/* * Copyright (C) 2006 Samuel Weinig (sam.weinig@gmail.com) * Copyright (C) 2004, 2005, 2006, 2008 Apple Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "BitmapImage.h" #include "FloatRect.h" #include "ImageObserver.h" #include "IntRect.h" #include "PlatformString.h" #include "SystemTime.h" #include "Timer.h" #include #include "MIMETypeRegistry.h" namespace WebCore { // Animated images >5MB are considered large enough that we'll only hang on to // one frame at a time. const unsigned cLargeAnimationCutoff = 5242880; // When an animated image is more than five minutes out of date, don't try to // resync on repaint, so we don't waste CPU cycles on an edge case the user // doesn't care about. const double cAnimationResyncCutoff = 5 * 60; BitmapImage::BitmapImage(ImageObserver* observer) : Image(observer) , m_currentFrame(0) , m_frames(0) , m_frameTimer(0) , m_repetitionCount(cAnimationNone) , m_repetitionCountStatus(Unknown) , m_repetitionsComplete(0) , m_desiredFrameStartTime(0) , m_isSolidColor(false) , m_animationFinished(false) , m_allDataReceived(false) , m_haveSize(false) , m_sizeAvailable(false) , m_hasUniformFrameSize(true) , m_decodedSize(0) , m_haveFrameCount(false) , m_frameCount(0) { initPlatformData(); } BitmapImage::~BitmapImage() { invalidatePlatformData(); stopAnimation(); } void BitmapImage::destroyDecodedData(bool incremental, bool preserveNearbyFrames) { // Destroy the cached images and release them. if (m_frames.size()) { int sizeChange = 0; int frameSize = m_size.width() * m_size.height() * 4; const size_t nextFrame = (preserveNearbyFrames && frameCount()) ? ((m_currentFrame + 1) % frameCount()) : 0; for (unsigned i = incremental ? m_frames.size() - 1 : 0; i < m_frames.size(); i++) { if (m_frames[i].m_frame && (!preserveNearbyFrames || (i != m_currentFrame && i != nextFrame))) { sizeChange -= frameSize; m_frames[i].clear(); } } // We just always invalidate our platform data, even in the incremental case. // This could be better, but it's not a big deal. m_isSolidColor = false; invalidatePlatformData(); if (sizeChange) { m_decodedSize += sizeChange; if (imageObserver()) imageObserver()->decodedSizeChanged(this, sizeChange); } if (!incremental) { // Reset the image source, since Image I/O has an underlying cache that it uses // while animating that it seems to never clear. #if !PLATFORM(SGL) m_source.clear(); m_source.setData(m_data.get(), m_allDataReceived); #endif } } } void BitmapImage::cacheFrame(size_t index) { size_t numFrames = frameCount(); ASSERT(m_decodedSize == 0 || numFrames > 1); if (m_frames.size() < numFrames) m_frames.grow(numFrames); m_frames[index].m_frame = m_source.createFrameAtIndex(index); if (numFrames == 1 && m_frames[index].m_frame) checkForSolidColor(); m_frames[index].m_haveMetadata = true; m_frames[index].m_isComplete = m_source.frameIsCompleteAtIndex(index); if (repetitionCount(false) != cAnimationNone) m_frames[index].m_duration = m_source.frameDurationAtIndex(index); m_frames[index].m_hasAlpha = m_source.frameHasAlphaAtIndex(index); int sizeChange; if (index) { IntSize frameSize = m_source.frameSizeAtIndex(index); if (frameSize != m_size) m_hasUniformFrameSize = false; sizeChange = m_frames[index].m_frame ? frameSize.width() * frameSize.height() * 4 : 0; } else sizeChange = m_frames[index].m_frame ? m_size.width() * m_size.height() * 4 : 0; if (sizeChange) { m_decodedSize += sizeChange; if (imageObserver()) imageObserver()->decodedSizeChanged(this, sizeChange); } } IntSize BitmapImage::size() const { if (m_sizeAvailable && !m_haveSize) { m_size = m_source.size(); m_haveSize = true; } return m_size; } IntSize BitmapImage::currentFrameSize() const { if (!m_currentFrame || m_hasUniformFrameSize) return size(); return m_source.frameSizeAtIndex(m_currentFrame); } bool BitmapImage::dataChanged(bool allDataReceived) { destroyDecodedData(true); // Feed all the data we've seen so far to the image decoder. m_allDataReceived = allDataReceived; m_source.setData(m_data.get(), allDataReceived); // Clear the frame count. m_haveFrameCount = false; m_hasUniformFrameSize = true; // Image properties will not be available until the first frame of the file // reaches kCGImageStatusIncomplete. return isSizeAvailable(); } size_t BitmapImage::frameCount() { if (!m_haveFrameCount) { m_haveFrameCount = true; m_frameCount = m_source.frameCount(); } return m_frameCount; } bool BitmapImage::isSizeAvailable() { if (m_sizeAvailable) return true; m_sizeAvailable = m_source.isSizeAvailable(); return m_sizeAvailable; } NativeImagePtr BitmapImage::frameAtIndex(size_t index) { if (index >= frameCount()) return 0; if (index >= m_frames.size() || !m_frames[index].m_frame) cacheFrame(index); return m_frames[index].m_frame; } bool BitmapImage::frameIsCompleteAtIndex(size_t index) { if (index >= frameCount()) return true; if (index >= m_frames.size() || !m_frames[index].m_haveMetadata) cacheFrame(index); return m_frames[index].m_isComplete; } float BitmapImage::frameDurationAtIndex(size_t index) { if (index >= frameCount()) return 0; if (index >= m_frames.size() || !m_frames[index].m_haveMetadata) cacheFrame(index); return m_frames[index].m_duration; } bool BitmapImage::frameHasAlphaAtIndex(size_t index) { if (index >= frameCount()) return true; if (index >= m_frames.size() || !m_frames[index].m_haveMetadata) cacheFrame(index); return m_frames[index].m_hasAlpha; } int BitmapImage::repetitionCount(bool imageKnownToBeComplete) { if ((m_repetitionCountStatus == Unknown) || ((m_repetitionCountStatus == Uncertain) && imageKnownToBeComplete)) { // Snag the repetition count. If |imageKnownToBeComplete| is false, the // repetition count may not be accurate yet for GIFs; in this case the // decoder will default to cAnimationLoopOnce, and we'll try and read // the count again once the whole image is decoded. m_repetitionCount = m_source.repetitionCount(); m_repetitionCountStatus = (imageKnownToBeComplete || m_repetitionCount == cAnimationNone) ? Certain : Uncertain; } return m_repetitionCount; } bool BitmapImage::shouldAnimate() { return (repetitionCount(false) != cAnimationNone && !m_animationFinished && imageObserver()); } void BitmapImage::startAnimation(bool catchUpIfNecessary) { if (m_frameTimer || !shouldAnimate() || frameCount() <= 1) return; // Determine time for next frame to start. By ignoring paint and timer lag // in this calculation, we make the animation appear to run at its desired // rate regardless of how fast it's being repainted. const double currentDuration = frameDurationAtIndex(m_currentFrame); const double time = currentTime(); if (m_desiredFrameStartTime == 0) { m_desiredFrameStartTime = time + currentDuration; } else { m_desiredFrameStartTime += currentDuration; // If we're too far behind, the user probably doesn't care about // resyncing and we could burn a lot of time looping through frames // below. Just reset the timings. if ((time - m_desiredFrameStartTime) > cAnimationResyncCutoff) m_desiredFrameStartTime = time + currentDuration; } // Don't advance the animation to an incomplete frame. size_t nextFrame = (m_currentFrame + 1) % frameCount(); if (!frameIsCompleteAtIndex(nextFrame)) return; // Don't advance past the last frame if we haven't decoded the whole image // yet and our repetition count is potentially unset. The repetition count // in a GIF can potentially come after all the rest of the image data, so // wait on it. if (!m_allDataReceived && repetitionCount(false) == cAnimationLoopOnce && m_currentFrame >= (frameCount() - 1)) return; // The image may load more slowly than it's supposed to animate, so that by // the time we reach the end of the first repetition, we're well behind. // Clamp the desired frame start time in this case, so that we don't skip // frames (or whole iterations) trying to "catch up". This is a tradeoff: // It guarantees users see the whole animation the second time through and // don't miss any repetitions, and is closer to what other browsers do; on // the other hand, it makes animations "less accurate" for pages that try to // sync an image and some other resource (e.g. audio), especially if users // switch tabs (and thus stop drawing the animation, which will pause it) // during that initial loop, then switch back later. if (nextFrame == 0 && m_repetitionsComplete == 0 && m_desiredFrameStartTime < time) m_desiredFrameStartTime = time; if (!catchUpIfNecessary || time < m_desiredFrameStartTime) { // Haven't yet reached time for next frame to start; delay until then. m_frameTimer = new Timer(this, &BitmapImage::advanceAnimation); m_frameTimer->startOneShot(std::max(m_desiredFrameStartTime - time, 0.)); } else { // We've already reached or passed the time for the next frame to start. // See if we've also passed the time for frames after that to start, in // case we need to skip some frames entirely. Remember not to advance // to an incomplete frame. for (size_t frameAfterNext = (nextFrame + 1) % frameCount(); frameIsCompleteAtIndex(frameAfterNext); frameAfterNext = (nextFrame + 1) % frameCount()) { // Should we skip the next frame? double frameAfterNextStartTime = m_desiredFrameStartTime + frameDurationAtIndex(nextFrame); if (time < frameAfterNextStartTime) break; // Yes; skip over it without notifying our observers. if (!internalAdvanceAnimation(true)) return; m_desiredFrameStartTime = frameAfterNextStartTime; nextFrame = frameAfterNext; } // Draw the next frame immediately. Note that m_desiredFrameStartTime // may be in the past, meaning the next time through this function we'll // kick off the next advancement sooner than this frame's duration would // suggest. if (internalAdvanceAnimation(false)) { // The image region has been marked dirty, but once we return to our // caller, draw() will clear it, and nothing will cause the // animation to advance again. We need to start the timer for the // next frame running, or the animation can hang. (Compare this // with when advanceAnimation() is called, and the region is dirtied // while draw() is not in the callstack, meaning draw() gets called // to update the region and thus startAnimation() is reached again.) // NOTE: For large images with slow or heavily-loaded systems, // throwing away data as we go (see destroyDecodedData()) means we // can spend so much time re-decoding data above that by the time we // reach here we're behind again. If we let startAnimation() run // the catch-up code again, we can get long delays without painting // as we race the timer, or even infinite recursion. In this // situation the best we can do is to simply change frames as fast // as possible, so force startAnimation() to set a zero-delay timer // and bail out if we're not caught up. startAnimation(false); } } } void BitmapImage::stopAnimation() { // This timer is used to animate all occurrences of this image. Don't invalidate // the timer unless all renderers have stopped drawing. delete m_frameTimer; m_frameTimer = 0; } void BitmapImage::resetAnimation() { stopAnimation(); m_currentFrame = 0; m_repetitionsComplete = 0; m_desiredFrameStartTime = 0; m_animationFinished = false; int frameSize = m_size.width() * m_size.height() * 4; // For extremely large animations, when the animation is reset, we just throw everything away. if (frameCount() * frameSize > cLargeAnimationCutoff) destroyDecodedData(); } void BitmapImage::advanceAnimation(Timer* timer) { internalAdvanceAnimation(false); // At this point the image region has been marked dirty, and if it's // onscreen, we'll soon make a call to draw(), which will call // startAnimation() again to keep the animation moving. } bool BitmapImage::internalAdvanceAnimation(bool skippingFrames) { // Stop the animation. stopAnimation(); // See if anyone is still paying attention to this animation. If not, we don't // advance and will remain suspended at the current frame until the animation is resumed. if (!skippingFrames && imageObserver()->shouldPauseAnimation(this)) return false; m_currentFrame++; if (m_currentFrame >= frameCount()) { ++m_repetitionsComplete; // Get the repetition count again. If we weren't able to get a // repetition count before, we should have decoded the whole image by // now, so it should now be available. if (repetitionCount(true) && m_repetitionsComplete >= m_repetitionCount) { m_animationFinished = true; m_desiredFrameStartTime = 0; m_currentFrame--; if (skippingFrames) { // Uh oh. We tried to skip past the end of the animation. We'd // better draw this last frame. notifyObserverAndTrimDecodedData(); } return false; } m_currentFrame = 0; } if (!skippingFrames) notifyObserverAndTrimDecodedData(); return true; } void BitmapImage::notifyObserverAndTrimDecodedData() { // Notify our observer that the animation has advanced. imageObserver()->animationAdvanced(this); // For large animated images, go ahead and throw away frames as we go to // save footprint. int frameSize = m_size.width() * m_size.height() * 4; if (frameCount() * frameSize > cLargeAnimationCutoff) { // Destroy all of our frames and just redecode every time. We save the // current frame since we'll need it in draw() anyway. destroyDecodedData(false, true); } } }