaint it as well as any floating/positioned // descendants. An exception is if we need a layout. In this case, we know we're going to // repaint ourselves (and the child) anyway. if (!selfNeedsLayout() && child->checkForRepaintDuringLayout()) child->repaintDuringLayoutIfMoved(oldRect); } int RenderFlexibleBox::allowedChildFlex(RenderBox* child, bool expanding, unsigned int group) { if (child->isPositioned() || child->style()->boxFlex() == 0.0f || child->style()->boxFlexGroup() != group) return 0; if (expanding) { if (isHorizontal()) { // FIXME: For now just handle fixed values. int maxWidth = INT_MAX; int width = child->overrideWidth() - child->borderAndPaddingWidth(); if (!child->style()->maxWidth().isUndefined() && child->style()->maxWidth().isFixed()) maxWidth = child->style()->maxWidth().value(); else if (child->style()->maxWidth().type() == Intrinsic) maxWidth = child->maxPreferredLogicalWidth(); else if (child->style()->maxWidth().type() == MinIntrinsic) maxWidth = child->minPreferredLogicalWidth(); if (maxWidth == INT_MAX) return maxWidth; return max(0, maxWidth - width); } else { // FIXME: For now just handle fixed values. int maxHeight = INT_MAX; int height = child->overrideHeight() - child->borderAndPaddingHeight(); if (!child->style()->maxHeight().isUndefined() && child->style()->maxHeight().isFixed()) maxHeight = child->style()->maxHeight().value(); if (maxHeight == INT_MAX) return maxHeight; return max(0, maxHeight - height); } } // FIXME: For now just handle fixed values. if (isHorizontal()) { int minWidth = child->minPreferredLogicalWidth(); int width = child->overrideWidth() - child->borderAndPaddingWidth(); if (child->style()->minWidth().isFixed()) minWidth = child->style()->minWidth().value(); else if (child->style()->minWidth().type() == Intrinsic) minWidth = child->maxPreferredLogicalWidth(); else if (child->style()->minWidth().type() == MinIntrinsic) minWidth = child->minPreferredLogicalWidth(); int allowedShrinkage = min(0, minWidth - width); return allowedShrinkage; } else { if (child->style()->minHeight().isFixed()) { int minHeight = child->style()->minHeight().value(); int height = child->overrideHeight() - child->borderAndPaddingHeight(); int allowedShrinkage = min(0, minHeight - height); return allowedShrinkage; } } return 0; } const char *RenderFlexibleBox::renderName() const { if (isFloating()) return "RenderFlexibleBox (floating)"; if (isPositioned()) return "RenderFlexibleBox (positioned)"; if (isAnonymous()) return "RenderFlexibleBox (generated)"; if (isRelPositioned()) return "RenderFlexibleBox (relative positioned)"; return "RenderFlexibleBox"; } } // namespace WebCore