/* * Copyright (C) 2003, 2006 Apple Computer, Inc. All rights reserved. * 2006 Rob Buis * Copyright (C) 2007 Eric Seidel * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "config.h" #include "Path.h" #include "FloatPoint.h" #include "FloatRect.h" #include "PathTraversalState.h" #include #include static const float QUARTER = 0.552f; // approximation of control point positions on a bezier // to simulate a quarter of a circle. namespace WebCore { static void pathLengthApplierFunction(void* info, const PathElement* element) { PathTraversalState& traversalState = *static_cast(info); if (traversalState.m_success) return; traversalState.m_previous = traversalState.m_current; FloatPoint* points = element->points; float segmentLength = 0.0f; switch (element->type) { case PathElementMoveToPoint: segmentLength = traversalState.moveTo(points[0]); break; case PathElementAddLineToPoint: segmentLength = traversalState.lineTo(points[0]); break; case PathElementAddQuadCurveToPoint: segmentLength = traversalState.quadraticBezierTo(points[0], points[1]); break; case PathElementAddCurveToPoint: segmentLength = traversalState.cubicBezierTo(points[0], points[1], points[2]); break; case PathElementCloseSubpath: segmentLength = traversalState.closeSubpath(); break; } traversalState.m_totalLength += segmentLength; if ((traversalState.m_action == PathTraversalState::TraversalPointAtLength || traversalState.m_action == PathTraversalState::TraversalNormalAngleAtLength) && (traversalState.m_totalLength >= traversalState.m_desiredLength)) { FloatSize change = traversalState.m_current - traversalState.m_previous; float slope = atan2f(change.height(), change.width()); if (traversalState.m_action == PathTraversalState::TraversalPointAtLength) { float offset = traversalState.m_desiredLength - traversalState.m_totalLength; traversalState.m_current.move(offset * cosf(slope), offset * sinf(slope)); } else { static const float rad2deg = 180.0f / piFloat; traversalState.m_normalAngle = slope * rad2deg; } traversalState.m_success = true; } } float Path::length() { PathTraversalState traversalState(PathTraversalState::TraversalTotalLength); apply(&traversalState, pathLengthApplierFunction); return traversalState.m_totalLength; } FloatPoint Path::pointAtLength(float length, bool& ok) { PathTraversalState traversalState(PathTraversalState::TraversalPointAtLength); traversalState.m_desiredLength = length; apply(&traversalState, pathLengthApplierFunction); ok = traversalState.m_success; return traversalState.m_current; } float Path::normalAngleAtLength(float length, bool& ok) { PathTraversalState traversalState(PathTraversalState::TraversalNormalAngleAtLength); traversalState.m_desiredLength = length; apply(&traversalState, pathLengthApplierFunction); ok = traversalState.m_success; return traversalState.m_normalAngle; } Path Path::createRoundedRectangle(const FloatRect& rectangle, const FloatSize& roundingRadii) { Path path; float x = rectangle.x(); float y = rectangle.y(); float width = rectangle.width(); float height = rectangle.height(); float rx = roundingRadii.width(); float ry = roundingRadii.height(); if (width <= 0.0f || height <= 0.0f) return path; float dx = rx, dy = ry; // If rx is greater than half of the width of the rectangle // then set rx to half of the width (required in SVG spec) if (dx > width * 0.5f) dx = width * 0.5f; // If ry is greater than half of the height of the rectangle // then set ry to half of the height (required in SVG spec) if (dy > height * 0.5f) dy = height * 0.5f; path.moveTo(FloatPoint(x + dx, y)); if (dx < width * 0.5f) path.addLineTo(FloatPoint(x + width - rx, y)); path.addBezierCurveTo(FloatPoint(x + width - dx * (1 - QUARTER), y), FloatPoint(x + width, y + dy * (1 - QUARTER)), FloatPoint(x + width, y + dy)); if (dy < height * 0.5) path.addLineTo(FloatPoint(x + width, y + height - dy)); path.addBezierCurveTo(FloatPoint(x + width, y + height - dy * (1 - QUARTER)), FloatPoint(x + width - dx * (1 - QUARTER), y + height), FloatPoint(x + width - dx, y + height)); if (dx < width * 0.5) path.addLineTo(FloatPoint(x + dx, y + height)); path.addBezierCurveTo(FloatPoint(x + dx * (1 - QUARTER), y + height), FloatPoint(x, y + height - dy * (1 - QUARTER)), FloatPoint(x, y + height - dy)); if (dy < height * 0.5) path.addLineTo(FloatPoint(x, y + dy)); path.addBezierCurveTo(FloatPoint(x, y + dy * (1 - QUARTER)), FloatPoint(x + dx * (1 - QUARTER), y), FloatPoint(x + dx, y)); path.closeSubpath(); return path; } Path Path::createRoundedRectangle(const FloatRect& rectangle, const FloatSize& topLeftRadius, const FloatSize& topRightRadius, const FloatSize& bottomLeftRadius, const FloatSize& bottomRightRadius) { Path path; float width = rectangle.width(); float height = rectangle.height(); if (width <= 0.0 || height <= 0.0) return path; if (width < topLeftRadius.width() + topRightRadius.width() || width < bottomLeftRadius.width() + bottomRightRadius.width() || height < topLeftRadius.height() + bottomLeftRadius.height() || height < topRightRadius.height() + bottomRightRadius.height()) // If all the radii cannot be accommodated, return a rect. return createRectangle(rectangle); float x = rectangle.x(); float y = rectangle.y(); path.moveTo(FloatPoint(x + topLeftRadius.width(), y)); path.addLineTo(FloatPoint(x + width - topRightRadius.width(), y)); path.addBezierCurveTo(FloatPoint(x + width - topRightRadius.width() * (1 - QUARTER), y), FloatPoint(x + width, y + topRightRadius.height() * (1 - QUARTER)), FloatPoint(x + width, y + topRightRadius.height())); path.addLineTo(FloatPoint(x + width, y + height - bottomRightRadius.height())); path.addBezierCurveTo(FloatPoint(x + width, y + height - bottomRightRadius.height() * (1 - QUARTER)), FloatPoint(x + width - bottomRightRadius.width() * (1 - QUARTER), y + height), FloatPoint(x + width - bottomRightRadius.width(), y + height)); path.addLineTo(FloatPoint(x + bottomLeftRadius.width(), y + height)); path.addBezierCurveTo(FloatPoint(x + bottomLeftRadius.width() * (1 - QUARTER), y + height), FloatPoint(x, y + height - bottomLeftRadius.height() * (1 - QUARTER)), FloatPoint(x, y + height - bottomLeftRadius.height())); path.addLineTo(FloatPoint(x, y + topLeftRadius.height())); path.addBezierCurveTo(FloatPoint(x, y + topLeftRadius.height() * (1 - QUARTER)), FloatPoint(x + topLeftRadius.width() * (1 - QUARTER), y), FloatPoint(x + topLeftRadius.width(), y)); path.closeSubpath(); return path; } Path Path::createRectangle(const FloatRect& rectangle) { Path path; float x = rectangle.x(); float y = rectangle.y(); float width = rectangle.width(); float height = rectangle.height(); if (width <= 0.0f || height <= 0.0f) return path; path.moveTo(FloatPoint(x, y)); path.addLineTo(FloatPoint(x + width, y)); path.addLineTo(FloatPoint(x + width, y + height)); path.addLineTo(FloatPoint(x, y + height)); path.closeSubpath(); return path; } Path Path::createEllipse(const FloatPoint& center, float rx, float ry) { float cx = center.x(); float cy = center.y(); Path path; if (rx <= 0.0f || ry <= 0.0f) return path; float x = cx; float y = cy; unsigned step = 0, num = 100; bool running = true; while (running) { if (step == num) { running = false; break; } float angle = static_cast(step) / static_cast(num) * 2.0f * piFloat; x = cx + cosf(angle) * rx; y = cy + sinf(angle) * ry; step++; if (step == 1) path.moveTo(FloatPoint(x, y)); else path.addLineTo(FloatPoint(x, y)); } path.closeSubpath(); return path; } Path Path::createCircle(const FloatPoint& center, float r) { return createEllipse(center, r, r); } Path Path::createLine(const FloatPoint& start, const FloatPoint& end) { Path path; if (start.x() == end.x() && start.y() == end.y()) return path; path.moveTo(start); path.addLineTo(end); return path; } }