/* * Copyright (C) 2010, Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #if ENABLE(WEB_AUDIO) #include "RealtimeAnalyser.h" #include "AudioBus.h" #include "AudioUtilities.h" #include "FFTFrame.h" #if ENABLE(WEBGL) #include "Float32Array.h" #include "Uint8Array.h" #endif #include #include #include #include #include using namespace std; namespace WebCore { const double RealtimeAnalyser::DefaultSmoothingTimeConstant = 0.8; const double RealtimeAnalyser::DefaultMinDecibels = -100.0; const double RealtimeAnalyser::DefaultMaxDecibels = -30.0; const unsigned RealtimeAnalyser::DefaultFFTSize = 2048; const unsigned RealtimeAnalyser::MaxFFTSize = 2048; const unsigned RealtimeAnalyser::InputBufferSize = RealtimeAnalyser::MaxFFTSize * 2; RealtimeAnalyser::RealtimeAnalyser() : m_inputBuffer(InputBufferSize) , m_writeIndex(0) , m_fftSize(DefaultFFTSize) , m_magnitudeBuffer(DefaultFFTSize / 2) , m_smoothingTimeConstant(DefaultSmoothingTimeConstant) , m_minDecibels(DefaultMinDecibels) , m_maxDecibels(DefaultMaxDecibels) { m_analysisFrame = adoptPtr(new FFTFrame(DefaultFFTSize)); } RealtimeAnalyser::~RealtimeAnalyser() { } void RealtimeAnalyser::reset() { m_writeIndex = 0; m_inputBuffer.zero(); m_magnitudeBuffer.zero(); } void RealtimeAnalyser::setFftSize(size_t size) { ASSERT(isMainThread()); // Only allow powers of two. unsigned log2size = static_cast(log2(size)); bool isPOT(1UL << log2size == size); if (!isPOT || size > MaxFFTSize) { // FIXME: It would be good to also set an exception. return; } if (m_fftSize != size) { m_analysisFrame = adoptPtr(new FFTFrame(m_fftSize)); m_magnitudeBuffer.resize(size); m_fftSize = size; } } void RealtimeAnalyser::writeInput(AudioBus* bus, size_t framesToProcess) { bool isBusGood = bus && bus->numberOfChannels() > 0 && bus->channel(0)->length() >= framesToProcess; ASSERT(isBusGood); if (!isBusGood) return; // FIXME : allow to work with non-FFTSize divisible chunking bool isDestinationGood = m_writeIndex < m_inputBuffer.size() && m_writeIndex + framesToProcess <= m_inputBuffer.size(); ASSERT(isDestinationGood); if (!isDestinationGood) return; // Perform real-time analysis // FIXME : for now just use left channel (must mix if stereo source) float* source = bus->channel(0)->data(); // The source has already been sanity checked with isBusGood above. memcpy(m_inputBuffer.data() + m_writeIndex, source, sizeof(float) * framesToProcess); m_writeIndex += framesToProcess; if (m_writeIndex >= InputBufferSize) m_writeIndex = 0; } namespace { void applyWindow(float* p, size_t n) { ASSERT(isMainThread()); // Blackman window double alpha = 0.16; double a0 = 0.5 * (1.0 - alpha); double a1 = 0.5; double a2 = 0.5 * alpha; for (unsigned i = 0; i < n; ++i) { double x = static_cast(i) / static_cast(n); double window = a0 - a1 * cos(2.0 * piDouble * x) + a2 * cos(4.0 * piDouble * x); p[i] *= float(window); } } } // namespace void RealtimeAnalyser::doFFTAnalysis() { ASSERT(isMainThread()); // Unroll the input buffer into a temporary buffer, where we'll apply an analysis window followed by an FFT. size_t fftSize = this->fftSize(); AudioFloatArray temporaryBuffer(fftSize); float* inputBuffer = m_inputBuffer.data(); float* tempP = temporaryBuffer.data(); // Take the previous fftSize values from the input buffer and copy into the temporary buffer. // FIXME : optimize with memcpy(). unsigned writeIndex = m_writeIndex; for (unsigned i = 0; i < fftSize; ++i) tempP[i] = inputBuffer[(i + writeIndex - fftSize + InputBufferSize) % InputBufferSize]; // Window the input samples. applyWindow(tempP, fftSize); // Do the analysis. m_analysisFrame->doFFT(tempP); size_t n = DefaultFFTSize / 2; float* realP = m_analysisFrame->realData(); float* imagP = m_analysisFrame->imagData(); // Blow away the packed nyquist component. imagP[0] = 0.0f; // Normalize so than an input sine wave at 0dBfs registers as 0dBfs (undo FFT scaling factor). const double MagnitudeScale = 1.0 / DefaultFFTSize; // A value of 0 does no averaging with the previous result. Larger values produce slower, but smoother changes. double k = m_smoothingTimeConstant; k = max(0.0, k); k = min(1.0, k); // Convert the analysis data from complex to magnitude and average with the previous result. float* destination = magnitudeBuffer().data(); for (unsigned i = 0; i < n; ++i) { Complex c(realP[i], imagP[i]); double scalarMagnitude = abs(c) * MagnitudeScale; destination[i] = float(k * destination[i] + (1.0 - k) * scalarMagnitude); } } #if ENABLE(WEBGL) void RealtimeAnalyser::getFloatFrequencyData(Float32Array* destinationArray) { ASSERT(isMainThread()); if (!destinationArray) return; doFFTAnalysis(); // Convert from linear magnitude to floating-point decibels. const double MinDecibels = m_minDecibels; unsigned sourceLength = magnitudeBuffer().size(); size_t len = min(sourceLength, destinationArray->length()); if (len > 0) { const float* source = magnitudeBuffer().data(); float* destination = destinationArray->data(); for (unsigned i = 0; i < len; ++i) { float linearValue = source[i]; double dbMag = !linearValue ? MinDecibels : AudioUtilities::linearToDecibels(linearValue); destination[i] = float(dbMag); } } } void RealtimeAnalyser::getByteFrequencyData(Uint8Array* destinationArray) { ASSERT(isMainThread()); if (!destinationArray) return; doFFTAnalysis(); // Convert from linear magnitude to unsigned-byte decibels. unsigned sourceLength = magnitudeBuffer().size(); size_t len = min(sourceLength, destinationArray->length()); if (len > 0) { const double RangeScaleFactor = m_maxDecibels == m_minDecibels ? 1.0 : 1.0 / (m_maxDecibels - m_minDecibels); const float* source = magnitudeBuffer().data(); unsigned char* destination = destinationArray->data(); for (unsigned i = 0; i < len; ++i) { float linearValue = source[i]; double dbMag = !linearValue ? m_minDecibels : AudioUtilities::linearToDecibels(linearValue); // The range m_minDecibels to m_maxDecibels will be scaled to byte values from 0 to UCHAR_MAX. double scaledValue = UCHAR_MAX * (dbMag - m_minDecibels) * RangeScaleFactor; // Clip to valid range. if (scaledValue < 0.0) scaledValue = 0.0; if (scaledValue > UCHAR_MAX) scaledValue = UCHAR_MAX; destination[i] = static_cast(scaledValue); } } } void RealtimeAnalyser::getByteTimeDomainData(Uint8Array* destinationArray) { ASSERT(isMainThread()); if (!destinationArray) return; unsigned fftSize = this->fftSize(); size_t len = min(fftSize, destinationArray->length()); if (len > 0) { bool isInputBufferGood = m_inputBuffer.size() == InputBufferSize && m_inputBuffer.size() > fftSize; ASSERT(isInputBufferGood); if (!isInputBufferGood) return; float* inputBuffer = m_inputBuffer.data(); unsigned char* destination = destinationArray->data(); unsigned writeIndex = m_writeIndex; for (unsigned i = 0; i < len; ++i) { // Buffer access is protected due to modulo operation. float value = inputBuffer[(i + writeIndex - fftSize + InputBufferSize) % InputBufferSize]; // Scale from nominal -1.0 -> +1.0 to unsigned byte. double scaledValue = 128.0 * (value + 1.0); // Clip to valid range. if (scaledValue < 0.0) scaledValue = 0.0; if (scaledValue > UCHAR_MAX) scaledValue = UCHAR_MAX; destination[i] = static_cast(scaledValue); } } } #endif // WEBGL } // namespace WebCore #endif // ENABLE(WEB_AUDIO)