/* * (C) 1999 Lars Knoll (knoll@kde.org) * (C) 2000 Dirk Mueller (mueller@kde.org) * Copyright (C) 2004, 2005, 2006, 2007 Apple Inc. All rights reserved. * Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net) * Copyright (C) 2006 Graham Dennis (graham.dennis@gmail.com) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "RenderText.h" #include "AXObjectCache.h" #include "EllipsisBox.h" #include "FloatQuad.h" #include "FontTranscoder.h" #include "FrameView.h" #include "InlineTextBox.h" #include "Range.h" #include "RenderArena.h" #include "RenderBlock.h" #include "RenderCombineText.h" #include "RenderLayer.h" #include "RenderView.h" #include "Settings.h" #include "Text.h" #include "TextBreakIterator.h" #include "TextResourceDecoder.h" #include "TextRun.h" #include "VisiblePosition.h" #include "break_lines.h" #include #include #include using namespace std; using namespace WTF; using namespace Unicode; namespace WebCore { class SecureTextTimer; typedef HashMap SecureTextTimerMap; static SecureTextTimerMap* gSecureTextTimers = 0; class SecureTextTimer : public TimerBase { public: SecureTextTimer(RenderText* renderText) : m_renderText(renderText) , m_lastTypedCharacterOffset(-1) { } void restartWithNewText(unsigned lastTypedCharacterOffset) { m_lastTypedCharacterOffset = lastTypedCharacterOffset; startOneShot(m_renderText->document()->settings()->passwordEchoDurationInSeconds()); } void invalidate() { m_lastTypedCharacterOffset = -1; } unsigned lastTypedCharacterOffset() { return m_lastTypedCharacterOffset; } private: virtual void fired() { ASSERT(gSecureTextTimers->contains(m_renderText)); m_renderText->setText(m_renderText->text(), true /* forcing setting text as it may be masked later */); } RenderText* m_renderText; int m_lastTypedCharacterOffset; }; static void makeCapitalized(String* string, UChar previous) { if (string->isNull()) return; unsigned length = string->length(); const UChar* characters = string->characters(); if (length >= numeric_limits::max()) CRASH(); StringBuffer stringWithPrevious(length + 1); stringWithPrevious[0] = previous == noBreakSpace ? ' ' : previous; for (unsigned i = 1; i < length + 1; i++) { // Replace   with a real space since ICU no longer treats   as a word separator. if (characters[i - 1] == noBreakSpace) stringWithPrevious[i] = ' '; else stringWithPrevious[i] = characters[i - 1]; } TextBreakIterator* boundary = wordBreakIterator(stringWithPrevious.characters(), length + 1); if (!boundary) return; StringBuffer data(length); int32_t endOfWord; int32_t startOfWord = textBreakFirst(boundary); for (endOfWord = textBreakNext(boundary); endOfWord != TextBreakDone; startOfWord = endOfWord, endOfWord = textBreakNext(boundary)) { if (startOfWord != 0) // Ignore first char of previous string data[startOfWord - 1] = characters[startOfWord - 1] == noBreakSpace ? noBreakSpace : toTitleCase(stringWithPrevious[startOfWord]); for (int i = startOfWord + 1; i < endOfWord; i++) data[i - 1] = characters[i - 1]; } *string = String::adopt(data); } RenderText::RenderText(Node* node, PassRefPtr str) : RenderObject(node) , m_minWidth(-1) , m_text(str) , m_firstTextBox(0) , m_lastTextBox(0) , m_maxWidth(-1) , m_beginMinWidth(0) , m_endMinWidth(0) , m_hasTab(false) , m_linesDirty(false) , m_containsReversedText(false) , m_isAllASCII(m_text.containsOnlyASCII()) , m_knownToHaveNoOverflowAndNoFallbackFonts(false) , m_needsTranscoding(false) { ASSERT(m_text); setIsText(); // FIXME: It would be better to call this only if !m_text->containsOnlyWhitespace(). // But that might slow things down, and maybe should only be done if visuallyNonEmpty // is still false. Not making any change for now, but should consider in the future. view()->frameView()->setIsVisuallyNonEmpty(); } #ifndef NDEBUG RenderText::~RenderText() { ASSERT(!m_firstTextBox); ASSERT(!m_lastTextBox); } #endif const char* RenderText::renderName() const { return "RenderText"; } bool RenderText::isTextFragment() const { return false; } bool RenderText::isWordBreak() const { return false; } void RenderText::updateNeedsTranscoding() { const TextEncoding* encoding = document()->decoder() ? &document()->decoder()->encoding() : 0; m_needsTranscoding = fontTranscoder().needsTranscoding(style()->font().fontDescription(), encoding); } void RenderText::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) { // There is no need to ever schedule repaints from a style change of a text run, since // we already did this for the parent of the text run. // We do have to schedule layouts, though, since a style change can force us to // need to relayout. if (diff == StyleDifferenceLayout) { setNeedsLayoutAndPrefWidthsRecalc(); m_knownToHaveNoOverflowAndNoFallbackFonts = false; } bool needsResetText = false; if (!oldStyle) { updateNeedsTranscoding(); needsResetText = m_needsTranscoding; } else if (oldStyle->font().needsTranscoding() != style()->font().needsTranscoding() || (style()->font().needsTranscoding() && oldStyle->font().family().family() != style()->font().family().family())) { updateNeedsTranscoding(); needsResetText = true; } ETextTransform oldTransform = oldStyle ? oldStyle->textTransform() : TTNONE; ETextSecurity oldSecurity = oldStyle ? oldStyle->textSecurity() : TSNONE; if (needsResetText || oldTransform != style()->textTransform() || oldSecurity != style()->textSecurity()) { if (RefPtr textToTransform = originalText()) setText(textToTransform.release(), true); } } void RenderText::removeAndDestroyTextBoxes() { if (!documentBeingDestroyed()) { if (firstTextBox()) { if (isBR()) { RootInlineBox* next = firstTextBox()->root()->nextRootBox(); if (next) next->markDirty(); } for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) box->remove(); } else if (parent()) parent()->dirtyLinesFromChangedChild(this); } deleteTextBoxes(); } void RenderText::destroy() { if (SecureTextTimer* secureTextTimer = gSecureTextTimers ? gSecureTextTimers->take(this) : 0) delete secureTextTimer; removeAndDestroyTextBoxes(); RenderObject::destroy(); } void RenderText::extractTextBox(InlineTextBox* box) { checkConsistency(); m_lastTextBox = box->prevTextBox(); if (box == m_firstTextBox) m_firstTextBox = 0; if (box->prevTextBox()) box->prevTextBox()->setNextTextBox(0); box->setPreviousTextBox(0); for (InlineTextBox* curr = box; curr; curr = curr->nextTextBox()) curr->setExtracted(); checkConsistency(); } void RenderText::attachTextBox(InlineTextBox* box) { checkConsistency(); if (m_lastTextBox) { m_lastTextBox->setNextTextBox(box); box->setPreviousTextBox(m_lastTextBox); } else m_firstTextBox = box; InlineTextBox* last = box; for (InlineTextBox* curr = box; curr; curr = curr->nextTextBox()) { curr->setExtracted(false); last = curr; } m_lastTextBox = last; checkConsistency(); } void RenderText::removeTextBox(InlineTextBox* box) { checkConsistency(); if (box == m_firstTextBox) m_firstTextBox = box->nextTextBox(); if (box == m_lastTextBox) m_lastTextBox = box->prevTextBox(); if (box->nextTextBox()) box->nextTextBox()->setPreviousTextBox(box->prevTextBox()); if (box->prevTextBox()) box->prevTextBox()->setNextTextBox(box->nextTextBox()); checkConsistency(); } void RenderText::deleteTextBoxes() { if (firstTextBox()) { RenderArena* arena = renderArena(); InlineTextBox* next; for (InlineTextBox* curr = firstTextBox(); curr; curr = next) { next = curr->nextTextBox(); curr->destroy(arena); } m_firstTextBox = m_lastTextBox = 0; } } PassRefPtr RenderText::originalText() const { Node* e = node(); return (e && e->isTextNode()) ? static_cast(e)->dataImpl() : 0; } void RenderText::absoluteRects(Vector& rects, int tx, int ty) { for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) rects.append(enclosingIntRect(FloatRect(tx + box->x(), ty + box->y(), box->width(), box->height()))); } void RenderText::absoluteRectsForRange(Vector& rects, unsigned start, unsigned end, bool useSelectionHeight) { // Work around signed/unsigned issues. This function takes unsigneds, and is often passed UINT_MAX // to mean "all the way to the end". InlineTextBox coordinates are unsigneds, so changing this // function to take ints causes various internal mismatches. But selectionRect takes ints, and // passing UINT_MAX to it causes trouble. Ideally we'd change selectionRect to take unsigneds, but // that would cause many ripple effects, so for now we'll just clamp our unsigned parameters to INT_MAX. ASSERT(end == UINT_MAX || end <= INT_MAX); ASSERT(start <= INT_MAX); start = min(start, static_cast(INT_MAX)); end = min(end, static_cast(INT_MAX)); for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) { // Note: box->end() returns the index of the last character, not the index past it if (start <= box->start() && box->end() < end) { IntRect r = IntRect(box->x(), box->y(), box->logicalWidth(), box->logicalHeight()); if (useSelectionHeight) { IntRect selectionRect = box->selectionRect(0, 0, start, end); r.setHeight(selectionRect.height()); r.setY(selectionRect.y()); } FloatPoint origin = localToAbsolute(r.location()); r.setX(origin.x()); r.setY(origin.y()); rects.append(r); } else { unsigned realEnd = min(box->end() + 1, end); IntRect r = box->selectionRect(0, 0, start, realEnd); if (!r.isEmpty()) { if (!useSelectionHeight) { // change the height and y position because selectionRect uses selection-specific values r.setHeight(box->logicalHeight()); r.setY(box->y()); } FloatPoint origin = localToAbsolute(r.location()); localToAbsolute(origin); r.setX(origin.x()); r.setY(origin.y()); rects.append(r); } } } } static IntRect ellipsisRectForBox(InlineTextBox* box, unsigned startPos, unsigned endPos) { if (!box) return IntRect(); unsigned short truncation = box->truncation(); if (truncation == cNoTruncation) return IntRect(); IntRect rect; if (EllipsisBox* ellipsis = box->root()->ellipsisBox()) { int ellipsisStartPosition = max(startPos - box->start(), 0); int ellipsisEndPosition = min(endPos - box->start(), box->len()); // The ellipsis should be considered to be selected if the end of // the selection is past the beginning of the truncation and the // beginning of the selection is before or at the beginning of the truncation. if (ellipsisEndPosition >= truncation && ellipsisStartPosition <= truncation) return ellipsis->selectionRect(0, 0); } return IntRect(); } void RenderText::absoluteQuads(Vector& quads, ClippingOption option) { for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) { IntRect boundaries = box->calculateBoundaries(); // Shorten the width of this text box if it ends in an ellipsis. IntRect ellipsisRect = (option == ClipToEllipsis) ? ellipsisRectForBox(box, 0, textLength()) : IntRect(); if (!ellipsisRect.isEmpty()) { if (style()->isHorizontalWritingMode()) boundaries.setWidth(ellipsisRect.maxX() - boundaries.x()); else boundaries.setHeight(ellipsisRect.maxY() - boundaries.y()); } quads.append(localToAbsoluteQuad(FloatRect(boundaries))); } } void RenderText::absoluteQuads(Vector& quads) { absoluteQuads(quads, NoClipping); } void RenderText::absoluteQuadsForRange(Vector& quads, unsigned start, unsigned end, bool useSelectionHeight) { // Work around signed/unsigned issues. This function takes unsigneds, and is often passed UINT_MAX // to mean "all the way to the end". InlineTextBox coordinates are unsigneds, so changing this // function to take ints causes various internal mismatches. But selectionRect takes ints, and // passing UINT_MAX to it causes trouble. Ideally we'd change selectionRect to take unsigneds, but // that would cause many ripple effects, so for now we'll just clamp our unsigned parameters to INT_MAX. ASSERT(end == UINT_MAX || end <= INT_MAX); ASSERT(start <= INT_MAX); start = min(start, static_cast(INT_MAX)); end = min(end, static_cast(INT_MAX)); for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) { // Note: box->end() returns the index of the last character, not the index past it if (start <= box->start() && box->end() < end) { IntRect r(box->calculateBoundaries()); if (useSelectionHeight) { IntRect selectionRect = box->selectionRect(0, 0, start, end); if (box->isHorizontal()) { r.setHeight(selectionRect.height()); r.setY(selectionRect.y()); } else { r.setWidth(selectionRect.width()); r.setX(selectionRect.x()); } } quads.append(localToAbsoluteQuad(FloatRect(r))); } else { unsigned realEnd = min(box->end() + 1, end); IntRect r = box->selectionRect(0, 0, start, realEnd); if (r.height()) { if (!useSelectionHeight) { // change the height and y position because selectionRect uses selection-specific values if (box->isHorizontal()) { r.setHeight(box->logicalHeight()); r.setY(box->y()); } else { r.setWidth(box->logicalHeight()); r.setX(box->x()); } } quads.append(localToAbsoluteQuad(FloatRect(r))); } } } } InlineTextBox* RenderText::findNextInlineTextBox(int offset, int& pos) const { // The text runs point to parts of the RenderText's m_text // (they don't include '\n') // Find the text run that includes the character at offset // and return pos, which is the position of the char in the run. if (!m_firstTextBox) return 0; InlineTextBox* s = m_firstTextBox; int off = s->len(); while (offset > off && s->nextTextBox()) { s = s->nextTextBox(); off = s->start() + s->len(); } // we are now in the correct text run pos = (offset > off ? s->len() : s->len() - (off - offset) ); return s; } VisiblePosition RenderText::positionForPoint(const IntPoint& point) { if (!firstTextBox() || textLength() == 0) return createVisiblePosition(0, DOWNSTREAM); // Get the offset for the position, since this will take rtl text into account. int offset; int pointLineDirection = firstTextBox()->isHorizontal() ? point.x() : point.y(); int pointBlockDirection = firstTextBox()->isHorizontal() ? point.y() : point.x(); // FIXME: We should be able to roll these special cases into the general cases in the loop below. if (firstTextBox() && pointBlockDirection < firstTextBox()->root()->selectionBottom() && pointLineDirection < firstTextBox()->logicalLeft()) { // at the y coordinate of the first line or above // and the x coordinate is to the left of the first text box left edge offset = firstTextBox()->offsetForPosition(pointLineDirection); return createVisiblePosition(offset + firstTextBox()->start(), offset > 0 ? VP_UPSTREAM_IF_POSSIBLE : DOWNSTREAM); } if (lastTextBox() && pointBlockDirection >= lastTextBox()->root()->selectionTop() && pointLineDirection >= lastTextBox()->logicalRight()) { // at the y coordinate of the last line or below // and the x coordinate is to the right of the last text box right edge offset = lastTextBox()->offsetForPosition(pointLineDirection); return createVisiblePosition(offset + lastTextBox()->start(), VP_UPSTREAM_IF_POSSIBLE); } InlineTextBox* lastBoxAbove = 0; for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) { RootInlineBox* rootBox = box->root(); if (pointBlockDirection >= rootBox->selectionTop()) { int bottom = rootBox->selectionBottom(); if (rootBox->nextRootBox()) bottom = min(bottom, rootBox->nextRootBox()->lineTop()); if (pointBlockDirection < bottom) { offset = box->offsetForPosition(pointLineDirection); if (pointLineDirection == box->logicalLeft()) // the x coordinate is equal to the left edge of this box // the affinity must be downstream so the position doesn't jump back to the previous line return createVisiblePosition(offset + box->start(), DOWNSTREAM); if (pointLineDirection < box->logicalRight()) // and the x coordinate is to the left of the right edge of this box // check to see if position goes in this box return createVisiblePosition(offset + box->start(), offset > 0 ? VP_UPSTREAM_IF_POSSIBLE : DOWNSTREAM); if (!box->prevOnLine() && pointLineDirection < box->logicalLeft()) // box is first on line // and the x coordinate is to the left of the first text box left edge return createVisiblePosition(offset + box->start(), DOWNSTREAM); if (!box->nextOnLine()) // box is last on line // and the x coordinate is to the right of the last text box right edge // generate VisiblePosition, use UPSTREAM affinity if possible return createVisiblePosition(offset + box->start(), offset > 0 ? VP_UPSTREAM_IF_POSSIBLE : DOWNSTREAM); } lastBoxAbove = box; } } return createVisiblePosition(lastBoxAbove ? lastBoxAbove->start() + lastBoxAbove->len() : 0, DOWNSTREAM); } IntRect RenderText::localCaretRect(InlineBox* inlineBox, int caretOffset, int* extraWidthToEndOfLine) { if (!inlineBox) return IntRect(); ASSERT(inlineBox->isInlineTextBox()); if (!inlineBox->isInlineTextBox()) return IntRect(); InlineTextBox* box = static_cast(inlineBox); int height = box->root()->selectionHeight(); int top = box->root()->selectionTop(); // Go ahead and round left to snap it to the nearest pixel. float left = box->positionForOffset(caretOffset); // Distribute the caret's width to either side of the offset. int caretWidthLeftOfOffset = caretWidth / 2; left -= caretWidthLeftOfOffset; int caretWidthRightOfOffset = caretWidth - caretWidthLeftOfOffset; left = roundf(left); float rootLeft = box->root()->logicalLeft(); float rootRight = box->root()->logicalRight(); // FIXME: should we use the width of the root inline box or the // width of the containing block for this? if (extraWidthToEndOfLine) *extraWidthToEndOfLine = (box->root()->logicalWidth() + rootLeft) - (left + 1); RenderBlock* cb = containingBlock(); RenderStyle* cbStyle = cb->style(); float leftEdge; float rightEdge; if (style()->autoWrap()) { leftEdge = cb->logicalLeft(); rightEdge = cb->logicalRight(); } else { leftEdge = min(static_cast(cb->logicalLeft()), rootLeft); rightEdge = max(static_cast(cb->logicalRight()), rootRight); } bool rightAligned = false; switch (cbStyle->textAlign()) { case TAAUTO: case JUSTIFY: rightAligned = !cbStyle->isLeftToRightDirection(); break; case RIGHT: case WEBKIT_RIGHT: rightAligned = true; break; case LEFT: case WEBKIT_LEFT: case CENTER: case WEBKIT_CENTER: break; case TASTART: rightAligned = !cbStyle->isLeftToRightDirection(); break; case TAEND: rightAligned = cbStyle->isLeftToRightDirection(); break; } if (rightAligned) { left = max(left, leftEdge); left = min(left, rootRight - caretWidth); } else { left = min(left, rightEdge - caretWidthRightOfOffset); left = max(left, rootLeft); } return style()->isHorizontalWritingMode() ? IntRect(left, top, caretWidth, height) : IntRect(top, left, height, caretWidth); } ALWAYS_INLINE float RenderText::widthFromCache(const Font& f, int start, int len, float xPos, HashSet* fallbackFonts, GlyphOverflow* glyphOverflow) const { if (style()->hasTextCombine() && isCombineText()) { const RenderCombineText* combineText = toRenderCombineText(this); if (combineText->isCombined()) return combineText->combinedTextWidth(f); } if (f.isFixedPitch() && !f.isSmallCaps() && m_isAllASCII && (!glyphOverflow || !glyphOverflow->computeBounds)) { float monospaceCharacterWidth = f.spaceWidth(); float tabWidth = allowTabs() ? monospaceCharacterWidth * 8 : 0; float w = 0; bool isSpace; bool previousCharWasSpace = true; // FIXME: Preserves historical behavior, but seems wrong for start > 0. ASSERT(m_text); StringImpl& text = *m_text.impl(); for (int i = start; i < start + len; i++) { char c = text[i]; if (c <= ' ') { if (c == ' ' || c == '\n') { w += monospaceCharacterWidth; isSpace = true; } else if (c == '\t') { w += tabWidth ? tabWidth - fmodf(xPos + w, tabWidth) : monospaceCharacterWidth; isSpace = true; } else isSpace = false; } else { w += monospaceCharacterWidth; isSpace = false; } if (isSpace && !previousCharWasSpace) w += f.wordSpacing(); previousCharWasSpace = isSpace; } return w; } return f.width(TextRun(text()->characters() + start, len, allowTabs(), xPos), fallbackFonts, glyphOverflow); } void RenderText::trimmedPrefWidths(float leadWidth, float& beginMinW, bool& beginWS, float& endMinW, bool& endWS, bool& hasBreakableChar, bool& hasBreak, float& beginMaxW, float& endMaxW, float& minW, float& maxW, bool& stripFrontSpaces) { bool collapseWhiteSpace = style()->collapseWhiteSpace(); if (!collapseWhiteSpace) stripFrontSpaces = false; if (m_hasTab || preferredLogicalWidthsDirty()) computePreferredLogicalWidths(leadWidth); beginWS = !stripFrontSpaces && m_hasBeginWS; endWS = m_hasEndWS; int len = textLength(); if (!len || (stripFrontSpaces && text()->containsOnlyWhitespace())) { beginMinW = 0; endMinW = 0; beginMaxW = 0; endMaxW = 0; minW = 0; maxW = 0; hasBreak = false; return; } minW = m_minWidth; maxW = m_maxWidth; beginMinW = m_beginMinWidth; endMinW = m_endMinWidth; hasBreakableChar = m_hasBreakableChar; hasBreak = m_hasBreak; ASSERT(m_text); StringImpl& text = *m_text.impl(); if (text[0] == ' ' || (text[0] == '\n' && !style()->preserveNewline()) || text[0] == '\t') { const Font& f = style()->font(); // FIXME: This ignores first-line. if (stripFrontSpaces) { const UChar space = ' '; float spaceWidth = f.width(TextRun(&space, 1)); maxW -= spaceWidth; } else maxW += f.wordSpacing(); } stripFrontSpaces = collapseWhiteSpace && m_hasEndWS; if (!style()->autoWrap() || minW > maxW) minW = maxW; // Compute our max widths by scanning the string for newlines. if (hasBreak) { const Font& f = style()->font(); // FIXME: This ignores first-line. bool firstLine = true; beginMaxW = maxW; endMaxW = maxW; for (int i = 0; i < len; i++) { int linelen = 0; while (i + linelen < len && text[i + linelen] != '\n') linelen++; if (linelen) { endMaxW = widthFromCache(f, i, linelen, leadWidth + endMaxW, 0, 0); if (firstLine) { firstLine = false; leadWidth = 0; beginMaxW = endMaxW; } i += linelen; } else if (firstLine) { beginMaxW = 0; firstLine = false; leadWidth = 0; } if (i == len - 1) // A
 run that ends with a newline, as in, e.g.,
                // 
Some text\n\nMore text
endMaxW = 0; } } } static inline bool isSpaceAccordingToStyle(UChar c, RenderStyle* style) { return c == ' ' || (c == noBreakSpace && style->nbspMode() == SPACE); } float RenderText::minLogicalWidth() const { if (preferredLogicalWidthsDirty()) const_cast(this)->computePreferredLogicalWidths(0); return m_minWidth; } float RenderText::maxLogicalWidth() const { if (preferredLogicalWidthsDirty()) const_cast(this)->computePreferredLogicalWidths(0); return m_maxWidth; } void RenderText::computePreferredLogicalWidths(float leadWidth) { HashSet fallbackFonts; GlyphOverflow glyphOverflow; computePreferredLogicalWidths(leadWidth, fallbackFonts, glyphOverflow); if (fallbackFonts.isEmpty() && !glyphOverflow.left && !glyphOverflow.right && !glyphOverflow.top && !glyphOverflow.bottom) m_knownToHaveNoOverflowAndNoFallbackFonts = true; } void RenderText::computePreferredLogicalWidths(float leadWidth, HashSet& fallbackFonts, GlyphOverflow& glyphOverflow) { ASSERT(m_hasTab || preferredLogicalWidthsDirty() || !m_knownToHaveNoOverflowAndNoFallbackFonts); m_minWidth = 0; m_beginMinWidth = 0; m_endMinWidth = 0; m_maxWidth = 0; if (isBR()) return; float currMinWidth = 0; float currMaxWidth = 0; m_hasBreakableChar = false; m_hasBreak = false; m_hasTab = false; m_hasBeginWS = false; m_hasEndWS = false; const Font& f = style()->font(); // FIXME: This ignores first-line. float wordSpacing = style()->wordSpacing(); int len = textLength(); const UChar* txt = characters(); LazyLineBreakIterator breakIterator(txt, len); bool needsWordSpacing = false; bool ignoringSpaces = false; bool isSpace = false; bool firstWord = true; bool firstLine = true; int nextBreakable = -1; int lastWordBoundary = 0; int firstGlyphLeftOverflow = -1; bool breakNBSP = style()->autoWrap() && style()->nbspMode() == SPACE; bool breakAll = (style()->wordBreak() == BreakAllWordBreak || style()->wordBreak() == BreakWordBreak) && style()->autoWrap(); for (int i = 0; i < len; i++) { UChar c = txt[i]; bool previousCharacterIsSpace = isSpace; bool isNewline = false; if (c == '\n') { if (style()->preserveNewline()) { m_hasBreak = true; isNewline = true; isSpace = false; } else isSpace = true; } else if (c == '\t') { if (!style()->collapseWhiteSpace()) { m_hasTab = true; isSpace = false; } else isSpace = true; } else isSpace = c == ' '; if ((isSpace || isNewline) && !i) m_hasBeginWS = true; if ((isSpace || isNewline) && i == len - 1) m_hasEndWS = true; if (!ignoringSpaces && style()->collapseWhiteSpace() && previousCharacterIsSpace && isSpace) ignoringSpaces = true; if (ignoringSpaces && !isSpace) ignoringSpaces = false; // Ignore spaces and soft hyphens if (ignoringSpaces) { ASSERT(lastWordBoundary == i); lastWordBoundary++; continue; } else if (c == softHyphen) { currMaxWidth += widthFromCache(f, lastWordBoundary, i - lastWordBoundary, leadWidth + currMaxWidth, &fallbackFonts, &glyphOverflow); if (firstGlyphLeftOverflow < 0) firstGlyphLeftOverflow = glyphOverflow.left; lastWordBoundary = i + 1; continue; } bool hasBreak = breakAll || isBreakable(breakIterator, i, nextBreakable, breakNBSP); bool betweenWords = true; int j = i; while (c != '\n' && !isSpaceAccordingToStyle(c, style()) && c != '\t' && c != softHyphen) { j++; if (j == len) break; c = txt[j]; if (isBreakable(breakIterator, j, nextBreakable, breakNBSP)) break; if (breakAll) { betweenWords = false; break; } } int wordLen = j - i; if (wordLen) { float w = widthFromCache(f, i, wordLen, leadWidth + currMaxWidth, &fallbackFonts, &glyphOverflow); if (firstGlyphLeftOverflow < 0) firstGlyphLeftOverflow = glyphOverflow.left; currMinWidth += w; if (betweenWords) { if (lastWordBoundary == i) currMaxWidth += w; else currMaxWidth += widthFromCache(f, lastWordBoundary, j - lastWordBoundary, leadWidth + currMaxWidth, &fallbackFonts, &glyphOverflow); lastWordBoundary = j; } bool isSpace = (j < len) && isSpaceAccordingToStyle(c, style()); bool isCollapsibleWhiteSpace = (j < len) && style()->isCollapsibleWhiteSpace(c); if (j < len && style()->autoWrap()) m_hasBreakableChar = true; // Add in wordSpacing to our currMaxWidth, but not if this is the last word on a line or the // last word in the run. if (wordSpacing && (isSpace || isCollapsibleWhiteSpace) && !containsOnlyWhitespace(j, len-j)) currMaxWidth += wordSpacing; if (firstWord) { firstWord = false; // If the first character in the run is breakable, then we consider ourselves to have a beginning // minimum width of 0, since a break could occur right before our run starts, preventing us from ever // being appended to a previous text run when considering the total minimum width of the containing block. if (hasBreak) m_hasBreakableChar = true; m_beginMinWidth = hasBreak ? 0 : w; } m_endMinWidth = w; if (currMinWidth > m_minWidth) m_minWidth = currMinWidth; currMinWidth = 0; i += wordLen - 1; } else { // Nowrap can never be broken, so don't bother setting the // breakable character boolean. Pre can only be broken if we encounter a newline. if (style()->autoWrap() || isNewline) m_hasBreakableChar = true; if (currMinWidth > m_minWidth) m_minWidth = currMinWidth; currMinWidth = 0; if (isNewline) { // Only set if preserveNewline was true and we saw a newline. if (firstLine) { firstLine = false; leadWidth = 0; if (!style()->autoWrap()) m_beginMinWidth = currMaxWidth; } if (currMaxWidth > m_maxWidth) m_maxWidth = currMaxWidth; currMaxWidth = 0; } else { currMaxWidth += f.width(TextRun(txt + i, 1, allowTabs(), leadWidth + currMaxWidth)); glyphOverflow.right = 0; needsWordSpacing = isSpace && !previousCharacterIsSpace && i == len - 1; } ASSERT(lastWordBoundary == i); lastWordBoundary++; } } if (firstGlyphLeftOverflow > 0) glyphOverflow.left = firstGlyphLeftOverflow; if ((needsWordSpacing && len > 1) || (ignoringSpaces && !firstWord)) currMaxWidth += wordSpacing; m_minWidth = max(currMinWidth, m_minWidth); m_maxWidth = max(currMaxWidth, m_maxWidth); if (!style()->autoWrap()) m_minWidth = m_maxWidth; if (style()->whiteSpace() == PRE) { if (firstLine) m_beginMinWidth = m_maxWidth; m_endMinWidth = currMaxWidth; } setPreferredLogicalWidthsDirty(false); } bool RenderText::isAllCollapsibleWhitespace() { int length = textLength(); const UChar* text = characters(); for (int i = 0; i < length; i++) { if (!style()->isCollapsibleWhiteSpace(text[i])) return false; } return true; } bool RenderText::containsOnlyWhitespace(unsigned from, unsigned len) const { ASSERT(m_text); StringImpl& text = *m_text.impl(); unsigned currPos; for (currPos = from; currPos < from + len && (text[currPos] == '\n' || text[currPos] == ' ' || text[currPos] == '\t'); currPos++) { } return currPos >= (from + len); } FloatPoint RenderText::firstRunOrigin() const { return IntPoint(firstRunX(), firstRunY()); } float RenderText::firstRunX() const { return m_firstTextBox ? m_firstTextBox->m_x : 0; } float RenderText::firstRunY() const { return m_firstTextBox ? m_firstTextBox->m_y : 0; } void RenderText::setSelectionState(SelectionState state) { InlineTextBox* box; RenderObject::setSelectionState(state); if (state == SelectionStart || state == SelectionEnd || state == SelectionBoth) { int startPos, endPos; selectionStartEnd(startPos, endPos); if (selectionState() == SelectionStart) { endPos = textLength(); // to handle selection from end of text to end of line if (startPos != 0 && startPos == endPos) startPos = endPos - 1; } else if (selectionState() == SelectionEnd) startPos = 0; for (box = firstTextBox(); box; box = box->nextTextBox()) { if (box->isSelected(startPos, endPos)) { RootInlineBox* line = box->root(); if (line) line->setHasSelectedChildren(true); } } } else { for (box = firstTextBox(); box; box = box->nextTextBox()) { RootInlineBox* line = box->root(); if (line) line->setHasSelectedChildren(state == SelectionInside); } } // The returned value can be null in case of an orphaned tree. if (RenderBlock* cb = containingBlock()) cb->setSelectionState(state); } void RenderText::setTextWithOffset(PassRefPtr text, unsigned offset, unsigned len, bool force) { unsigned oldLen = textLength(); unsigned newLen = text->length(); int delta = newLen - oldLen; unsigned end = len ? offset + len - 1 : offset; RootInlineBox* firstRootBox = 0; RootInlineBox* lastRootBox = 0; bool dirtiedLines = false; // Dirty all text boxes that include characters in between offset and offset+len. for (InlineTextBox* curr = firstTextBox(); curr; curr = curr->nextTextBox()) { // Text run is entirely before the affected range. if (curr->end() < offset) continue; // Text run is entirely after the affected range. if (curr->start() > end) { curr->offsetRun(delta); RootInlineBox* root = curr->root(); if (!firstRootBox) { firstRootBox = root; if (!dirtiedLines) { // The affected area was in between two runs. Go ahead and mark the root box of // the run after the affected area as dirty. firstRootBox->markDirty(); dirtiedLines = true; } } lastRootBox = root; } else if (curr->end() >= offset && curr->end() <= end) { // Text run overlaps with the left end of the affected range. curr->dirtyLineBoxes(); dirtiedLines = true; } else if (curr->start() <= offset && curr->end() >= end) { // Text run subsumes the affected range. curr->dirtyLineBoxes(); dirtiedLines = true; } else if (curr->start() <= end && curr->end() >= end) { // Text run overlaps with right end of the affected range. curr->dirtyLineBoxes(); dirtiedLines = true; } } // Now we have to walk all of the clean lines and adjust their cached line break information // to reflect our updated offsets. if (lastRootBox) lastRootBox = lastRootBox->nextRootBox(); if (firstRootBox) { RootInlineBox* prev = firstRootBox->prevRootBox(); if (prev) firstRootBox = prev; } else if (lastTextBox()) { ASSERT(!lastRootBox); firstRootBox = lastTextBox()->root(); firstRootBox->markDirty(); dirtiedLines = true; } for (RootInlineBox* curr = firstRootBox; curr && curr != lastRootBox; curr = curr->nextRootBox()) { if (curr->lineBreakObj() == this && curr->lineBreakPos() > end) curr->setLineBreakPos(curr->lineBreakPos() + delta); } // If the text node is empty, dirty the line where new text will be inserted. if (!firstTextBox() && parent()) { parent()->dirtyLinesFromChangedChild(this); dirtiedLines = true; } m_linesDirty = dirtiedLines; setText(text, force); } static inline bool isInlineFlowOrEmptyText(const RenderObject* o) { if (o->isRenderInline()) return true; if (!o->isText()) return false; StringImpl* text = toRenderText(o)->text(); if (!text) return true; return !text->length(); } UChar RenderText::previousCharacter() const { // find previous text renderer if one exists const RenderObject* previousText = this; while ((previousText = previousText->previousInPreOrder())) if (!isInlineFlowOrEmptyText(previousText)) break; UChar prev = ' '; if (previousText && previousText->isText()) if (StringImpl* previousString = toRenderText(previousText)->text()) prev = (*previousString)[previousString->length() - 1]; return prev; } void RenderText::transformText(String& text) const { ASSERT(style()); switch (style()->textTransform()) { case TTNONE: break; case CAPITALIZE: makeCapitalized(&text, previousCharacter()); break; case UPPERCASE: text.makeUpper(); break; case LOWERCASE: text.makeLower(); break; } } void RenderText::setTextInternal(PassRefPtr text) { ASSERT(text); m_text = text; if (m_needsTranscoding) { const TextEncoding* encoding = document()->decoder() ? &document()->decoder()->encoding() : 0; fontTranscoder().convert(m_text, style()->font().fontDescription(), encoding); } ASSERT(m_text); if (style()) { transformText(m_text); // We use the same characters here as for list markers. // See the listMarkerText function in RenderListMarker.cpp. switch (style()->textSecurity()) { case TSNONE: break; case TSCIRCLE: secureText(whiteBullet); break; case TSDISC: secureText(bullet); break; case TSSQUARE: secureText(blackSquare); } } ASSERT(m_text); ASSERT(!isBR() || (textLength() == 1 && m_text[0] == '\n')); m_isAllASCII = m_text.containsOnlyASCII(); } void RenderText::secureText(UChar mask) { if (!m_text.length()) return; int lastTypedCharacterOffsetToReveal = -1; String revealedText; SecureTextTimer* secureTextTimer = gSecureTextTimers ? gSecureTextTimers->get(this) : 0; if (secureTextTimer && secureTextTimer->isActive()) { lastTypedCharacterOffsetToReveal = secureTextTimer->lastTypedCharacterOffset(); if (lastTypedCharacterOffsetToReveal >= 0) revealedText.append(m_text[lastTypedCharacterOffsetToReveal]); } m_text.makeSecure(mask); if (lastTypedCharacterOffsetToReveal >= 0) { m_text.replace(lastTypedCharacterOffsetToReveal, 1, revealedText); // m_text may be updated later before timer fires. We invalidate the lastTypedCharacterOffset to avoid inconsistency. secureTextTimer->invalidate(); } } void RenderText::setText(PassRefPtr text, bool force) { ASSERT(text); if (!force && equal(m_text.impl(), text.get())) return; setTextInternal(text); setNeedsLayoutAndPrefWidthsRecalc(); m_knownToHaveNoOverflowAndNoFallbackFonts = false; AXObjectCache* axObjectCache = document()->axObjectCache(); if (axObjectCache->accessibilityEnabled()) axObjectCache->contentChanged(this); } String RenderText::textWithoutTranscoding() const { // If m_text isn't transcoded or is secure, we can just return the modified text. if (!m_needsTranscoding || style()->textSecurity() != TSNONE) return text(); // Otherwise, we should use original text. If text-transform is // specified, we should transform the text on the fly. String text = originalText(); if (style()) transformText(text); return text; } void RenderText::dirtyLineBoxes(bool fullLayout) { if (fullLayout) deleteTextBoxes(); else if (!m_linesDirty) { for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) box->dirtyLineBoxes(); } m_linesDirty = false; } InlineTextBox* RenderText::createTextBox() { return new (renderArena()) InlineTextBox(this); } InlineTextBox* RenderText::createInlineTextBox() { InlineTextBox* textBox = createTextBox(); if (!m_firstTextBox) m_firstTextBox = m_lastTextBox = textBox; else { m_lastTextBox->setNextTextBox(textBox); textBox->setPreviousTextBox(m_lastTextBox); m_lastTextBox = textBox; } textBox->setIsText(true); return textBox; } void RenderText::positionLineBox(InlineBox* box) { InlineTextBox* s = static_cast(box); // FIXME: should not be needed!!! if (!s->len()) { // We want the box to be destroyed. s->remove(); if (m_firstTextBox == s) m_firstTextBox = s->nextTextBox(); else s->prevTextBox()->setNextTextBox(s->nextTextBox()); if (m_lastTextBox == s) m_lastTextBox = s->prevTextBox(); else s->nextTextBox()->setPreviousTextBox(s->prevTextBox()); s->destroy(renderArena()); return; } m_containsReversedText |= !s->isLeftToRightDirection(); } float RenderText::width(unsigned from, unsigned len, float xPos, bool firstLine, HashSet* fallbackFonts, GlyphOverflow* glyphOverflow) const { if (from >= textLength()) return 0; if (from + len > textLength()) len = textLength() - from; return width(from, len, style(firstLine)->font(), xPos, fallbackFonts, glyphOverflow); } float RenderText::width(unsigned from, unsigned len, const Font& f, float xPos, HashSet* fallbackFonts, GlyphOverflow* glyphOverflow) const { ASSERT(from + len <= textLength()); if (!characters()) return 0; float w; if (&f == &style()->font()) { if (!style()->preserveNewline() && !from && len == textLength() && (!glyphOverflow || !glyphOverflow->computeBounds)) { if (fallbackFonts) { ASSERT(glyphOverflow); if (preferredLogicalWidthsDirty() || !m_knownToHaveNoOverflowAndNoFallbackFonts) { const_cast(this)->computePreferredLogicalWidths(0, *fallbackFonts, *glyphOverflow); if (fallbackFonts->isEmpty() && !glyphOverflow->left && !glyphOverflow->right && !glyphOverflow->top && !glyphOverflow->bottom) m_knownToHaveNoOverflowAndNoFallbackFonts = true; } w = m_maxWidth; } else w = maxLogicalWidth(); } else w = widthFromCache(f, from, len, xPos, fallbackFonts, glyphOverflow); } else w = f.width(TextRun(text()->characters() + from, len, allowTabs(), xPos), fallbackFonts, glyphOverflow); return w; } IntRect RenderText::linesBoundingBox() const { IntRect result; ASSERT(!firstTextBox() == !lastTextBox()); // Either both are null or both exist. if (firstTextBox() && lastTextBox()) { // Return the width of the minimal left side and the maximal right side. float logicalLeftSide = 0; float logicalRightSide = 0; for (InlineTextBox* curr = firstTextBox(); curr; curr = curr->nextTextBox()) { if (curr == firstTextBox() || curr->logicalLeft() < logicalLeftSide) logicalLeftSide = curr->logicalLeft(); if (curr == firstTextBox() || curr->logicalRight() > logicalRightSide) logicalRightSide = curr->logicalRight(); } bool isHorizontal = style()->isHorizontalWritingMode(); float x = isHorizontal ? logicalLeftSide : firstTextBox()->x(); float y = isHorizontal ? firstTextBox()->y() : logicalLeftSide; float width = isHorizontal ? logicalRightSide - logicalLeftSide : lastTextBox()->logicalBottom() - x; float height = isHorizontal ? lastTextBox()->logicalBottom() - y : logicalRightSide - logicalLeftSide; result = enclosingIntRect(FloatRect(x, y, width, height)); } return result; } IntRect RenderText::linesVisualOverflowBoundingBox() const { if (!firstTextBox()) return IntRect(); // Return the width of the minimal left side and the maximal right side. int logicalLeftSide = numeric_limits::max(); int logicalRightSide = numeric_limits::min(); for (InlineTextBox* curr = firstTextBox(); curr; curr = curr->nextTextBox()) { logicalLeftSide = min(logicalLeftSide, curr->logicalLeftVisualOverflow()); logicalRightSide = max(logicalRightSide, curr->logicalRightVisualOverflow()); } int logicalTop = firstTextBox()->logicalTopVisualOverflow(); int logicalWidth = logicalRightSide - logicalLeftSide; int logicalHeight = lastTextBox()->logicalBottomVisualOverflow() - logicalTop; IntRect rect(logicalLeftSide, logicalTop, logicalWidth, logicalHeight); if (!style()->isHorizontalWritingMode()) rect = rect.transposedRect(); return rect; } IntRect RenderText::clippedOverflowRectForRepaint(RenderBoxModelObject* repaintContainer) { bool repaintContainerSkipped; RenderObject* container = this->container(repaintContainer, &repaintContainerSkipped); // The container may be an ancestor of repaintContainer, but we need to do a repaintContainer-relative repaint. if (repaintContainerSkipped) return repaintContainer->clippedOverflowRectForRepaint(repaintContainer); return container->clippedOverflowRectForRepaint(repaintContainer); } IntRect RenderText::selectionRectForRepaint(RenderBoxModelObject* repaintContainer, bool clipToVisibleContent) { ASSERT(!needsLayout()); if (selectionState() == SelectionNone) return IntRect(); RenderBlock* cb = containingBlock(); if (!cb) return IntRect(); // Now calculate startPos and endPos for painting selection. // We include a selection while endPos > 0 int startPos, endPos; if (selectionState() == SelectionInside) { // We are fully selected. startPos = 0; endPos = textLength(); } else { selectionStartEnd(startPos, endPos); if (selectionState() == SelectionStart) endPos = textLength(); else if (selectionState() == SelectionEnd) startPos = 0; } if (startPos == endPos) return IntRect(); IntRect rect; for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) { rect.unite(box->selectionRect(0, 0, startPos, endPos)); rect.unite(ellipsisRectForBox(box, startPos, endPos)); } if (clipToVisibleContent) computeRectForRepaint(repaintContainer, rect); else { if (cb->hasColumns()) cb->adjustRectForColumns(rect); rect = localToContainerQuad(FloatRect(rect), repaintContainer).enclosingBoundingBox(); } return rect; } int RenderText::caretMinOffset() const { InlineTextBox* box = firstTextBox(); if (!box) return 0; int minOffset = box->start(); for (box = box->nextTextBox(); box; box = box->nextTextBox()) minOffset = min(minOffset, box->start()); return minOffset; } int RenderText::caretMaxOffset() const { InlineTextBox* box = lastTextBox(); if (!box) return textLength(); int maxOffset = box->start() + box->len(); for (box = box->prevTextBox(); box; box = box->prevTextBox()) maxOffset = max(maxOffset, box->start() + box->len()); return maxOffset; } unsigned RenderText::caretMaxRenderedOffset() const { int l = 0; for (InlineTextBox* box = firstTextBox(); box; box = box->nextTextBox()) l += box->len(); return l; } int RenderText::previousOffset(int current) const { StringImpl* si = m_text.impl(); TextBreakIterator* iterator = cursorMovementIterator(si->characters(), si->length()); if (!iterator) return current - 1; long result = textBreakPreceding(iterator, current); if (result == TextBreakDone) result = current - 1; #ifdef BUILDING_ON_TIGER // ICU 3.2 allows character breaks before a half-width Katakana voiced mark. if (static_cast(result) < si->length()) { UChar character = (*si)[result]; if (character == 0xFF9E || character == 0xFF9F) --result; } #endif return result; } #if PLATFORM(MAC) #define HANGUL_CHOSEONG_START (0x1100) #define HANGUL_CHOSEONG_END (0x115F) #define HANGUL_JUNGSEONG_START (0x1160) #define HANGUL_JUNGSEONG_END (0x11A2) #define HANGUL_JONGSEONG_START (0x11A8) #define HANGUL_JONGSEONG_END (0x11F9) #define HANGUL_SYLLABLE_START (0xAC00) #define HANGUL_SYLLABLE_END (0xD7AF) #define HANGUL_JONGSEONG_COUNT (28) enum HangulState { HangulStateL, HangulStateV, HangulStateT, HangulStateLV, HangulStateLVT, HangulStateBreak }; inline bool isHangulLVT(UChar32 character) { return (character - HANGUL_SYLLABLE_START) % HANGUL_JONGSEONG_COUNT; } inline bool isMark(UChar32 c) { int8_t charType = u_charType(c); return charType == U_NON_SPACING_MARK || charType == U_ENCLOSING_MARK || charType == U_COMBINING_SPACING_MARK; } #endif int RenderText::previousOffsetForBackwardDeletion(int current) const { #if PLATFORM(MAC) ASSERT(m_text); StringImpl& text = *m_text.impl(); UChar32 character; while (current > 0) { if (U16_IS_TRAIL(text[--current])) --current; if (current < 0) break; UChar32 character = text.characterStartingAt(current); // We don't combine characters in Armenian ... Limbu range for backward deletion. if ((character >= 0x0530) && (character < 0x1950)) break; if (!isMark(character) && (character != 0xFF9E) && (character != 0xFF9F)) break; } if (current <= 0) return current; // Hangul character = text.characterStartingAt(current); if (((character >= HANGUL_CHOSEONG_START) && (character <= HANGUL_JONGSEONG_END)) || ((character >= HANGUL_SYLLABLE_START) && (character <= HANGUL_SYLLABLE_END))) { HangulState state; HangulState initialState; if (character < HANGUL_JUNGSEONG_START) state = HangulStateL; else if (character < HANGUL_JONGSEONG_START) state = HangulStateV; else if (character < HANGUL_SYLLABLE_START) state = HangulStateT; else state = isHangulLVT(character) ? HangulStateLVT : HangulStateLV; initialState = state; while (current > 0 && ((character = text.characterStartingAt(current - 1)) >= HANGUL_CHOSEONG_START) && (character <= HANGUL_SYLLABLE_END) && ((character <= HANGUL_JONGSEONG_END) || (character >= HANGUL_SYLLABLE_START))) { switch (state) { case HangulStateV: if (character <= HANGUL_CHOSEONG_END) state = HangulStateL; else if ((character >= HANGUL_SYLLABLE_START) && (character <= HANGUL_SYLLABLE_END) && !isHangulLVT(character)) state = HangulStateLV; else if (character > HANGUL_JUNGSEONG_END) state = HangulStateBreak; break; case HangulStateT: if ((character >= HANGUL_JUNGSEONG_START) && (character <= HANGUL_JUNGSEONG_END)) state = HangulStateV; else if ((character >= HANGUL_SYLLABLE_START) && (character <= HANGUL_SYLLABLE_END)) state = (isHangulLVT(character) ? HangulStateLVT : HangulStateLV); else if (character < HANGUL_JUNGSEONG_START) state = HangulStateBreak; break; default: state = (character < HANGUL_JUNGSEONG_START) ? HangulStateL : HangulStateBreak; break; } if (state == HangulStateBreak) break; --current; } } return current; #else // Platforms other than Mac delete by one code point. return current - 1; #endif } int RenderText::nextOffset(int current) const { StringImpl* si = m_text.impl(); TextBreakIterator* iterator = cursorMovementIterator(si->characters(), si->length()); if (!iterator) return current + 1; long result = textBreakFollowing(iterator, current); if (result == TextBreakDone) result = current + 1; #ifdef BUILDING_ON_TIGER // ICU 3.2 allows character breaks before a half-width Katakana voiced mark. if (static_cast(result) < si->length()) { UChar character = (*si)[result]; if (character == 0xFF9E || character == 0xFF9F) ++result; } #endif return result; } #ifndef NDEBUG void RenderText::checkConsistency() const { #ifdef CHECK_CONSISTENCY const InlineTextBox* prev = 0; for (const InlineTextBox* child = m_firstTextBox; child != 0; child = child->nextTextBox()) { ASSERT(child->renderer() == this); ASSERT(child->prevTextBox() == prev); prev = child; } ASSERT(prev == m_lastTextBox); #endif } #endif void RenderText::momentarilyRevealLastTypedCharacter(unsigned lastTypedCharacterOffset) { if (!gSecureTextTimers) gSecureTextTimers = new SecureTextTimerMap; SecureTextTimer* secureTextTimer = gSecureTextTimers->get(this); if (!secureTextTimer) { secureTextTimer = new SecureTextTimer(this); gSecureTextTimers->add(this, secureTextTimer); } secureTextTimer->restartWithNewText(lastTypedCharacterOffset); } } // namespace WebCore