/* * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * (C) 2007 David Smith (catfish.man@gmail.com) * Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "RenderBlock.h" #include "Document.h" #include "Element.h" #include "FloatQuad.h" #include "Frame.h" #include "FrameView.h" #include "GraphicsContext.h" #include "HTMLFormElement.h" #include "HTMLNames.h" #include "HitTestResult.h" #include "InlineTextBox.h" #include "RenderFlexibleBox.h" #include "RenderImage.h" #include "RenderInline.h" #include "RenderMarquee.h" #include "RenderReplica.h" #include "RenderTableCell.h" #include "RenderTextFragment.h" #include "RenderTheme.h" #include "RenderView.h" #include "SelectionController.h" #include "Settings.h" #include "TransformState.h" #include #ifdef ANDROID_LAYOUT #include "Settings.h" #endif using namespace std; using namespace WTF; using namespace Unicode; namespace WebCore { // Number of pixels to allow as a fudge factor when clicking above or below a line. // clicking up to verticalLineClickFudgeFactor pixels above a line will correspond to the closest point on the line. static const int verticalLineClickFudgeFactor = 3; using namespace HTMLNames; struct ColumnInfo : public Noncopyable { ColumnInfo() : m_desiredColumnWidth(0) , m_desiredColumnCount(1) { } int m_desiredColumnWidth; unsigned m_desiredColumnCount; Vector m_columnRects; }; typedef WTF::HashMap ColumnInfoMap; static ColumnInfoMap* gColumnInfoMap = 0; typedef WTF::HashMap*> PercentHeightDescendantsMap; static PercentHeightDescendantsMap* gPercentHeightDescendantsMap = 0; typedef WTF::HashMap*> PercentHeightContainerMap; static PercentHeightContainerMap* gPercentHeightContainerMap = 0; typedef WTF::HashMap*> ContinuationOutlineTableMap; typedef WTF::HashSet DelayedUpdateScrollInfoSet; static int gDelayUpdateScrollInfo = 0; static DelayedUpdateScrollInfoSet* gDelayedUpdateScrollInfoSet = 0; // Our MarginInfo state used when laying out block children. RenderBlock::MarginInfo::MarginInfo(RenderBlock* block, int top, int bottom) { // Whether or not we can collapse our own margins with our children. We don't do this // if we had any border/padding (obviously), if we're the root or HTML elements, or if // we're positioned, floating, a table cell. m_canCollapseWithChildren = !block->isRenderView() && !block->isRoot() && !block->isPositioned() && !block->isFloating() && !block->isTableCell() && !block->hasOverflowClip() && !block->isInlineBlockOrInlineTable(); m_canCollapseTopWithChildren = m_canCollapseWithChildren && (top == 0) && block->style()->marginTopCollapse() != MSEPARATE; // If any height other than auto is specified in CSS, then we don't collapse our bottom // margins with our children's margins. To do otherwise would be to risk odd visual // effects when the children overflow out of the parent block and yet still collapse // with it. We also don't collapse if we have any bottom border/padding. m_canCollapseBottomWithChildren = m_canCollapseWithChildren && (bottom == 0) && (block->style()->height().isAuto() && block->style()->height().value() == 0) && block->style()->marginBottomCollapse() != MSEPARATE; m_quirkContainer = block->isTableCell() || block->isBody() || block->style()->marginTopCollapse() == MDISCARD || block->style()->marginBottomCollapse() == MDISCARD; m_atTopOfBlock = true; m_atBottomOfBlock = false; m_posMargin = m_canCollapseTopWithChildren ? block->maxTopMargin(true) : 0; m_negMargin = m_canCollapseTopWithChildren ? block->maxTopMargin(false) : 0; m_topQuirk = m_bottomQuirk = m_determinedTopQuirk = false; } // ------------------------------------------------------------------------------------------------------- RenderBlock::RenderBlock(Node* node) : RenderBox(node) , m_floatingObjects(0) , m_positionedObjects(0) , m_inlineContinuation(0) , m_maxMargin(0) , m_lineHeight(-1) { setChildrenInline(true); } RenderBlock::~RenderBlock() { delete m_floatingObjects; delete m_positionedObjects; delete m_maxMargin; if (hasColumns()) delete gColumnInfoMap->take(this); if (gPercentHeightDescendantsMap) { if (HashSet* descendantSet = gPercentHeightDescendantsMap->take(this)) { HashSet::iterator end = descendantSet->end(); for (HashSet::iterator descendant = descendantSet->begin(); descendant != end; ++descendant) { HashSet* containerSet = gPercentHeightContainerMap->get(*descendant); ASSERT(containerSet); if (!containerSet) continue; ASSERT(containerSet->contains(this)); containerSet->remove(this); if (containerSet->isEmpty()) { gPercentHeightContainerMap->remove(*descendant); delete containerSet; } } delete descendantSet; } } } void RenderBlock::destroy() { // Make sure to destroy anonymous children first while they are still connected to the rest of the tree, so that they will // properly dirty line boxes that they are removed from. Effects that do :before/:after only on hover could crash otherwise. children()->destroyLeftoverChildren(); // Destroy our continuation before anything other than anonymous children. // The reason we don't destroy it before anonymous children is that they may // have continuations of their own that are anonymous children of our continuation. if (m_inlineContinuation) { m_inlineContinuation->destroy(); m_inlineContinuation = 0; } if (!documentBeingDestroyed()) { if (firstLineBox()) { // We can't wait for RenderBox::destroy to clear the selection, // because by then we will have nuked the line boxes. // FIXME: The SelectionController should be responsible for this when it // is notified of DOM mutations. if (isSelectionBorder()) view()->clearSelection(); // If we are an anonymous block, then our line boxes might have children // that will outlast this block. In the non-anonymous block case those // children will be destroyed by the time we return from this function. if (isAnonymousBlock()) { for (InlineFlowBox* box = firstLineBox(); box; box = box->nextFlowBox()) { while (InlineBox* childBox = box->firstChild()) childBox->remove(); } } } else if (isInline() && parent()) parent()->dirtyLinesFromChangedChild(this); } m_lineBoxes.deleteLineBoxes(renderArena()); RenderBox::destroy(); } void RenderBlock::styleWillChange(StyleDifference diff, const RenderStyle* newStyle) { setReplaced(newStyle->isDisplayReplacedType()); if (style() && parent() && diff == StyleDifferenceLayout && style()->position() != newStyle->position()) { if (newStyle->position() == StaticPosition) // Clear our positioned objects list. Our absolutely positioned descendants will be // inserted into our containing block's positioned objects list during layout. removePositionedObjects(0); else if (style()->position() == StaticPosition) { // Remove our absolutely positioned descendants from their current containing block. // They will be inserted into our positioned objects list during layout. RenderObject* cb = parent(); while (cb && (cb->style()->position() == StaticPosition || (cb->isInline() && !cb->isReplaced())) && !cb->isRenderView()) { if (cb->style()->position() == RelativePosition && cb->isInline() && !cb->isReplaced()) { cb = cb->containingBlock(); break; } cb = cb->parent(); } if (cb->isRenderBlock()) toRenderBlock(cb)->removePositionedObjects(this); } } RenderBox::styleWillChange(diff, newStyle); } void RenderBlock::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) { RenderBox::styleDidChange(diff, oldStyle); // FIXME: We could save this call when the change only affected non-inherited properties for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if (child->isAnonymousBlock()) { RefPtr newStyle = RenderStyle::create(); newStyle->inheritFrom(style()); newStyle->setDisplay(BLOCK); child->setStyle(newStyle.release()); } } m_lineHeight = -1; // Update pseudos for :before and :after now. if (!isAnonymous() && document()->usesBeforeAfterRules() && canHaveChildren()) { updateBeforeAfterContent(BEFORE); updateBeforeAfterContent(AFTER); } updateFirstLetter(); } void RenderBlock::updateBeforeAfterContent(PseudoId pseudoId) { // If this is an anonymous wrapper, then the parent applies its own pseudo-element style to it. if (parent() && parent()->createsAnonymousWrapper()) return; return children()->updateBeforeAfterContent(this, pseudoId); } void RenderBlock::addChild(RenderObject* newChild, RenderObject* beforeChild) { // Make sure we don't append things after :after-generated content if we have it. if (!beforeChild && isAfterContent(lastChild())) beforeChild = lastChild(); bool madeBoxesNonInline = false; // If the requested beforeChild is not one of our children, then this is because // there is an anonymous container within this object that contains the beforeChild. if (beforeChild && beforeChild->parent() != this) { RenderObject* anonymousChild = beforeChild->parent(); ASSERT(anonymousChild); while (anonymousChild->parent() != this) anonymousChild = anonymousChild->parent(); ASSERT(anonymousChild->isAnonymous()); if (anonymousChild->isAnonymousBlock()) { // Insert the child into the anonymous block box instead of here. if (newChild->isInline() || beforeChild->parent()->firstChild() != beforeChild) beforeChild->parent()->addChild(newChild, beforeChild); else addChild(newChild, beforeChild->parent()); return; } ASSERT(anonymousChild->isTable()); if ((newChild->isTableCol() && newChild->style()->display() == TABLE_COLUMN_GROUP) || (newChild->isRenderBlock() && newChild->style()->display() == TABLE_CAPTION) || newChild->isTableSection() || newChild->isTableRow() || newChild->isTableCell()) { // Insert into the anonymous table. anonymousChild->addChild(newChild, beforeChild); return; } // Go on to insert before the anonymous table. beforeChild = anonymousChild; } // A block has to either have all of its children inline, or all of its children as blocks. // So, if our children are currently inline and a block child has to be inserted, we move all our // inline children into anonymous block boxes. if (childrenInline() && !newChild->isInline() && !newChild->isFloatingOrPositioned()) { // This is a block with inline content. Wrap the inline content in anonymous blocks. makeChildrenNonInline(beforeChild); madeBoxesNonInline = true; if (beforeChild && beforeChild->parent() != this) { beforeChild = beforeChild->parent(); ASSERT(beforeChild->isAnonymousBlock()); ASSERT(beforeChild->parent() == this); } } else if (!childrenInline() && (newChild->isFloatingOrPositioned() || newChild->isInline())) { // If we're inserting an inline child but all of our children are blocks, then we have to make sure // it is put into an anomyous block box. We try to use an existing anonymous box if possible, otherwise // a new one is created and inserted into our list of children in the appropriate position. RenderObject* afterChild = beforeChild ? beforeChild->previousSibling() : lastChild(); if (afterChild && afterChild->isAnonymousBlock()) { afterChild->addChild(newChild); return; } if (newChild->isInline()) { // No suitable existing anonymous box - create a new one. RenderBlock* newBox = createAnonymousBlock(); RenderBox::addChild(newBox, beforeChild); newBox->addChild(newChild); return; } } RenderBox::addChild(newChild, beforeChild); if (madeBoxesNonInline && parent() && isAnonymousBlock() && parent()->isRenderBlock()) toRenderBlock(parent())->removeLeftoverAnonymousBlock(this); // this object may be dead here } static void getInlineRun(RenderObject* start, RenderObject* boundary, RenderObject*& inlineRunStart, RenderObject*& inlineRunEnd) { // Beginning at |start| we find the largest contiguous run of inlines that // we can. We denote the run with start and end points, |inlineRunStart| // and |inlineRunEnd|. Note that these two values may be the same if // we encounter only one inline. // // We skip any non-inlines we encounter as long as we haven't found any // inlines yet. // // |boundary| indicates a non-inclusive boundary point. Regardless of whether |boundary| // is inline or not, we will not include it in a run with inlines before it. It's as though we encountered // a non-inline. // Start by skipping as many non-inlines as we can. RenderObject * curr = start; bool sawInline; do { while (curr && !(curr->isInline() || curr->isFloatingOrPositioned())) curr = curr->nextSibling(); inlineRunStart = inlineRunEnd = curr; if (!curr) return; // No more inline children to be found. sawInline = curr->isInline(); curr = curr->nextSibling(); while (curr && (curr->isInline() || curr->isFloatingOrPositioned()) && (curr != boundary)) { inlineRunEnd = curr; if (curr->isInline()) sawInline = true; curr = curr->nextSibling(); } } while (!sawInline); } void RenderBlock::deleteLineBoxTree() { m_lineBoxes.deleteLineBoxTree(renderArena()); } RootInlineBox* RenderBlock::createRootInlineBox() { return new (renderArena()) RootInlineBox(this); } RootInlineBox* RenderBlock::createAndAppendRootInlineBox() { RootInlineBox* rootBox = createRootInlineBox(); m_lineBoxes.appendLineBox(rootBox); return rootBox; } void RenderBlock::moveChildTo(RenderObject* to, RenderObjectChildList* toChildList, RenderObject* child) { ASSERT(this == child->parent()); toChildList->appendChildNode(to, children()->removeChildNode(this, child, false), false); } void RenderBlock::moveChildTo(RenderObject* to, RenderObjectChildList* toChildList, RenderObject* beforeChild, RenderObject* child) { ASSERT(this == child->parent()); ASSERT(!beforeChild || to == beforeChild->parent()); toChildList->insertChildNode(to, children()->removeChildNode(this, child, false), beforeChild, false); } void RenderBlock::makeChildrenNonInline(RenderObject *insertionPoint) { // makeChildrenNonInline takes a block whose children are *all* inline and it // makes sure that inline children are coalesced under anonymous // blocks. If |insertionPoint| is defined, then it represents the insertion point for // the new block child that is causing us to have to wrap all the inlines. This // means that we cannot coalesce inlines before |insertionPoint| with inlines following // |insertionPoint|, because the new child is going to be inserted in between the inlines, // splitting them. ASSERT(isInlineBlockOrInlineTable() || !isInline()); ASSERT(!insertionPoint || insertionPoint->parent() == this); setChildrenInline(false); RenderObject *child = firstChild(); if (!child) return; deleteLineBoxTree(); while (child) { RenderObject *inlineRunStart, *inlineRunEnd; getInlineRun(child, insertionPoint, inlineRunStart, inlineRunEnd); if (!inlineRunStart) break; child = inlineRunEnd->nextSibling(); RenderBlock* block = createAnonymousBlock(); children()->insertChildNode(this, block, inlineRunStart); RenderObject* o = inlineRunStart; while (o != inlineRunEnd) { RenderObject* no = o; o = no->nextSibling(); moveChildTo(block, block->children(), no); } moveChildTo(block, block->children(), inlineRunEnd); } #ifndef NDEBUG for (RenderObject *c = firstChild(); c; c = c->nextSibling()) ASSERT(!c->isInline()); #endif repaint(); } void RenderBlock::removeLeftoverAnonymousBlock(RenderBlock* child) { ASSERT(child->isAnonymousBlock()); ASSERT(!child->childrenInline()); if (child->inlineContinuation()) return; RenderObject* firstAnChild = child->m_children.firstChild(); RenderObject* lastAnChild = child->m_children.lastChild(); if (firstAnChild) { RenderObject* o = firstAnChild; while (o) { o->setParent(this); o = o->nextSibling(); } firstAnChild->setPreviousSibling(child->previousSibling()); lastAnChild->setNextSibling(child->nextSibling()); if (child->previousSibling()) child->previousSibling()->setNextSibling(firstAnChild); if (child->nextSibling()) child->nextSibling()->setPreviousSibling(lastAnChild); } else { if (child->previousSibling()) child->previousSibling()->setNextSibling(child->nextSibling()); if (child->nextSibling()) child->nextSibling()->setPreviousSibling(child->previousSibling()); } if (child == m_children.firstChild()) m_children.setFirstChild(firstAnChild); if (child == m_children.lastChild()) m_children.setLastChild(lastAnChild); child->setParent(0); child->setPreviousSibling(0); child->setNextSibling(0); child->children()->setFirstChild(0); child->m_next = 0; child->destroy(); } void RenderBlock::removeChild(RenderObject* oldChild) { // If this child is a block, and if our previous and next siblings are // both anonymous blocks with inline content, then we can go ahead and // fold the inline content back together. RenderObject* prev = oldChild->previousSibling(); RenderObject* next = oldChild->nextSibling(); bool canDeleteAnonymousBlocks = !documentBeingDestroyed() && !isInline() && !oldChild->isInline() && (!oldChild->isRenderBlock() || !toRenderBlock(oldChild)->inlineContinuation()) && (!prev || (prev->isAnonymousBlock() && prev->childrenInline())) && (!next || (next->isAnonymousBlock() && next->childrenInline())); if (canDeleteAnonymousBlocks && prev && next) { // Take all the children out of the |next| block and put them in // the |prev| block. prev->setNeedsLayoutAndPrefWidthsRecalc(); RenderObject* o = next->firstChild(); RenderBlock* nextBlock = toRenderBlock(next); RenderBlock* prevBlock = toRenderBlock(prev); while (o) { RenderObject* no = o; o = no->nextSibling(); nextBlock->moveChildTo(prevBlock, prevBlock->children(), no); } nextBlock->deleteLineBoxTree(); // Nuke the now-empty block. next->destroy(); } RenderBox::removeChild(oldChild); RenderObject* child = prev ? prev : next; if (canDeleteAnonymousBlocks && child && !child->previousSibling() && !child->nextSibling() && !isFlexibleBox()) { // The removal has knocked us down to containing only a single anonymous // box. We can go ahead and pull the content right back up into our // box. setNeedsLayoutAndPrefWidthsRecalc(); RenderBlock* anonBlock = toRenderBlock(children()->removeChildNode(this, child, false)); setChildrenInline(true); RenderObject* o = anonBlock->firstChild(); while (o) { RenderObject* no = o; o = no->nextSibling(); anonBlock->moveChildTo(this, children(), no); } // Delete the now-empty block's lines and nuke it. anonBlock->deleteLineBoxTree(); anonBlock->destroy(); } } bool RenderBlock::isSelfCollapsingBlock() const { // We are not self-collapsing if we // (a) have a non-zero height according to layout (an optimization to avoid wasting time) // (b) are a table, // (c) have border/padding, // (d) have a min-height // (e) have specified that one of our margins can't collapse using a CSS extension if (height() > 0 || isTable() || (borderBottom() + paddingBottom() + borderTop() + paddingTop()) != 0 || style()->minHeight().isPositive() || style()->marginTopCollapse() == MSEPARATE || style()->marginBottomCollapse() == MSEPARATE) return false; bool hasAutoHeight = style()->height().isAuto(); if (style()->height().isPercent() && !style()->htmlHacks()) { hasAutoHeight = true; for (RenderBlock* cb = containingBlock(); !cb->isRenderView(); cb = cb->containingBlock()) { if (cb->style()->height().isFixed() || cb->isTableCell()) hasAutoHeight = false; } } // If the height is 0 or auto, then whether or not we are a self-collapsing block depends // on whether we have content that is all self-collapsing or not. if (hasAutoHeight || ((style()->height().isFixed() || style()->height().isPercent()) && style()->height().isZero())) { // If the block has inline children, see if we generated any line boxes. If we have any // line boxes, then we can't be self-collapsing, since we have content. if (childrenInline()) return !firstLineBox(); // Whether or not we collapse is dependent on whether all our normal flow children // are also self-collapsing. for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (child->isFloatingOrPositioned()) continue; if (!child->isSelfCollapsingBlock()) return false; } return true; } return false; } void RenderBlock::startDelayUpdateScrollInfo() { if (gDelayUpdateScrollInfo == 0) { ASSERT(!gDelayedUpdateScrollInfoSet); gDelayedUpdateScrollInfoSet = new DelayedUpdateScrollInfoSet; } ASSERT(gDelayedUpdateScrollInfoSet); ++gDelayUpdateScrollInfo; } void RenderBlock::finishDelayUpdateScrollInfo() { --gDelayUpdateScrollInfo; ASSERT(gDelayUpdateScrollInfo >= 0); if (gDelayUpdateScrollInfo == 0) { ASSERT(gDelayedUpdateScrollInfoSet); OwnPtr infoSet(gDelayedUpdateScrollInfoSet); gDelayedUpdateScrollInfoSet = 0; for (DelayedUpdateScrollInfoSet::iterator it = infoSet->begin(); it != infoSet->end(); ++it) { RenderBlock* block = *it; if (block->hasOverflowClip()) { block->layer()->updateScrollInfoAfterLayout(); } } } } void RenderBlock::updateScrollInfoAfterLayout() { if (hasOverflowClip()) { if (gDelayUpdateScrollInfo) gDelayedUpdateScrollInfoSet->add(this); else layer()->updateScrollInfoAfterLayout(); } } void RenderBlock::layout() { // Update our first letter info now. updateFirstLetter(); // Table cells call layoutBlock directly, so don't add any logic here. Put code into // layoutBlock(). layoutBlock(false); // It's safe to check for control clip here, since controls can never be table cells. // If we have a lightweight clip, there can never be any overflow from children. if (hasControlClip() && m_overflow) clearLayoutOverflow(); } void RenderBlock::layoutBlock(bool relayoutChildren) { ASSERT(needsLayout()); if (isInline() && !isInlineBlockOrInlineTable()) // Inline
s inside various table elements can return; // cause us to come in here. Just bail. if (!relayoutChildren && layoutOnlyPositionedObjects()) return; LayoutRepainter repainter(*this, m_everHadLayout && checkForRepaintDuringLayout()); LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y()), hasColumns() || hasTransform() || hasReflection()); int oldWidth = width(); int oldColumnWidth = desiredColumnWidth(); #ifdef ANDROID_LAYOUT int oldVisibleWidth = m_visibleWidth; #endif calcWidth(); calcColumnWidth(); m_overflow.clear(); if (oldWidth != width() || oldColumnWidth != desiredColumnWidth()) relayoutChildren = true; #ifdef ANDROID_LAYOUT const Settings* settings = document()->settings(); ASSERT(settings); if (oldVisibleWidth != m_visibleWidth && settings->layoutAlgorithm() == Settings::kLayoutFitColumnToScreen) relayoutChildren = true; #endif clearFloats(); int previousHeight = height(); setHeight(0); // We use four values, maxTopPos, maxTopNeg, maxBottomPos, and maxBottomNeg, to track // our current maximal positive and negative margins. These values are used when we // are collapsed with adjacent blocks, so for example, if you have block A and B // collapsing together, then you'd take the maximal positive margin from both A and B // and subtract it from the maximal negative margin from both A and B to get the // true collapsed margin. This algorithm is recursive, so when we finish layout() // our block knows its current maximal positive/negative values. // // Start out by setting our margin values to our current margins. Table cells have // no margins, so we don't fill in the values for table cells. bool isCell = isTableCell(); if (!isCell) { initMaxMarginValues(); setTopMarginQuirk(style()->marginTop().quirk()); setBottomMarginQuirk(style()->marginBottom().quirk()); Node* n = node(); if (n && n->hasTagName(formTag) && static_cast(n)->isMalformed()) { // See if this form is malformed (i.e., unclosed). If so, don't give the form // a bottom margin. setMaxBottomMargins(0, 0); } } // For overflow:scroll blocks, ensure we have both scrollbars in place always. if (scrollsOverflow()) { if (style()->overflowX() == OSCROLL) layer()->setHasHorizontalScrollbar(true); if (style()->overflowY() == OSCROLL) layer()->setHasVerticalScrollbar(true); } int repaintTop = 0; int repaintBottom = 0; int maxFloatBottom = 0; if (childrenInline()) layoutInlineChildren(relayoutChildren, repaintTop, repaintBottom); else layoutBlockChildren(relayoutChildren, maxFloatBottom); // Expand our intrinsic height to encompass floats. int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); if (floatBottom() > (height() - toAdd) && expandsToEncloseOverhangingFloats()) setHeight(floatBottom() + toAdd); // Now lay out our columns within this intrinsic height, since they can slightly affect the intrinsic height as // we adjust for clean column breaks. int singleColumnBottom = layoutColumns(); // Calculate our new height. int oldHeight = height(); calcHeight(); if (oldHeight != height()) { if (oldHeight > height() && maxFloatBottom > height() && !childrenInline()) { // One of our children's floats may have become an overhanging float for us. We need to look for it. for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if (child->isBlockFlow() && !child->isFloatingOrPositioned()) { RenderBlock* block = toRenderBlock(child); if (block->floatBottom() + block->y() > height()) addOverhangingFloats(block, -block->x(), -block->y(), false); } } } // We have to rebalance columns to the new height. layoutColumns(singleColumnBottom); } if (previousHeight != height()) relayoutChildren = true; // It's weird that we're treating float information as normal flow overflow, but we do this because floatRect() isn't // able to be propagated up the render tree yet. Overflow information is however. This check is designed to catch anyone // who wasn't going to propagate float information up to the parent and yet could potentially be painted by its ancestor. if (isRoot() || expandsToEncloseOverhangingFloats()) addOverflowFromFloats(); // Add overflow from children (unless we're multi-column, since in that case all our child overflow is clipped anyway). if (!hasColumns()) { if (childrenInline()) addOverflowFromInlineChildren(); else addOverflowFromBlockChildren(); } // Add visual overflow from box-shadow and reflections. addShadowOverflow(); layoutPositionedObjects(relayoutChildren || isRoot()); positionListMarker(); statePusher.pop(); // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if // we overflow or not. updateScrollInfoAfterLayout(); // Repaint with our new bounds if they are different from our old bounds. bool didFullRepaint = repainter.repaintAfterLayout(); if (!didFullRepaint && repaintTop != repaintBottom && (style()->visibility() == VISIBLE || enclosingLayer()->hasVisibleContent())) { int repaintLeft = min(leftVisualOverflow(), leftLayoutOverflow()); int repaintRight = max(rightVisualOverflow(), rightLayoutOverflow()); IntRect repaintRect(repaintLeft, repaintTop, repaintRight - repaintLeft, repaintBottom - repaintTop); // FIXME: Deal with multiple column repainting. We have to split the repaint // rect up into multiple rects if it spans columns. repaintRect.inflate(maximalOutlineSize(PaintPhaseOutline)); if (hasOverflowClip()) { // Adjust repaint rect for scroll offset int x = repaintRect.x(); int y = repaintRect.y(); layer()->subtractScrolledContentOffset(x, y); repaintRect.setX(x); repaintRect.setY(y); // Don't allow this rect to spill out of our overflow box. repaintRect.intersect(IntRect(0, 0, width(), height())); } // Make sure the rect is still non-empty after intersecting for overflow above if (!repaintRect.isEmpty()) { repaintRectangle(repaintRect); // We need to do a partial repaint of our content. if (hasReflection()) repaintRectangle(reflectedRect(repaintRect)); } } setNeedsLayout(false); } void RenderBlock::addOverflowFromBlockChildren() { for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { if (!child->isFloatingOrPositioned()) addOverflowFromChild(child); } } void RenderBlock::addOverflowFromFloats() { IntRect result; if (!m_floatingObjects) return; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for (; (r = it.current()); ++it) { if (r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer()) addOverflowFromChild(r->m_renderer, IntSize(r->m_left + r->m_renderer->marginLeft(), r->m_top + r->m_renderer->marginTop())); } return; } bool RenderBlock::expandsToEncloseOverhangingFloats() const { return isInlineBlockOrInlineTable() || isFloatingOrPositioned() || hasOverflowClip() || (parent() && parent()->isFlexibleBox()) || hasColumns() || isTableCell() || isFieldset(); } void RenderBlock::adjustPositionedBlock(RenderBox* child, const MarginInfo& marginInfo) { if (child->style()->hasStaticX()) { if (style()->direction() == LTR) child->layer()->setStaticX(borderLeft() + paddingLeft()); else child->layer()->setStaticX(borderRight() + paddingRight()); } if (child->style()->hasStaticY()) { int y = height(); if (!marginInfo.canCollapseWithTop()) { child->calcVerticalMargins(); int marginTop = child->marginTop(); int collapsedTopPos = marginInfo.posMargin(); int collapsedTopNeg = marginInfo.negMargin(); if (marginTop > 0) { if (marginTop > collapsedTopPos) collapsedTopPos = marginTop; } else { if (-marginTop > collapsedTopNeg) collapsedTopNeg = -marginTop; } y += (collapsedTopPos - collapsedTopNeg) - marginTop; } RenderLayer* childLayer = child->layer(); if (childLayer->staticY() != y) { child->layer()->setStaticY(y); child->setChildNeedsLayout(true, false); } } } void RenderBlock::adjustFloatingBlock(const MarginInfo& marginInfo) { // The float should be positioned taking into account the bottom margin // of the previous flow. We add that margin into the height, get the // float positioned properly, and then subtract the margin out of the // height again. In the case of self-collapsing blocks, we always just // use the top margins, since the self-collapsing block collapsed its // own bottom margin into its top margin. // // Note also that the previous flow may collapse its margin into the top of // our block. If this is the case, then we do not add the margin in to our // height when computing the position of the float. This condition can be tested // for by simply calling canCollapseWithTop. See // http://www.hixie.ch/tests/adhoc/css/box/block/margin-collapse/046.html for // an example of this scenario. int marginOffset = marginInfo.canCollapseWithTop() ? 0 : marginInfo.margin(); setHeight(height() + marginOffset); positionNewFloats(); setHeight(height() - marginOffset); } bool RenderBlock::handleSpecialChild(RenderBox* child, const MarginInfo& marginInfo) { // Handle in the given order return handlePositionedChild(child, marginInfo) || handleFloatingChild(child, marginInfo) || handleRunInChild(child); } bool RenderBlock::handlePositionedChild(RenderBox* child, const MarginInfo& marginInfo) { if (child->isPositioned()) { child->containingBlock()->insertPositionedObject(child); adjustPositionedBlock(child, marginInfo); return true; } return false; } bool RenderBlock::handleFloatingChild(RenderBox* child, const MarginInfo& marginInfo) { if (child->isFloating()) { insertFloatingObject(child); adjustFloatingBlock(marginInfo); return true; } return false; } bool RenderBlock::handleRunInChild(RenderBox* child) { // See if we have a run-in element with inline children. If the // children aren't inline, then just treat the run-in as a normal // block. if (!child->isRunIn() || !child->childrenInline()) return false; // FIXME: We don't handle non-block elements with run-in for now. if (!child->isRenderBlock()) return false; // Get the next non-positioned/non-floating RenderBlock. RenderBlock* blockRunIn = toRenderBlock(child); RenderObject* curr = blockRunIn->nextSibling(); while (curr && curr->isFloatingOrPositioned()) curr = curr->nextSibling(); if (!curr || !curr->isRenderBlock() || !curr->childrenInline() || curr->isRunIn() || curr->isAnonymous()) return false; RenderBlock* currBlock = toRenderBlock(curr); // Remove the old child. children()->removeChildNode(this, blockRunIn); // Create an inline. Node* runInNode = blockRunIn->node(); RenderInline* inlineRunIn = new (renderArena()) RenderInline(runInNode ? runInNode : document()); inlineRunIn->setStyle(blockRunIn->style()); bool runInIsGenerated = child->style()->styleType() == BEFORE || child->style()->styleType() == AFTER; // Move the nodes from the old child to the new child, but skip any :before/:after content. It has already // been regenerated by the new inline. for (RenderObject* runInChild = blockRunIn->firstChild(); runInChild; runInChild = runInChild->nextSibling()) { if (runInIsGenerated || (runInChild->style()->styleType() != BEFORE && runInChild->style()->styleType() != AFTER)) { blockRunIn->children()->removeChildNode(blockRunIn, runInChild, false); inlineRunIn->addChild(runInChild); // Use addChild instead of appendChildNode since it handles correct placement of the children relative to :after-generated content. } } // Now insert the new child under |currBlock|. currBlock->children()->insertChildNode(currBlock, inlineRunIn, currBlock->firstChild()); // If the run-in had an element, we need to set the new renderer. if (runInNode) runInNode->setRenderer(inlineRunIn); // Destroy the block run-in. blockRunIn->destroy(); // The block acts like an inline, so just null out its // position. return true; } int RenderBlock::collapseMargins(RenderBox* child, MarginInfo& marginInfo) { // Get our max pos and neg top margins. int posTop = child->maxTopMargin(true); int negTop = child->maxTopMargin(false); // For self-collapsing blocks, collapse our bottom margins into our // top to get new posTop and negTop values. if (child->isSelfCollapsingBlock()) { posTop = max(posTop, child->maxBottomMargin(true)); negTop = max(negTop, child->maxBottomMargin(false)); } // See if the top margin is quirky. We only care if this child has // margins that will collapse with us. bool topQuirk = child->isTopMarginQuirk() || style()->marginTopCollapse() == MDISCARD; if (marginInfo.canCollapseWithTop()) { // This child is collapsing with the top of the // block. If it has larger margin values, then we need to update // our own maximal values. if (!style()->htmlHacks() || !marginInfo.quirkContainer() || !topQuirk) setMaxTopMargins(max(posTop, maxTopPosMargin()), max(negTop, maxTopNegMargin())); // The minute any of the margins involved isn't a quirk, don't // collapse it away, even if the margin is smaller (www.webreference.com // has an example of this, a
with 0.8em author-specified inside // a
inside a . if (!marginInfo.determinedTopQuirk() && !topQuirk && (posTop-negTop)) { setTopMarginQuirk(false); marginInfo.setDeterminedTopQuirk(true); } if (!marginInfo.determinedTopQuirk() && topQuirk && marginTop() == 0) // We have no top margin and our top child has a quirky margin. // We will pick up this quirky margin and pass it through. // This deals with the

case. // Don't do this for a block that split two inlines though. You do // still apply margins in this case. setTopMarginQuirk(true); } if (marginInfo.quirkContainer() && marginInfo.atTopOfBlock() && (posTop - negTop)) marginInfo.setTopQuirk(topQuirk); int ypos = height(); if (child->isSelfCollapsingBlock()) { // This child has no height. We need to compute our // position before we collapse the child's margins together, // so that we can get an accurate position for the zero-height block. int collapsedTopPos = max(marginInfo.posMargin(), child->maxTopMargin(true)); int collapsedTopNeg = max(marginInfo.negMargin(), child->maxTopMargin(false)); marginInfo.setMargin(collapsedTopPos, collapsedTopNeg); // Now collapse the child's margins together, which means examining our // bottom margin values as well. marginInfo.setPosMarginIfLarger(child->maxBottomMargin(true)); marginInfo.setNegMarginIfLarger(child->maxBottomMargin(false)); if (!marginInfo.canCollapseWithTop()) // We need to make sure that the position of the self-collapsing block // is correct, since it could have overflowing content // that needs to be positioned correctly (e.g., a block that // had a specified height of 0 but that actually had subcontent). ypos = height() + collapsedTopPos - collapsedTopNeg; } else { if (child->style()->marginTopCollapse() == MSEPARATE) { setHeight(height() + marginInfo.margin() + child->marginTop()); ypos = height(); } else if (!marginInfo.atTopOfBlock() || (!marginInfo.canCollapseTopWithChildren() && (!style()->htmlHacks() || !marginInfo.quirkContainer() || !marginInfo.topQuirk()))) { // We're collapsing with a previous sibling's margins and not // with the top of the block. setHeight(height() + max(marginInfo.posMargin(), posTop) - max(marginInfo.negMargin(), negTop)); ypos = height(); } marginInfo.setPosMargin(child->maxBottomMargin(true)); marginInfo.setNegMargin(child->maxBottomMargin(false)); if (marginInfo.margin()) marginInfo.setBottomQuirk(child->isBottomMarginQuirk() || style()->marginBottomCollapse() == MDISCARD); } return ypos; } int RenderBlock::clearFloatsIfNeeded(RenderBox* child, MarginInfo& marginInfo, int oldTopPosMargin, int oldTopNegMargin, int yPos) { int heightIncrease = getClearDelta(child, yPos); if (!heightIncrease) return yPos; if (child->isSelfCollapsingBlock()) { // For self-collapsing blocks that clear, they can still collapse their // margins with following siblings. Reset the current margins to represent // the self-collapsing block's margins only. // CSS2.1 states: // "An element that has had clearance applied to it never collapses its top margin with its parent block's bottom margin. // Therefore if we are at the bottom of the block, let's go ahead and reset margins to only include the // self-collapsing block's bottom margin. bool atBottomOfBlock = true; for (RenderBox* curr = child->nextSiblingBox(); curr && atBottomOfBlock; curr = curr->nextSiblingBox()) { if (!curr->isFloatingOrPositioned()) atBottomOfBlock = false; } if (atBottomOfBlock) { marginInfo.setPosMargin(child->maxBottomMargin(true)); marginInfo.setNegMargin(child->maxBottomMargin(false)); } else { marginInfo.setPosMargin(max(child->maxTopMargin(true), child->maxBottomMargin(true))); marginInfo.setNegMargin(max(child->maxTopMargin(false), child->maxBottomMargin(false))); } // Adjust our height such that we are ready to be collapsed with subsequent siblings (or the bottom // of the parent block). setHeight(child->y() - max(0, marginInfo.margin())); } else // Increase our height by the amount we had to clear. setHeight(height() + heightIncrease); if (marginInfo.canCollapseWithTop()) { // We can no longer collapse with the top of the block since a clear // occurred. The empty blocks collapse into the cleared block. // FIXME: This isn't quite correct. Need clarification for what to do // if the height the cleared block is offset by is smaller than the // margins involved. setMaxTopMargins(oldTopPosMargin, oldTopNegMargin); marginInfo.setAtTopOfBlock(false); } return yPos + heightIncrease; } int RenderBlock::estimateVerticalPosition(RenderBox* child, const MarginInfo& marginInfo) { // FIXME: We need to eliminate the estimation of vertical position, because when it's wrong we sometimes trigger a pathological // relayout if there are intruding floats. int yPosEstimate = height(); if (!marginInfo.canCollapseWithTop()) { int childMarginTop = child->selfNeedsLayout() ? child->marginTop() : child->collapsedMarginTop(); yPosEstimate += max(marginInfo.margin(), childMarginTop); } yPosEstimate += getClearDelta(child, yPosEstimate); return yPosEstimate; } void RenderBlock::determineHorizontalPosition(RenderBox* child) { if (style()->direction() == LTR) { int xPos = borderLeft() + paddingLeft(); // Add in our left margin. int chPos = xPos + child->marginLeft(); // Some objects (e.g., tables, horizontal rules, overflow:auto blocks) avoid floats. They need // to shift over as necessary to dodge any floats that might get in the way. if (child->avoidsFloats()) { int leftOff = leftOffset(height(), false); if (style()->textAlign() != WEBKIT_CENTER && child->style()->marginLeft().type() != Auto) { if (child->marginLeft() < 0) leftOff += child->marginLeft(); chPos = max(chPos, leftOff); // Let the float sit in the child's margin if it can fit. } else if (leftOff != xPos) { // The object is shifting right. The object might be centered, so we need to // recalculate our horizontal margins. Note that the containing block content // width computation will take into account the delta between |leftOff| and |xPos| // so that we can just pass the content width in directly to the |calcHorizontalMargins| // function. child->calcHorizontalMargins(child->style()->marginLeft(), child->style()->marginRight(), lineWidth(child->y(), false)); chPos = leftOff + child->marginLeft(); } } view()->addLayoutDelta(IntSize(child->x() - chPos, 0)); child->setLocation(chPos, child->y()); } else { int xPos = width() - borderRight() - paddingRight() - verticalScrollbarWidth(); int chPos = xPos - (child->width() + child->marginRight()); if (child->avoidsFloats()) { int rightOff = rightOffset(height(), false); if (style()->textAlign() != WEBKIT_CENTER && child->style()->marginRight().type() != Auto) { if (child->marginRight() < 0) rightOff -= child->marginRight(); chPos = min(chPos, rightOff - child->width()); // Let the float sit in the child's margin if it can fit. } else if (rightOff != xPos) { // The object is shifting left. The object might be centered, so we need to // recalculate our horizontal margins. Note that the containing block content // width computation will take into account the delta between |rightOff| and |xPos| // so that we can just pass the content width in directly to the |calcHorizontalMargins| // function. child->calcHorizontalMargins(child->style()->marginLeft(), child->style()->marginRight(), lineWidth(child->y(), false)); chPos = rightOff - child->marginRight() - child->width(); } } view()->addLayoutDelta(IntSize(child->x() - chPos, 0)); child->setLocation(chPos, child->y()); } } void RenderBlock::setCollapsedBottomMargin(const MarginInfo& marginInfo) { if (marginInfo.canCollapseWithBottom() && !marginInfo.canCollapseWithTop()) { // Update our max pos/neg bottom margins, since we collapsed our bottom margins // with our children. setMaxBottomMargins(max(maxBottomPosMargin(), marginInfo.posMargin()), max(maxBottomNegMargin(), marginInfo.negMargin())); if (!marginInfo.bottomQuirk()) setBottomMarginQuirk(false); if (marginInfo.bottomQuirk() && marginBottom() == 0) // We have no bottom margin and our last child has a quirky margin. // We will pick up this quirky margin and pass it through. // This deals with the

case. setBottomMarginQuirk(true); } } void RenderBlock::handleBottomOfBlock(int top, int bottom, MarginInfo& marginInfo) { marginInfo.setAtBottomOfBlock(true); // If we can't collapse with children then go ahead and add in the bottom margin. if (!marginInfo.canCollapseWithBottom() && !marginInfo.canCollapseWithTop() && (!style()->htmlHacks() || !marginInfo.quirkContainer() || !marginInfo.bottomQuirk())) setHeight(height() + marginInfo.margin()); // Now add in our bottom border/padding. setHeight(height() + bottom); // Negative margins can cause our height to shrink below our minimal height (border/padding). // If this happens, ensure that the computed height is increased to the minimal height. setHeight(max(height(), top + bottom)); // Update our bottom collapsed margin info. setCollapsedBottomMargin(marginInfo); } void RenderBlock::layoutBlockChildren(bool relayoutChildren, int& maxFloatBottom) { if (gPercentHeightDescendantsMap) { if (HashSet* descendants = gPercentHeightDescendantsMap->get(this)) { HashSet::iterator end = descendants->end(); for (HashSet::iterator it = descendants->begin(); it != end; ++it) { RenderBox* box = *it; while (box != this) { if (box->normalChildNeedsLayout()) break; box->setChildNeedsLayout(true, false); box = box->containingBlock(); ASSERT(box); if (!box) break; } } } } int top = borderTop() + paddingTop(); int bottom = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); setHeight(top); // The margin struct caches all our current margin collapsing state. The compact struct caches state when we encounter compacts, MarginInfo marginInfo(this, top, bottom); // Fieldsets need to find their legend and position it inside the border of the object. // The legend then gets skipped during normal layout. RenderObject* legend = layoutLegend(relayoutChildren); int previousFloatBottom = 0; maxFloatBottom = 0; RenderBox* next = firstChildBox(); while (next) { RenderBox* child = next; next = child->nextSiblingBox(); if (legend == child) continue; // Skip the legend, since it has already been positioned up in the fieldset's border. // Make sure we layout children if they need it. // FIXME: Technically percentage height objects only need a relayout if their percentage isn't going to be turned into // an auto value. Add a method to determine this, so that we can avoid the relayout. if (relayoutChildren || ((child->style()->height().isPercent() || child->style()->minHeight().isPercent() || child->style()->maxHeight().isPercent()) && !isRenderView())) child->setChildNeedsLayout(true, false); // If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths. if (relayoutChildren && (child->style()->paddingLeft().isPercent() || child->style()->paddingRight().isPercent())) child->setPrefWidthsDirty(true, false); // Handle the four types of special elements first. These include positioned content, floating content, compacts and // run-ins. When we encounter these four types of objects, we don't actually lay them out as normal flow blocks. if (handleSpecialChild(child, marginInfo)) continue; // Lay out the child. layoutBlockChild(child, marginInfo, previousFloatBottom, maxFloatBottom); } // Now do the handling of the bottom of the block, adding in our bottom border/padding and // determining the correct collapsed bottom margin information. handleBottomOfBlock(top, bottom, marginInfo); } void RenderBlock::layoutBlockChild(RenderBox* child, MarginInfo& marginInfo, int& previousFloatBottom, int& maxFloatBottom) { int oldTopPosMargin = maxTopPosMargin(); int oldTopNegMargin = maxTopNegMargin(); // The child is a normal flow object. Compute its vertical margins now. child->calcVerticalMargins(); // Do not allow a collapse if the margin top collapse style is set to SEPARATE. if (child->style()->marginTopCollapse() == MSEPARATE) { marginInfo.setAtTopOfBlock(false); marginInfo.clearMargin(); } // Try to guess our correct y position. In most cases this guess will // be correct. Only if we're wrong (when we compute the real y position) // will we have to potentially relayout. int yPosEstimate = estimateVerticalPosition(child, marginInfo); // Cache our old rect so that we can dirty the proper repaint rects if the child moves. IntRect oldRect(child->x(), child->y() , child->width(), child->height()); #ifndef NDEBUG IntSize oldLayoutDelta = view()->layoutDelta(); #endif // Go ahead and position the child as though it didn't collapse with the top. view()->addLayoutDelta(IntSize(0, child->y() - yPosEstimate)); child->setLocation(child->x(), yPosEstimate); bool markDescendantsWithFloats = false; if (yPosEstimate != oldRect.y() && !child->avoidsFloats() && child->isBlockFlow() && toRenderBlock(child)->containsFloats()) markDescendantsWithFloats = true; else if (!child->avoidsFloats() || child->shrinkToAvoidFloats()) { // If an element might be affected by the presence of floats, then always mark it for // layout. int fb = max(previousFloatBottom, floatBottom()); if (fb > yPosEstimate) markDescendantsWithFloats = true; } if (child->isRenderBlock()) { if (markDescendantsWithFloats) toRenderBlock(child)->markAllDescendantsWithFloatsForLayout(); previousFloatBottom = max(previousFloatBottom, oldRect.y() + toRenderBlock(child)->floatBottom()); } bool childHadLayout = child->m_everHadLayout; bool childNeededLayout = child->needsLayout(); if (childNeededLayout) child->layout(); // Now determine the correct ypos based off examination of collapsing margin // values. int yBeforeClear = collapseMargins(child, marginInfo); // Now check for clear. int yAfterClear = clearFloatsIfNeeded(child, marginInfo, oldTopPosMargin, oldTopNegMargin, yBeforeClear); view()->addLayoutDelta(IntSize(0, yPosEstimate - yAfterClear)); child->setLocation(child->x(), yAfterClear); // Now we have a final y position. See if it really does end up being different from our estimate. if (yAfterClear != yPosEstimate) { if (child->shrinkToAvoidFloats()) { // The child's width depends on the line width. // When the child shifts to clear an item, its width can // change (because it has more available line width). // So go ahead and mark the item as dirty. child->setChildNeedsLayout(true, false); } if (!child->avoidsFloats() && child->isBlockFlow() && toRenderBlock(child)->containsFloats()) toRenderBlock(child)->markAllDescendantsWithFloatsForLayout(); // Our guess was wrong. Make the child lay itself out again. child->layoutIfNeeded(); } // We are no longer at the top of the block if we encounter a non-empty child. // This has to be done after checking for clear, so that margins can be reset if a clear occurred. if (marginInfo.atTopOfBlock() && !child->isSelfCollapsingBlock()) marginInfo.setAtTopOfBlock(false); // Now place the child in the correct horizontal position determineHorizontalPosition(child); // Update our height now that the child has been placed in the correct position. setHeight(height() + child->height()); if (child->style()->marginBottomCollapse() == MSEPARATE) { setHeight(height() + child->marginBottom()); marginInfo.clearMargin(); } // If the child has overhanging floats that intrude into following siblings (or possibly out // of this block), then the parent gets notified of the floats now. if (child->isBlockFlow() && toRenderBlock(child)->containsFloats()) maxFloatBottom = max(maxFloatBottom, addOverhangingFloats(toRenderBlock(child), -child->x(), -child->y(), !childNeededLayout)); IntSize childOffset(child->x() - oldRect.x(), child->y() - oldRect.y()); if (childOffset.width() || childOffset.height()) { view()->addLayoutDelta(childOffset); // If the child moved, we have to repaint it as well as any floating/positioned // descendants. An exception is if we need a layout. In this case, we know we're going to // repaint ourselves (and the child) anyway. if (childHadLayout && !selfNeedsLayout() && child->checkForRepaintDuringLayout()) child->repaintDuringLayoutIfMoved(oldRect); } if (!childHadLayout && child->checkForRepaintDuringLayout()) { child->repaint(); child->repaintOverhangingFloats(true); } ASSERT(oldLayoutDelta == view()->layoutDelta()); } bool RenderBlock::layoutOnlyPositionedObjects() { if (!posChildNeedsLayout() || normalChildNeedsLayout() || selfNeedsLayout()) return false; LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y()), hasColumns() || hasTransform() || hasReflection()); if (needsPositionedMovementLayout()) { tryLayoutDoingPositionedMovementOnly(); if (needsLayout()) return false; } // All we have to is lay out our positioned objects. layoutPositionedObjects(false); statePusher.pop(); updateScrollInfoAfterLayout(); #ifdef ANDROID_FIX // iframe flatten will call FrameView::layout() which calls performPostLayoutTasks, // which may make us need to layout again if (!posChildNeedsLayout() || normalChildNeedsLayout() || selfNeedsLayout()) return false; #endif setNeedsLayout(false); return true; } void RenderBlock::layoutPositionedObjects(bool relayoutChildren) { if (m_positionedObjects) { RenderBox* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; // When a non-positioned block element moves, it may have positioned children that are implicitly positioned relative to the // non-positioned block. Rather than trying to detect all of these movement cases, we just always lay out positioned // objects that are positioned implicitly like this. Such objects are rare, and so in typical DHTML menu usage (where everything is // positioned explicitly) this should not incur a performance penalty. if (relayoutChildren || (r->style()->hasStaticY() && r->parent() != this && r->parent()->isBlockFlow())) r->setChildNeedsLayout(true, false); // If relayoutChildren is set and we have percentage padding, we also need to invalidate the child's pref widths. //if (relayoutChildren && (r->style()->paddingLeft().isPercent() || r->style()->paddingRight().isPercent())) r->setPrefWidthsDirty(true, false); // We don't have to do a full layout. We just have to update our position. Try that first. If we have shrink-to-fit width // and we hit the available width constraint, the layoutIfNeeded() will catch it and do a full layout. if (r->needsPositionedMovementLayoutOnly()) r->tryLayoutDoingPositionedMovementOnly(); r->layoutIfNeeded(); } } } void RenderBlock::markPositionedObjectsForLayout() { if (m_positionedObjects) { RenderBox* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; r->setChildNeedsLayout(true); } } } void RenderBlock::repaintOverhangingFloats(bool paintAllDescendants) { // Repaint any overhanging floats (if we know we're the one to paint them). if (hasOverhangingFloats()) { // We think that we must be in a bad state if m_floatingObjects is nil at this point, so // we assert on Debug builds and nil-check Release builds. ASSERT(m_floatingObjects); if (!m_floatingObjects) return; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); // FIXME: Avoid disabling LayoutState. At the very least, don't disable it for floats originating // in this block. Better yet would be to push extra state for the containers of other floats. view()->disableLayoutState(); for ( ; (r = it.current()); ++it) { // Only repaint the object if it is overhanging, is not in its own layer, and // is our responsibility to paint (m_shouldPaint is set). When paintAllDescendants is true, the latter // condition is replaced with being a descendant of us. if (r->m_bottom > height() && ((paintAllDescendants && r->m_renderer->isDescendantOf(this)) || r->m_shouldPaint) && !r->m_renderer->hasSelfPaintingLayer()) { r->m_renderer->repaint(); r->m_renderer->repaintOverhangingFloats(); } } view()->enableLayoutState(); } } void RenderBlock::paint(PaintInfo& paintInfo, int tx, int ty) { tx += x(); ty += y(); PaintPhase phase = paintInfo.phase; // Check if we need to do anything at all. // FIXME: Could eliminate the isRoot() check if we fix background painting so that the RenderView // paints the root's background. if (!isRoot()) { IntRect overflowBox = visibleOverflowRect(); overflowBox.inflate(maximalOutlineSize(paintInfo.phase)); overflowBox.move(tx, ty); if (!overflowBox.intersects(paintInfo.rect)) return; } bool pushedClip = pushContentsClip(paintInfo, tx, ty); paintObject(paintInfo, tx, ty); if (pushedClip) popContentsClip(paintInfo, phase, tx, ty); // Our scrollbar widgets paint exactly when we tell them to, so that they work properly with // z-index. We paint after we painted the background/border, so that the scrollbars will // sit above the background/border. if (hasOverflowClip() && style()->visibility() == VISIBLE && (phase == PaintPhaseBlockBackground || phase == PaintPhaseChildBlockBackground) && shouldPaintWithinRoot(paintInfo)) layer()->paintOverflowControls(paintInfo.context, tx, ty, paintInfo.rect); } void RenderBlock::paintColumnRules(PaintInfo& paintInfo, int tx, int ty) { const Color& ruleColor = style()->columnRuleColor(); bool ruleTransparent = style()->columnRuleIsTransparent(); EBorderStyle ruleStyle = style()->columnRuleStyle(); int ruleWidth = style()->columnRuleWidth(); int colGap = columnGap(); bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent && ruleWidth <= colGap; if (!renderRule) return; // We need to do multiple passes, breaking up our child painting into strips. int currXOffset = 0; int ruleAdd = borderLeft() + paddingLeft(); int ruleX = 0; Vector* colRects = columnRects(); unsigned colCount = colRects->size(); for (unsigned i = 0; i < colCount; i++) { // For each rect, we clip to the rect, and then we adjust our coords. IntRect colRect = colRects->at(i); // Move to the next position. if (style()->direction() == LTR) { ruleX += colRect.width() + colGap / 2; currXOffset += colRect.width() + colGap; } else { ruleX -= (colRect.width() + colGap / 2); currXOffset -= (colRect.width() + colGap); } // Now paint the column rule. if (i < colCount - 1) { int ruleStart = tx + ruleX - ruleWidth / 2 + ruleAdd; int ruleEnd = ruleStart + ruleWidth; int ruleTop = ty + borderTop() + paddingTop(); int ruleBottom = ruleTop + contentHeight(); drawLineForBoxSide(paintInfo.context, ruleStart, ruleTop, ruleEnd, ruleBottom, style()->direction() == LTR ? BSLeft : BSRight, ruleColor, style()->color(), ruleStyle, 0, 0); } ruleX = currXOffset; } } void RenderBlock::paintColumnContents(PaintInfo& paintInfo, int tx, int ty, bool paintingFloats) { // We need to do multiple passes, breaking up our child painting into strips. GraphicsContext* context = paintInfo.context; int currXOffset = 0; int currYOffset = 0; int colGap = columnGap(); Vector* colRects = columnRects(); unsigned colCount = colRects->size(); for (unsigned i = 0; i < colCount; i++) { // For each rect, we clip to the rect, and then we adjust our coords. IntRect colRect = colRects->at(i); colRect.move(tx, ty); context->save(); // Each strip pushes a clip, since column boxes are specified as being // like overflow:hidden. context->clip(colRect); // Adjust tx and ty to change where we paint. PaintInfo info(paintInfo); info.rect.intersect(colRect); // Adjust our x and y when painting. int finalX = tx + currXOffset; int finalY = ty + currYOffset; if (paintingFloats) paintFloats(info, finalX, finalY, paintInfo.phase == PaintPhaseSelection || paintInfo.phase == PaintPhaseTextClip); else paintContents(info, finalX, finalY); // Move to the next position. if (style()->direction() == LTR) currXOffset += colRect.width() + colGap; else currXOffset -= (colRect.width() + colGap); currYOffset -= colRect.height(); context->restore(); } } void RenderBlock::paintContents(PaintInfo& paintInfo, int tx, int ty) { // Avoid painting descendants of the root element when stylesheets haven't loaded. This eliminates FOUC. // It's ok not to draw, because later on, when all the stylesheets do load, updateStyleSelector on the Document // will do a full repaint(). if (document()->didLayoutWithPendingStylesheets() && !isRenderView()) return; if (childrenInline()) m_lineBoxes.paint(this, paintInfo, tx, ty); else paintChildren(paintInfo, tx, ty); } void RenderBlock::paintChildren(PaintInfo& paintInfo, int tx, int ty) { PaintPhase newPhase = (paintInfo.phase == PaintPhaseChildOutlines) ? PaintPhaseOutline : paintInfo.phase; newPhase = (newPhase == PaintPhaseChildBlockBackgrounds) ? PaintPhaseChildBlockBackground : newPhase; // We don't paint our own background, but we do let the kids paint their backgrounds. PaintInfo info(paintInfo); info.phase = newPhase; info.paintingRoot = paintingRootForChildren(paintInfo); bool isPrinting = document()->printing(); for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { // Check for page-break-before: always, and if it's set, break and bail. if (isPrinting && !childrenInline() && child->style()->pageBreakBefore() == PBALWAYS && inRootBlockContext() && (ty + child->y()) > paintInfo.rect.y() && (ty + child->y()) < paintInfo.rect.bottom()) { view()->setBestTruncatedAt(ty + child->y(), this, true); return; } if (!child->hasSelfPaintingLayer() && !child->isFloating()) child->paint(info, tx, ty); // Check for page-break-after: always, and if it's set, break and bail. if (isPrinting && !childrenInline() && child->style()->pageBreakAfter() == PBALWAYS && inRootBlockContext() && (ty + child->y() + child->height()) > paintInfo.rect.y() && (ty + child->y() + child->height()) < paintInfo.rect.bottom()) { view()->setBestTruncatedAt(ty + child->y() + child->height() + max(0, child->collapsedMarginBottom()), this, true); return; } } } void RenderBlock::paintCaret(PaintInfo& paintInfo, int tx, int ty, CaretType type) { SelectionController* selection = type == CursorCaret ? document()->frame()->selection() : document()->frame()->dragCaretController(); // Paint the caret if the SelectionController says so or if caret browsing is enabled bool caretBrowsing = document()->frame()->settings() && document()->frame()->settings()->caretBrowsingEnabled(); RenderObject* caretPainter = selection->caretRenderer(); if (caretPainter == this && (selection->isContentEditable() || caretBrowsing)) { // Convert the painting offset into the local coordinate system of this renderer, // to match the localCaretRect computed by the SelectionController offsetForContents(tx, ty); if (type == CursorCaret) document()->frame()->paintCaret(paintInfo.context, tx, ty, paintInfo.rect); else document()->frame()->paintDragCaret(paintInfo.context, tx, ty, paintInfo.rect); } } void RenderBlock::paintObject(PaintInfo& paintInfo, int tx, int ty) { PaintPhase paintPhase = paintInfo.phase; // 1. paint background, borders etc if ((paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) && style()->visibility() == VISIBLE) { if (hasBoxDecorations()) paintBoxDecorations(paintInfo, tx, ty); if (hasColumns()) paintColumnRules(paintInfo, tx, ty); } if (paintPhase == PaintPhaseMask && style()->visibility() == VISIBLE) { paintMask(paintInfo, tx, ty); return; } // We're done. We don't bother painting any children. if (paintPhase == PaintPhaseBlockBackground) return; // Adjust our painting position if we're inside a scrolled layer (e.g., an overflow:auto div).s int scrolledX = tx; int scrolledY = ty; if (hasOverflowClip()) layer()->subtractScrolledContentOffset(scrolledX, scrolledY); // 2. paint contents if (paintPhase != PaintPhaseSelfOutline) { if (hasColumns()) paintColumnContents(paintInfo, scrolledX, scrolledY); else paintContents(paintInfo, scrolledX, scrolledY); } // 3. paint selection // FIXME: Make this work with multi column layouts. For now don't fill gaps. bool isPrinting = document()->printing(); if (!isPrinting && !hasColumns()) paintSelection(paintInfo, scrolledX, scrolledY); // Fill in gaps in selection on lines and between blocks. // 4. paint floats. if (paintPhase == PaintPhaseFloat || paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip) { if (hasColumns()) paintColumnContents(paintInfo, scrolledX, scrolledY, true); else paintFloats(paintInfo, scrolledX, scrolledY, paintPhase == PaintPhaseSelection || paintPhase == PaintPhaseTextClip); } // 5. paint outline. if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseSelfOutline) && hasOutline() && style()->visibility() == VISIBLE) paintOutline(paintInfo.context, tx, ty, width(), height(), style()); // 6. paint continuation outlines. if ((paintPhase == PaintPhaseOutline || paintPhase == PaintPhaseChildOutlines)) { if (inlineContinuation() && inlineContinuation()->hasOutline() && inlineContinuation()->style()->visibility() == VISIBLE) { RenderInline* inlineRenderer = toRenderInline(inlineContinuation()->node()->renderer()); if (!inlineRenderer->hasSelfPaintingLayer()) containingBlock()->addContinuationWithOutline(inlineRenderer); else if (!inlineRenderer->firstLineBox()) inlineRenderer->paintOutline(paintInfo.context, tx - x() + inlineRenderer->containingBlock()->x(), ty - y() + inlineRenderer->containingBlock()->y()); } paintContinuationOutlines(paintInfo, tx, ty); } // 7. paint caret. // If the caret's node's render object's containing block is this block, and the paint action is PaintPhaseForeground, // then paint the caret. if (paintPhase == PaintPhaseForeground) { paintCaret(paintInfo, scrolledX, scrolledY, CursorCaret); paintCaret(paintInfo, scrolledX, scrolledY, DragCaret); } } void RenderBlock::paintFloats(PaintInfo& paintInfo, int tx, int ty, bool preservePhase) { if (!m_floatingObjects) return; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for (; (r = it.current()); ++it) { // Only paint the object if our m_shouldPaint flag is set. if (r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer()) { PaintInfo currentPaintInfo(paintInfo); currentPaintInfo.phase = preservePhase ? paintInfo.phase : PaintPhaseBlockBackground; int currentTX = tx + r->m_left - r->m_renderer->x() + r->m_renderer->marginLeft(); int currentTY = ty + r->m_top - r->m_renderer->y() + r->m_renderer->marginTop(); r->m_renderer->paint(currentPaintInfo, currentTX, currentTY); if (!preservePhase) { currentPaintInfo.phase = PaintPhaseChildBlockBackgrounds; r->m_renderer->paint(currentPaintInfo, currentTX, currentTY); currentPaintInfo.phase = PaintPhaseFloat; r->m_renderer->paint(currentPaintInfo, currentTX, currentTY); currentPaintInfo.phase = PaintPhaseForeground; r->m_renderer->paint(currentPaintInfo, currentTX, currentTY); currentPaintInfo.phase = PaintPhaseOutline; r->m_renderer->paint(currentPaintInfo, currentTX, currentTY); } } } } void RenderBlock::paintEllipsisBoxes(PaintInfo& paintInfo, int tx, int ty) { if (!shouldPaintWithinRoot(paintInfo) || !firstLineBox()) return; if (style()->visibility() == VISIBLE && paintInfo.phase == PaintPhaseForeground) { // We can check the first box and last box and avoid painting if we don't // intersect. int yPos = ty + firstLineBox()->y(); int h = lastLineBox()->y() + lastLineBox()->height() - firstLineBox()->y(); if (yPos >= paintInfo.rect.bottom() || yPos + h <= paintInfo.rect.y()) return; // See if our boxes intersect with the dirty rect. If so, then we paint // them. Note that boxes can easily overlap, so we can't make any assumptions // based off positions of our first line box or our last line box. for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { yPos = ty + curr->y(); h = curr->height(); if (curr->ellipsisBox() && yPos < paintInfo.rect.bottom() && yPos + h > paintInfo.rect.y()) curr->paintEllipsisBox(paintInfo, tx, ty); } } } static ContinuationOutlineTableMap* continuationOutlineTable() { DEFINE_STATIC_LOCAL(ContinuationOutlineTableMap, table, ()); return &table; } void RenderBlock::addContinuationWithOutline(RenderInline* flow) { // We can't make this work if the inline is in a layer. We'll just rely on the broken // way of painting. ASSERT(!flow->layer() && !flow->isInlineContinuation()); ContinuationOutlineTableMap* table = continuationOutlineTable(); ListHashSet* continuations = table->get(this); if (!continuations) { continuations = new ListHashSet; table->set(this, continuations); } continuations->add(flow); } void RenderBlock::paintContinuationOutlines(PaintInfo& info, int tx, int ty) { ContinuationOutlineTableMap* table = continuationOutlineTable(); if (table->isEmpty()) return; ListHashSet* continuations = table->get(this); if (!continuations) return; // Paint each continuation outline. ListHashSet::iterator end = continuations->end(); for (ListHashSet::iterator it = continuations->begin(); it != end; ++it) { // Need to add in the coordinates of the intervening blocks. RenderInline* flow = *it; RenderBlock* block = flow->containingBlock(); for ( ; block && block != this; block = block->containingBlock()) { tx += block->x(); ty += block->y(); } ASSERT(block); flow->paintOutline(info.context, tx, ty); } // Delete delete continuations; table->remove(this); } void RenderBlock::setSelectionState(SelectionState s) { if (selectionState() == s) return; if (s == SelectionInside && selectionState() != SelectionNone) return; if ((s == SelectionStart && selectionState() == SelectionEnd) || (s == SelectionEnd && selectionState() == SelectionStart)) RenderBox::setSelectionState(SelectionBoth); else RenderBox::setSelectionState(s); RenderBlock* cb = containingBlock(); if (cb && !cb->isRenderView()) cb->setSelectionState(s); } bool RenderBlock::shouldPaintSelectionGaps() const { return selectionState() != SelectionNone && style()->visibility() == VISIBLE && isSelectionRoot(); } bool RenderBlock::isSelectionRoot() const { if (!node()) return false; // FIXME: Eventually tables should have to learn how to fill gaps between cells, at least in simple non-spanning cases. if (isTable()) return false; if (isBody() || isRoot() || hasOverflowClip() || isRelPositioned() || isFloatingOrPositioned() || isTableCell() || isInlineBlockOrInlineTable() || hasTransform() || hasReflection() || hasMask()) return true; if (view() && view()->selectionStart()) { Node* startElement = view()->selectionStart()->node(); if (startElement && startElement->rootEditableElement() == node()) return true; } return false; } GapRects RenderBlock::selectionGapRectsForRepaint(RenderBoxModelObject* repaintContainer) { ASSERT(!needsLayout()); if (!shouldPaintSelectionGaps()) return GapRects(); // FIXME: this is broken with transforms TransformState transformState(TransformState::ApplyTransformDirection, FloatPoint()); mapLocalToContainer(repaintContainer, false, false, transformState); FloatPoint offsetFromRepaintContainer = transformState.mappedPoint(); int x = offsetFromRepaintContainer.x(); int y = offsetFromRepaintContainer.y(); if (hasOverflowClip()) layer()->subtractScrolledContentOffset(x, y); int lastTop = 0; int lastLeft = leftSelectionOffset(this, lastTop); int lastRight = rightSelectionOffset(this, lastTop); return fillSelectionGaps(this, x, y, x, y, lastTop, lastLeft, lastRight); } void RenderBlock::paintSelection(PaintInfo& paintInfo, int tx, int ty) { if (shouldPaintSelectionGaps() && paintInfo.phase == PaintPhaseForeground) { int lastTop = 0; int lastLeft = leftSelectionOffset(this, lastTop); int lastRight = rightSelectionOffset(this, lastTop); paintInfo.context->save(); IntRect gapRectsBounds = fillSelectionGaps(this, tx, ty, tx, ty, lastTop, lastLeft, lastRight, &paintInfo); if (!gapRectsBounds.isEmpty()) { if (RenderLayer* layer = enclosingLayer()) { IntSize offset = hasLayer() ? IntSize() : offsetFromAncestorContainer(layer->renderer()); gapRectsBounds.move(offset - IntSize(tx, ty)); layer->addBlockSelectionGapsBounds(gapRectsBounds); } } paintInfo.context->restore(); } } #ifndef BUILDING_ON_TIGER static void clipOutPositionedObjects(const RenderObject::PaintInfo* paintInfo, int tx, int ty, ListHashSet* positionedObjects) { if (!positionedObjects) return; ListHashSet::const_iterator end = positionedObjects->end(); for (ListHashSet::const_iterator it = positionedObjects->begin(); it != end; ++it) { RenderBox* r = *it; paintInfo->context->clipOut(IntRect(tx + r->x(), ty + r->y(), r->width(), r->height())); } } #endif GapRects RenderBlock::fillSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo) { #ifndef BUILDING_ON_TIGER // IMPORTANT: Callers of this method that intend for painting to happen need to do a save/restore. // Clip out floating and positioned objects when painting selection gaps. if (paintInfo) { // Note that we don't clip out overflow for positioned objects. We just stick to the border box. clipOutPositionedObjects(paintInfo, tx, ty, m_positionedObjects); if (isBody() || isRoot()) // The must make sure to examine its containingBlock's positioned objects. for (RenderBlock* cb = containingBlock(); cb && !cb->isRenderView(); cb = cb->containingBlock()) clipOutPositionedObjects(paintInfo, cb->x(), cb->y(), cb->m_positionedObjects); if (m_floatingObjects) { for (DeprecatedPtrListIterator it(*m_floatingObjects); it.current(); ++it) { FloatingObject* r = it.current(); paintInfo->context->clipOut(IntRect(tx + r->m_left + r->m_renderer->marginLeft(), ty + r->m_top + r->m_renderer->marginTop(), r->m_renderer->width(), r->m_renderer->height())); } } } #endif // FIXME: overflow: auto/scroll regions need more math here, since painting in the border box is different from painting in the padding box (one is scrolled, the other is // fixed). GapRects result; if (!isBlockFlow()) // FIXME: Make multi-column selection gap filling work someday. return result; if (hasColumns() || hasTransform()) { // FIXME: We should learn how to gap fill multiple columns and transforms eventually. lastTop = (ty - blockY) + height(); lastLeft = leftSelectionOffset(rootBlock, height()); lastRight = rightSelectionOffset(rootBlock, height()); return result; } if (childrenInline()) result = fillInlineSelectionGaps(rootBlock, blockX, blockY, tx, ty, lastTop, lastLeft, lastRight, paintInfo); else result = fillBlockSelectionGaps(rootBlock, blockX, blockY, tx, ty, lastTop, lastLeft, lastRight, paintInfo); // Go ahead and fill the vertical gap all the way to the bottom of our block if the selection extends past our block. if (rootBlock == this && (selectionState() != SelectionBoth && selectionState() != SelectionEnd)) result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, ty + height(), rootBlock, blockX, blockY, paintInfo)); return result; } GapRects RenderBlock::fillInlineSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo) { GapRects result; bool containsStart = selectionState() == SelectionStart || selectionState() == SelectionBoth; if (!firstLineBox()) { if (containsStart) { // Go ahead and update our lastY to be the bottom of the block.


s or empty blocks with height can trip this // case. lastTop = (ty - blockY) + height(); lastLeft = leftSelectionOffset(rootBlock, height()); lastRight = rightSelectionOffset(rootBlock, height()); } return result; } RootInlineBox* lastSelectedLine = 0; RootInlineBox* curr; for (curr = firstRootBox(); curr && !curr->hasSelectedChildren(); curr = curr->nextRootBox()) { } // Now paint the gaps for the lines. for (; curr && curr->hasSelectedChildren(); curr = curr->nextRootBox()) { int selTop = curr->selectionTop(); int selHeight = curr->selectionHeight(); if (!containsStart && !lastSelectedLine && selectionState() != SelectionStart && selectionState() != SelectionBoth) result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, ty + selTop, rootBlock, blockX, blockY, paintInfo)); if (!paintInfo || (ty + selTop < paintInfo->rect.bottom() && ty + selTop + selHeight > paintInfo->rect.y())) result.unite(curr->fillLineSelectionGap(selTop, selHeight, rootBlock, blockX, blockY, tx, ty, paintInfo)); lastSelectedLine = curr; } if (containsStart && !lastSelectedLine) // VisibleSelection must start just after our last line. lastSelectedLine = lastRootBox(); if (lastSelectedLine && selectionState() != SelectionEnd && selectionState() != SelectionBoth) { // Go ahead and update our lastY to be the bottom of the last selected line. lastTop = (ty - blockY) + lastSelectedLine->selectionBottom(); lastLeft = leftSelectionOffset(rootBlock, lastSelectedLine->selectionBottom()); lastRight = rightSelectionOffset(rootBlock, lastSelectedLine->selectionBottom()); } return result; } GapRects RenderBlock::fillBlockSelectionGaps(RenderBlock* rootBlock, int blockX, int blockY, int tx, int ty, int& lastTop, int& lastLeft, int& lastRight, const PaintInfo* paintInfo) { GapRects result; // Go ahead and jump right to the first block child that contains some selected objects. RenderBox* curr; for (curr = firstChildBox(); curr && curr->selectionState() == SelectionNone; curr = curr->nextSiblingBox()) { } for (bool sawSelectionEnd = false; curr && !sawSelectionEnd; curr = curr->nextSiblingBox()) { SelectionState childState = curr->selectionState(); if (childState == SelectionBoth || childState == SelectionEnd) sawSelectionEnd = true; if (curr->isFloatingOrPositioned()) continue; // We must be a normal flow object in order to even be considered. if (curr->isRelPositioned() && curr->hasLayer()) { // If the relposition offset is anything other than 0, then treat this just like an absolute positioned element. // Just disregard it completely. IntSize relOffset = curr->layer()->relativePositionOffset(); if (relOffset.width() || relOffset.height()) continue; } bool paintsOwnSelection = curr->shouldPaintSelectionGaps() || curr->isTable(); // FIXME: Eventually we won't special-case table like this. bool fillBlockGaps = paintsOwnSelection || (curr->canBeSelectionLeaf() && childState != SelectionNone); if (fillBlockGaps) { // We need to fill the vertical gap above this object. if (childState == SelectionEnd || childState == SelectionInside) // Fill the gap above the object. result.uniteCenter(fillVerticalSelectionGap(lastTop, lastLeft, lastRight, ty + curr->y(), rootBlock, blockX, blockY, paintInfo)); // Only fill side gaps for objects that paint their own selection if we know for sure the selection is going to extend all the way *past* // our object. We know this if the selection did not end inside our object. if (paintsOwnSelection && (childState == SelectionStart || sawSelectionEnd)) childState = SelectionNone; // Fill side gaps on this object based off its state. bool leftGap, rightGap; getHorizontalSelectionGapInfo(childState, leftGap, rightGap); if (leftGap) result.uniteLeft(fillLeftSelectionGap(this, curr->x(), curr->y(), curr->height(), rootBlock, blockX, blockY, tx, ty, paintInfo)); if (rightGap) result.uniteRight(fillRightSelectionGap(this, curr->x() + curr->width(), curr->y(), curr->height(), rootBlock, blockX, blockY, tx, ty, paintInfo)); // Update lastTop to be just underneath the object. lastLeft and lastRight extend as far as // they can without bumping into floating or positioned objects. Ideally they will go right up // to the border of the root selection block. lastTop = (ty - blockY) + (curr->y() + curr->height()); lastLeft = leftSelectionOffset(rootBlock, curr->y() + curr->height()); lastRight = rightSelectionOffset(rootBlock, curr->y() + curr->height()); } else if (childState != SelectionNone) // We must be a block that has some selected object inside it. Go ahead and recur. result.unite(toRenderBlock(curr)->fillSelectionGaps(rootBlock, blockX, blockY, tx + curr->x(), ty + curr->y(), lastTop, lastLeft, lastRight, paintInfo)); } return result; } IntRect RenderBlock::fillHorizontalSelectionGap(RenderObject* selObj, int xPos, int yPos, int width, int height, const PaintInfo* paintInfo) { if (width <= 0 || height <= 0) return IntRect(); IntRect gapRect(xPos, yPos, width, height); if (paintInfo && selObj->style()->visibility() == VISIBLE) paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace()); return gapRect; } IntRect RenderBlock::fillVerticalSelectionGap(int lastTop, int lastLeft, int lastRight, int bottomY, RenderBlock* rootBlock, int blockX, int blockY, const PaintInfo* paintInfo) { int top = blockY + lastTop; int height = bottomY - top; if (height <= 0) return IntRect(); // Get the selection offsets for the bottom of the gap int left = blockX + max(lastLeft, leftSelectionOffset(rootBlock, bottomY)); int right = blockX + min(lastRight, rightSelectionOffset(rootBlock, bottomY)); int width = right - left; if (width <= 0) return IntRect(); IntRect gapRect(left, top, width, height); if (paintInfo) paintInfo->context->fillRect(gapRect, selectionBackgroundColor(), style()->colorSpace()); return gapRect; } IntRect RenderBlock::fillLeftSelectionGap(RenderObject* selObj, int xPos, int yPos, int height, RenderBlock* rootBlock, int blockX, int /*blockY*/, int tx, int ty, const PaintInfo* paintInfo) { int top = yPos + ty; int left = blockX + max(leftSelectionOffset(rootBlock, yPos), leftSelectionOffset(rootBlock, yPos + height)); int right = min(xPos + tx, blockX + min(rightSelectionOffset(rootBlock, yPos), rightSelectionOffset(rootBlock, yPos + height))); int width = right - left; if (width <= 0) return IntRect(); IntRect gapRect(left, top, width, height); if (paintInfo) paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace()); return gapRect; } IntRect RenderBlock::fillRightSelectionGap(RenderObject* selObj, int xPos, int yPos, int height, RenderBlock* rootBlock, int blockX, int /*blockY*/, int tx, int ty, const PaintInfo* paintInfo) { int left = max(xPos + tx, blockX + max(leftSelectionOffset(rootBlock, yPos), leftSelectionOffset(rootBlock, yPos + height))); int top = yPos + ty; int right = blockX + min(rightSelectionOffset(rootBlock, yPos), rightSelectionOffset(rootBlock, yPos + height)); int width = right - left; if (width <= 0) return IntRect(); IntRect gapRect(left, top, width, height); if (paintInfo) paintInfo->context->fillRect(gapRect, selObj->selectionBackgroundColor(), selObj->style()->colorSpace()); return gapRect; } void RenderBlock::getHorizontalSelectionGapInfo(SelectionState state, bool& leftGap, bool& rightGap) { bool ltr = style()->direction() == LTR; leftGap = (state == RenderObject::SelectionInside) || (state == RenderObject::SelectionEnd && ltr) || (state == RenderObject::SelectionStart && !ltr); rightGap = (state == RenderObject::SelectionInside) || (state == RenderObject::SelectionStart && ltr) || (state == RenderObject::SelectionEnd && !ltr); } int RenderBlock::leftSelectionOffset(RenderBlock* rootBlock, int yPos) { int left = leftOffset(yPos, false); if (left == borderLeft() + paddingLeft()) { if (rootBlock != this) // The border can potentially be further extended by our containingBlock(). return containingBlock()->leftSelectionOffset(rootBlock, yPos + y()); return left; } else { RenderBlock* cb = this; while (cb != rootBlock) { left += cb->x(); cb = cb->containingBlock(); } } return left; } int RenderBlock::rightSelectionOffset(RenderBlock* rootBlock, int yPos) { int right = rightOffset(yPos, false); if (right == (contentWidth() + (borderLeft() + paddingLeft()))) { if (rootBlock != this) // The border can potentially be further extended by our containingBlock(). return containingBlock()->rightSelectionOffset(rootBlock, yPos + y()); return right; } else { RenderBlock* cb = this; while (cb != rootBlock) { right += cb->x(); cb = cb->containingBlock(); } } return right; } void RenderBlock::insertPositionedObject(RenderBox* o) { // Create the list of special objects if we don't aleady have one if (!m_positionedObjects) m_positionedObjects = new ListHashSet; m_positionedObjects->add(o); } void RenderBlock::removePositionedObject(RenderBox* o) { if (m_positionedObjects) m_positionedObjects->remove(o); } void RenderBlock::removePositionedObjects(RenderBlock* o) { if (!m_positionedObjects) return; RenderBox* r; Iterator end = m_positionedObjects->end(); Vector deadObjects; for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; if (!o || r->isDescendantOf(o)) { if (o) r->setChildNeedsLayout(true, false); // It is parent blocks job to add positioned child to positioned objects list of its containing block // Parent layout needs to be invalidated to ensure this happens. RenderObject* p = r->parent(); while (p && !p->isRenderBlock()) p = p->parent(); if (p) p->setChildNeedsLayout(true); deadObjects.append(r); } } for (unsigned i = 0; i < deadObjects.size(); i++) m_positionedObjects->remove(deadObjects.at(i)); } void RenderBlock::insertFloatingObject(RenderBox* o) { ASSERT(o->isFloating()); // Create the list of special objects if we don't aleady have one if (!m_floatingObjects) { m_floatingObjects = new DeprecatedPtrList; m_floatingObjects->setAutoDelete(true); } else { // Don't insert the object again if it's already in the list DeprecatedPtrListIterator it(*m_floatingObjects); FloatingObject* f; while ( (f = it.current()) ) { if (f->m_renderer == o) return; ++it; } } // Create the special object entry & append it to the list o->layoutIfNeeded(); FloatingObject* newObj = new FloatingObject(o->style()->floating() == FLEFT ? FloatingObject::FloatLeft : FloatingObject::FloatRight); newObj->m_top = -1; newObj->m_bottom = -1; newObj->m_width = o->width() + o->marginLeft() + o->marginRight(); newObj->m_shouldPaint = !o->hasSelfPaintingLayer(); // If a layer exists, the float will paint itself. Otherwise someone else will. newObj->m_isDescendant = true; newObj->m_renderer = o; m_floatingObjects->append(newObj); } void RenderBlock::removeFloatingObject(RenderBox* o) { if (m_floatingObjects) { DeprecatedPtrListIterator it(*m_floatingObjects); while (it.current()) { if (it.current()->m_renderer == o) { if (childrenInline()) markLinesDirtyInVerticalRange(0, it.current()->m_bottom); m_floatingObjects->removeRef(it.current()); } ++it; } } } bool RenderBlock::positionNewFloats() { if (!m_floatingObjects) return false; FloatingObject* f = m_floatingObjects->last(); // If all floats have already been positioned, then we have no work to do. if (!f || f->m_top != -1) return false; // Move backwards through our floating object list until we find a float that has // already been positioned. Then we'll be able to move forward, positioning all of // the new floats that need it. FloatingObject* lastFloat = m_floatingObjects->getPrev(); while (lastFloat && lastFloat->m_top == -1) { f = m_floatingObjects->prev(); lastFloat = m_floatingObjects->getPrev(); } int y = height(); // The float cannot start above the y position of the last positioned float. if (lastFloat) y = max(lastFloat->m_top, y); // Now walk through the set of unpositioned floats and place them. while (f) { // The containing block is responsible for positioning floats, so if we have floats in our // list that come from somewhere else, do not attempt to position them. if (f->m_renderer->containingBlock() != this) { f = m_floatingObjects->next(); continue; } RenderBox* o = f->m_renderer; int _height = o->height() + o->marginTop() + o->marginBottom(); int ro = rightOffset(); // Constant part of right offset. int lo = leftOffset(); // Constat part of left offset. int fwidth = f->m_width; // The width we look for. if (ro - lo < fwidth) fwidth = ro - lo; // Never look for more than what will be available. IntRect oldRect(o->x(), o->y() , o->width(), o->height()); if (o->style()->clear() & CLEFT) y = max(leftBottom(), y); if (o->style()->clear() & CRIGHT) y = max(rightBottom(), y); if (o->style()->floating() == FLEFT) { int heightRemainingLeft = 1; int heightRemainingRight = 1; int fx = leftRelOffset(y, lo, false, &heightRemainingLeft); while (rightRelOffset(y, ro, false, &heightRemainingRight)-fx < fwidth) { y += min(heightRemainingLeft, heightRemainingRight); fx = leftRelOffset(y, lo, false, &heightRemainingLeft); } fx = max(0, fx); f->m_left = fx; o->setLocation(fx + o->marginLeft(), y + o->marginTop()); } else { int heightRemainingLeft = 1; int heightRemainingRight = 1; int fx = rightRelOffset(y, ro, false, &heightRemainingRight); while (fx - leftRelOffset(y, lo, false, &heightRemainingLeft) < fwidth) { y += min(heightRemainingLeft, heightRemainingRight); fx = rightRelOffset(y, ro, false, &heightRemainingRight); } f->m_left = fx - f->m_width; o->setLocation(fx - o->marginRight() - o->width(), y + o->marginTop()); } f->m_top = y; f->m_bottom = f->m_top + _height; // If the child moved, we have to repaint it. if (o->checkForRepaintDuringLayout()) o->repaintDuringLayoutIfMoved(oldRect); f = m_floatingObjects->next(); } return true; } void RenderBlock::newLine(EClear clear) { positionNewFloats(); // set y position int newY = 0; switch (clear) { case CLEFT: newY = leftBottom(); break; case CRIGHT: newY = rightBottom(); break; case CBOTH: newY = floatBottom(); default: break; } if (height() < newY) setHeight(newY); } void RenderBlock::addPercentHeightDescendant(RenderBox* descendant) { if (!gPercentHeightDescendantsMap) { gPercentHeightDescendantsMap = new PercentHeightDescendantsMap; gPercentHeightContainerMap = new PercentHeightContainerMap; } HashSet* descendantSet = gPercentHeightDescendantsMap->get(this); if (!descendantSet) { descendantSet = new HashSet; gPercentHeightDescendantsMap->set(this, descendantSet); } bool added = descendantSet->add(descendant).second; if (!added) { ASSERT(gPercentHeightContainerMap->get(descendant)); ASSERT(gPercentHeightContainerMap->get(descendant)->contains(this)); return; } HashSet* containerSet = gPercentHeightContainerMap->get(descendant); if (!containerSet) { containerSet = new HashSet; gPercentHeightContainerMap->set(descendant, containerSet); } ASSERT(!containerSet->contains(this)); containerSet->add(this); } void RenderBlock::removePercentHeightDescendant(RenderBox* descendant) { if (!gPercentHeightContainerMap) return; HashSet* containerSet = gPercentHeightContainerMap->take(descendant); if (!containerSet) return; HashSet::iterator end = containerSet->end(); for (HashSet::iterator it = containerSet->begin(); it != end; ++it) { RenderBlock* container = *it; HashSet* descendantSet = gPercentHeightDescendantsMap->get(container); ASSERT(descendantSet); if (!descendantSet) continue; ASSERT(descendantSet->contains(descendant)); descendantSet->remove(descendant); if (descendantSet->isEmpty()) { gPercentHeightDescendantsMap->remove(container); delete descendantSet; } } delete containerSet; } HashSet* RenderBlock::percentHeightDescendants() const { return gPercentHeightDescendantsMap ? gPercentHeightDescendantsMap->get(this) : 0; } int RenderBlock::leftOffset() const { return borderLeft() + paddingLeft(); } int RenderBlock::leftRelOffset(int y, int fixedOffset, bool applyTextIndent, int* heightRemaining) const { int left = fixedOffset; if (m_floatingObjects) { if ( heightRemaining ) *heightRemaining = 1; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) { if (r->m_top <= y && r->m_bottom > y && r->type() == FloatingObject::FloatLeft && r->m_left + r->m_width > left) { left = r->m_left + r->m_width; if ( heightRemaining ) *heightRemaining = r->m_bottom - y; } } } if (applyTextIndent && style()->direction() == LTR) { int cw = 0; if (style()->textIndent().isPercent()) cw = containingBlock()->availableWidth(); left += style()->textIndent().calcMinValue(cw); } return left; } int RenderBlock::rightOffset() const { return borderLeft() + paddingLeft() + availableWidth(); } int RenderBlock::rightRelOffset(int y, int fixedOffset, bool applyTextIndent, int* heightRemaining) const { int right = fixedOffset; if (m_floatingObjects) { if (heightRemaining) *heightRemaining = 1; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) { if (r->m_top <= y && r->m_bottom > y && r->type() == FloatingObject::FloatRight && r->m_left < right) { right = r->m_left; if ( heightRemaining ) *heightRemaining = r->m_bottom - y; } } } if (applyTextIndent && style()->direction() == RTL) { int cw = 0; if (style()->textIndent().isPercent()) cw = containingBlock()->availableWidth(); right -= style()->textIndent().calcMinValue(cw); } return right; } int RenderBlock::lineWidth(int y, bool firstLine) const { int result = rightOffset(y, firstLine) - leftOffset(y, firstLine); return (result < 0) ? 0 : result; } int RenderBlock::nextFloatBottomBelow(int height) const { if (!m_floatingObjects) return 0; int bottom = INT_MAX; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it) { if (r->m_bottom > height) bottom = min(r->m_bottom, bottom); } return bottom == INT_MAX ? 0 : bottom; } int RenderBlock::floatBottom() const { if (!m_floatingObjects) return 0; int bottom = 0; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) if (r->m_bottom>bottom) bottom = r->m_bottom; return bottom; } IntRect RenderBlock::floatRect() const { IntRect result; if (!m_floatingObjects || hasOverflowClip() || hasColumns()) return result; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for (; (r = it.current()); ++it) { if (r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer()) { IntRect childRect = r->m_renderer->visibleOverflowRect(); childRect.move(r->m_left + r->m_renderer->marginLeft(), r->m_top + r->m_renderer->marginTop()); result.unite(childRect); } } return result; } int RenderBlock::lowestPosition(bool includeOverflowInterior, bool includeSelf) const { int bottom = includeSelf && width() > 0 ? height() : 0; if (!includeOverflowInterior && (hasOverflowClip() || hasControlClip())) return bottom; if (!hasColumns()) { // FIXME: Come up with a way to use the layer tree to avoid visiting all the kids. // For now, we have to descend into all the children, since we may have a huge abs div inside // a tiny rel div buried somewhere deep in our child tree. In this case we have to get to // the abs div. // See the last test case in https://bugs.webkit.org/show_bug.cgi?id=9314 for why this is a problem. // For inline children, we miss relative positioned boxes that might be buried inside s. for (RenderObject* c = firstChild(); c; c = c->nextSibling()) { if (!c->isFloatingOrPositioned() && c->isBox()) { RenderBox* childBox = toRenderBox(c); bottom = max(bottom, childBox->y() + childBox->lowestPosition(false)); } } } if (includeSelf && isRelPositioned()) bottom += relativePositionOffsetY(); if (!includeOverflowInterior && hasOverflowClip()) return bottom; int relativeOffset = includeSelf && isRelPositioned() ? relativePositionOffsetY() : 0; if (includeSelf) bottom = max(bottom, bottomLayoutOverflow() + relativeOffset); if (m_positionedObjects) { RenderBox* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; // Fixed positioned objects do not scroll and thus should not constitute // part of the lowest position. if (r->style()->position() != FixedPosition) { // FIXME: Should work for overflow sections too. // If a positioned object lies completely to the left of the root it will be unreachable via scrolling. // Therefore we should not allow it to contribute to the lowest position. if (!isRenderView() || r->x() + r->width() > 0 || r->x() + r->rightmostPosition(false) > 0) { int lp = r->y() + r->lowestPosition(false); bottom = max(bottom, lp + relativeOffset); } } } } if (hasColumns()) { Vector* colRects = columnRects(); for (unsigned i = 0; i < colRects->size(); i++) bottom = max(bottom, colRects->at(i).bottom() + relativeOffset); return bottom; } if (m_floatingObjects) { FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) { if (r->m_shouldPaint || r->m_renderer->hasSelfPaintingLayer()) { int lp = r->m_top + r->m_renderer->marginTop() + r->m_renderer->lowestPosition(false); bottom = max(bottom, lp + relativeOffset); } } } if (!includeSelf) { bottom = max(bottom, borderTop() + paddingTop() + paddingBottom() + relativeOffset); if (childrenInline()) { if (lastRootBox()) { int childBottomEdge = lastRootBox()->selectionBottom(); bottom = max(bottom, childBottomEdge + paddingBottom() + relativeOffset); } } else { // Find the last normal flow child. RenderBox* currBox = lastChildBox(); while (currBox && currBox->isFloatingOrPositioned()) currBox = currBox->previousSiblingBox(); if (currBox) { int childBottomEdge = currBox->y() + currBox->height() + currBox->collapsedMarginBottom(); bottom = max(bottom, childBottomEdge + paddingBottom() + relativeOffset); } } } return bottom; } int RenderBlock::rightmostPosition(bool includeOverflowInterior, bool includeSelf) const { int right = includeSelf && height() > 0 ? width() : 0; if (!includeOverflowInterior && (hasOverflowClip() || hasControlClip())) return right; if (!hasColumns()) { // FIXME: Come up with a way to use the layer tree to avoid visiting all the kids. // For now, we have to descend into all the children, since we may have a huge abs div inside // a tiny rel div buried somewhere deep in our child tree. In this case we have to get to // the abs div. for (RenderObject* c = firstChild(); c; c = c->nextSibling()) { if (!c->isFloatingOrPositioned() && c->isBox()) { RenderBox* childBox = toRenderBox(c); right = max(right, childBox->x() + childBox->rightmostPosition(false)); } } } if (includeSelf && isRelPositioned()) right += relativePositionOffsetX(); if (!includeOverflowInterior && hasOverflowClip()) return right; int relativeOffset = includeSelf && isRelPositioned() ? relativePositionOffsetX() : 0; if (includeSelf) right = max(right, rightLayoutOverflow() + relativeOffset); if (m_positionedObjects) { RenderBox* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin() ; it != end; ++it) { r = *it; // Fixed positioned objects do not scroll and thus should not constitute // part of the rightmost position. if (r->style()->position() != FixedPosition) { // FIXME: Should work for overflow sections too. // If a positioned object lies completely above the root it will be unreachable via scrolling. // Therefore we should not allow it to contribute to the rightmost position. if (!isRenderView() || r->y() + r->height() > 0 || r->y() + r->lowestPosition(false) > 0) { int rp = r->x() + r->rightmostPosition(false); right = max(right, rp + relativeOffset); } } } } if (hasColumns()) { // This only matters for LTR if (style()->direction() == LTR) right = max(columnRects()->last().right() + relativeOffset, right); return right; } if (m_floatingObjects) { FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) { if (r->m_shouldPaint || r->m_renderer->hasSelfPaintingLayer()) { int rp = r->m_left + r->m_renderer->marginLeft() + r->m_renderer->rightmostPosition(false); right = max(right, rp + relativeOffset); } } } if (!includeSelf) { right = max(right, borderLeft() + paddingLeft() + paddingRight() + relativeOffset); if (childrenInline()) { for (InlineRunBox* currBox = firstLineBox(); currBox; currBox = currBox->nextLineBox()) { int childRightEdge = currBox->x() + currBox->width(); // If this node is a root editable element, then the rightmostPosition should account for a caret at the end. // FIXME: Need to find another way to do this, since scrollbars could show when we don't want them to. if (node() && node()->isContentEditable() && node() == node()->rootEditableElement() && style()->direction() == LTR && !paddingRight()) childRightEdge += 1; right = max(right, childRightEdge + paddingRight() + relativeOffset); } } else { // Walk all normal flow children. for (RenderBox* currBox = firstChildBox(); currBox; currBox = currBox->nextSiblingBox()) { if (currBox->isFloatingOrPositioned()) continue; int childRightEdge = currBox->x() + currBox->width() + currBox->marginRight(); right = max(right, childRightEdge + paddingRight() + relativeOffset); } } } return right; } int RenderBlock::leftmostPosition(bool includeOverflowInterior, bool includeSelf) const { int left = includeSelf && height() > 0 ? 0 : width(); if (!includeOverflowInterior && (hasOverflowClip() || hasControlClip())) return left; if (!hasColumns()) { // FIXME: Come up with a way to use the layer tree to avoid visiting all the kids. // For now, we have to descend into all the children, since we may have a huge abs div inside // a tiny rel div buried somewhere deep in our child tree. In this case we have to get to // the abs div. for (RenderObject* c = firstChild(); c; c = c->nextSibling()) { if (!c->isFloatingOrPositioned() && c->isBox()) { RenderBox* childBox = toRenderBox(c); left = min(left, childBox->x() + childBox->leftmostPosition(false)); } } } if (includeSelf && isRelPositioned()) left += relativePositionOffsetX(); if (!includeOverflowInterior && hasOverflowClip()) return left; int relativeOffset = includeSelf && isRelPositioned() ? relativePositionOffsetX() : 0; if (includeSelf) left = min(left, leftLayoutOverflow() + relativeOffset); if (m_positionedObjects) { RenderBox* r; Iterator end = m_positionedObjects->end(); for (Iterator it = m_positionedObjects->begin(); it != end; ++it) { r = *it; // Fixed positioned objects do not scroll and thus should not constitute // part of the leftmost position. if (r->style()->position() != FixedPosition) { // FIXME: Should work for overflow sections too. // If a positioned object lies completely above the root it will be unreachable via scrolling. // Therefore we should not allow it to contribute to the leftmost position. if (!isRenderView() || r->y() + r->height() > 0 || r->y() + r->lowestPosition(false) > 0) { int lp = r->x() + r->leftmostPosition(false); left = min(left, lp + relativeOffset); } } } } if (hasColumns()) { // This only matters for RTL if (style()->direction() == RTL) left = min(columnRects()->last().x() + relativeOffset, left); return left; } if (m_floatingObjects) { FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) { if (r->m_shouldPaint || r->m_renderer->hasSelfPaintingLayer()) { int lp = r->m_left + r->m_renderer->marginLeft() + r->m_renderer->leftmostPosition(false); left = min(left, lp + relativeOffset); } } } if (!includeSelf && firstLineBox()) { for (InlineRunBox* currBox = firstLineBox(); currBox; currBox = currBox->nextLineBox()) left = min(left, (int)currBox->x() + relativeOffset); } return left; } int RenderBlock::leftBottom() { if (!m_floatingObjects) return 0; int bottom = 0; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) if (r->m_bottom > bottom && r->type() == FloatingObject::FloatLeft) bottom = r->m_bottom; return bottom; } int RenderBlock::rightBottom() { if (!m_floatingObjects) return 0; int bottom = 0; FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for ( ; (r = it.current()); ++it ) if (r->m_bottom>bottom && r->type() == FloatingObject::FloatRight) bottom = r->m_bottom; return bottom; } void RenderBlock::markLinesDirtyInVerticalRange(int top, int bottom) { if (top >= bottom) return; RootInlineBox* lowestDirtyLine = lastRootBox(); RootInlineBox* afterLowest = lowestDirtyLine; while (lowestDirtyLine && lowestDirtyLine->blockHeight() >= bottom) { afterLowest = lowestDirtyLine; lowestDirtyLine = lowestDirtyLine->prevRootBox(); } while (afterLowest && afterLowest->blockHeight() >= top) { afterLowest->markDirty(); afterLowest = afterLowest->prevRootBox(); } } void RenderBlock::clearFloats() { // Inline blocks are covered by the isReplaced() check in the avoidFloats method. if (avoidsFloats() || isRoot() || isRenderView() || isFloatingOrPositioned() || isTableCell()) { if (m_floatingObjects) m_floatingObjects->clear(); return; } typedef HashMap RendererToFloatInfoMap; RendererToFloatInfoMap floatMap; if (m_floatingObjects) { if (childrenInline()) { m_floatingObjects->first(); while (FloatingObject* f = m_floatingObjects->take()) floatMap.add(f->m_renderer, f); } else m_floatingObjects->clear(); } // Attempt to locate a previous sibling with overhanging floats. We skip any elements that are // out of flow (like floating/positioned elements), and we also skip over any objects that may have shifted // to avoid floats. bool parentHasFloats = false; RenderObject* prev = previousSibling(); while (prev && (prev->isFloatingOrPositioned() || !prev->isBox() || !prev->isRenderBlock() || toRenderBlock(prev)->avoidsFloats())) { if (prev->isFloating()) parentHasFloats = true; prev = prev->previousSibling(); } // First add in floats from the parent. int offset = y(); if (parentHasFloats) { RenderBlock* parentBlock = toRenderBlock(parent()); addIntrudingFloats(parentBlock, parentBlock->borderLeft() + parentBlock->paddingLeft(), offset); } int xoffset = 0; if (prev) offset -= toRenderBox(prev)->y(); else if (parent()->isBox()) { prev = parent(); xoffset += toRenderBox(prev)->borderLeft() + toRenderBox(prev)->paddingLeft(); } // Add overhanging floats from the previous RenderBlock, but only if it has a float that intrudes into our space. if (!prev || !prev->isRenderBlock()) return; RenderBlock* block = toRenderBlock(prev); if (block->m_floatingObjects && block->floatBottom() > offset) addIntrudingFloats(block, xoffset, offset); if (childrenInline()) { int changeTop = INT_MAX; int changeBottom = INT_MIN; if (m_floatingObjects) { for (FloatingObject* f = m_floatingObjects->first(); f; f = m_floatingObjects->next()) { FloatingObject* oldFloatingObject = floatMap.get(f->m_renderer); if (oldFloatingObject) { if (f->m_width != oldFloatingObject->m_width || f->m_left != oldFloatingObject->m_left) { changeTop = 0; changeBottom = max(changeBottom, max(f->m_bottom, oldFloatingObject->m_bottom)); } else if (f->m_bottom != oldFloatingObject->m_bottom) { changeTop = min(changeTop, min(f->m_bottom, oldFloatingObject->m_bottom)); changeBottom = max(changeBottom, max(f->m_bottom, oldFloatingObject->m_bottom)); } floatMap.remove(f->m_renderer); delete oldFloatingObject; } else { changeTop = 0; changeBottom = max(changeBottom, f->m_bottom); } } } RendererToFloatInfoMap::iterator end = floatMap.end(); for (RendererToFloatInfoMap::iterator it = floatMap.begin(); it != end; ++it) { FloatingObject* floatingObject = (*it).second; if (!floatingObject->m_isDescendant) { changeTop = 0; changeBottom = max(changeBottom, floatingObject->m_bottom); } } deleteAllValues(floatMap); markLinesDirtyInVerticalRange(changeTop, changeBottom); } } int RenderBlock::addOverhangingFloats(RenderBlock* child, int xoff, int yoff, bool makeChildPaintOtherFloats) { // Prevent floats from being added to the canvas by the root element, e.g., . if (child->hasOverflowClip() || !child->containsFloats() || child->isRoot()) return 0; int lowestFloatBottom = 0; // Floats that will remain the child's responsibility to paint should factor into its // overflow. DeprecatedPtrListIterator it(*child->m_floatingObjects); for (FloatingObject* r; (r = it.current()); ++it) { int bottom = child->y() + r->m_bottom; lowestFloatBottom = max(lowestFloatBottom, bottom); if (bottom > height()) { // If the object is not in the list, we add it now. if (!containsFloat(r->m_renderer)) { FloatingObject *floatingObj = new FloatingObject(r->type()); floatingObj->m_top = r->m_top - yoff; floatingObj->m_bottom = r->m_bottom - yoff; floatingObj->m_left = r->m_left - xoff; floatingObj->m_width = r->m_width; floatingObj->m_renderer = r->m_renderer; // The nearest enclosing layer always paints the float (so that zindex and stacking // behaves properly). We always want to propagate the desire to paint the float as // far out as we can, to the outermost block that overlaps the float, stopping only // if we hit a self-painting layer boundary. if (r->m_renderer->enclosingSelfPaintingLayer() == enclosingSelfPaintingLayer()) r->m_shouldPaint = false; else floatingObj->m_shouldPaint = false; // We create the floating object list lazily. if (!m_floatingObjects) { m_floatingObjects = new DeprecatedPtrList; m_floatingObjects->setAutoDelete(true); } m_floatingObjects->append(floatingObj); } } else if (makeChildPaintOtherFloats && !r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer() && r->m_renderer->isDescendantOf(child) && r->m_renderer->enclosingLayer() == child->enclosingLayer()) // The float is not overhanging from this block, so if it is a descendant of the child, the child should // paint it (the other case is that it is intruding into the child), unless it has its own layer or enclosing // layer. // If makeChildPaintOtherFloats is false, it means that the child must already know about all the floats // it should paint. r->m_shouldPaint = true; if (r->m_shouldPaint && !r->m_renderer->hasSelfPaintingLayer()) child->addOverflowFromChild(r->m_renderer, IntSize(r->m_left + r->m_renderer->marginLeft(), r->m_top + r->m_renderer->marginTop())); } return lowestFloatBottom; } void RenderBlock::addIntrudingFloats(RenderBlock* prev, int xoff, int yoff) { // If the parent or previous sibling doesn't have any floats to add, don't bother. if (!prev->m_floatingObjects) return; DeprecatedPtrListIterator it(*prev->m_floatingObjects); for (FloatingObject *r; (r = it.current()); ++it) { if (r->m_bottom > yoff) { // The object may already be in our list. Check for it up front to avoid // creating duplicate entries. FloatingObject* f = 0; if (m_floatingObjects) { DeprecatedPtrListIterator it(*m_floatingObjects); while ((f = it.current())) { if (f->m_renderer == r->m_renderer) break; ++it; } } if (!f) { FloatingObject *floatingObj = new FloatingObject(r->type()); floatingObj->m_top = r->m_top - yoff; floatingObj->m_bottom = r->m_bottom - yoff; floatingObj->m_left = r->m_left - xoff; // Applying the child's margin makes no sense in the case where the child was passed in. // since his own margin was added already through the subtraction of the |xoff| variable // above. |xoff| will equal -flow->marginLeft() in this case, so it's already been taken // into account. Only apply this code if |child| is false, since otherwise the left margin // will get applied twice. if (prev != parent()) floatingObj->m_left += prev->marginLeft(); floatingObj->m_left -= marginLeft(); floatingObj->m_shouldPaint = false; // We are not in the direct inheritance chain for this float. We will never paint it. floatingObj->m_width = r->m_width; floatingObj->m_renderer = r->m_renderer; // We create the floating object list lazily. if (!m_floatingObjects) { m_floatingObjects = new DeprecatedPtrList; m_floatingObjects->setAutoDelete(true); } m_floatingObjects->append(floatingObj); } } } } bool RenderBlock::avoidsFloats() const { // Floats can't intrude into our box if we have a non-auto column count or width. return RenderBox::avoidsFloats() || !style()->hasAutoColumnCount() || !style()->hasAutoColumnWidth(); } bool RenderBlock::containsFloat(RenderObject* o) { if (m_floatingObjects) { DeprecatedPtrListIterator it(*m_floatingObjects); while (it.current()) { if (it.current()->m_renderer == o) return true; ++it; } } return false; } void RenderBlock::markAllDescendantsWithFloatsForLayout(RenderBox* floatToRemove, bool inLayout) { setChildNeedsLayout(true, !inLayout); if (floatToRemove) removeFloatingObject(floatToRemove); // Iterate over our children and mark them as needed. if (!childrenInline()) { for (RenderObject* child = firstChild(); child; child = child->nextSibling()) { if ((!floatToRemove && child->isFloatingOrPositioned()) || !child->isRenderBlock()) continue; RenderBlock* childBlock = toRenderBlock(child); if ((floatToRemove ? childBlock->containsFloat(floatToRemove) : childBlock->containsFloats()) || childBlock->shrinkToAvoidFloats()) childBlock->markAllDescendantsWithFloatsForLayout(floatToRemove, inLayout); } } } int RenderBlock::getClearDelta(RenderBox* child, int yPos) { // There is no need to compute clearance if we have no floats. if (!containsFloats()) return 0; // At least one float is present. We need to perform the clearance computation. bool clearSet = child->style()->clear() != CNONE; int bottom = 0; switch (child->style()->clear()) { case CNONE: break; case CLEFT: bottom = leftBottom(); break; case CRIGHT: bottom = rightBottom(); break; case CBOTH: bottom = floatBottom(); break; } // We also clear floats if we are too big to sit on the same line as a float (and wish to avoid floats by default). // FIXME: Note that the remaining space checks aren't quite accurate, since you should be able to clear only some floats (the minimum # needed // to fit) and not all (we should be using nextFloatBottomBelow and looping). int result = clearSet ? max(0, bottom - yPos) : 0; if (!result && child->avoidsFloats()) { int oldYPos = child->y(); int oldWidth = child->width(); child->setY(yPos); child->calcWidth(); if (child->width() > lineWidth(yPos, false) && child->minPrefWidth() <= availableWidth()) result = max(0, floatBottom() - yPos); child->setY(oldYPos); child->setWidth(oldWidth); } return result; } bool RenderBlock::isPointInOverflowControl(HitTestResult& result, int _x, int _y, int _tx, int _ty) { if (!scrollsOverflow()) return false; return layer()->hitTestOverflowControls(result, IntPoint(_x - _tx, _y - _ty)); } bool RenderBlock::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, int _x, int _y, int _tx, int _ty, HitTestAction hitTestAction) { int tx = _tx + x(); int ty = _ty + y(); if (!isRenderView()) { // Check if we need to do anything at all. IntRect overflowBox = visibleOverflowRect(); overflowBox.move(tx, ty); if (!overflowBox.contains(_x, _y)) return false; } if ((hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) && isPointInOverflowControl(result, _x, _y, tx, ty)) { updateHitTestResult(result, IntPoint(_x - tx, _y - ty)); return true; } // If we have clipping, then we can't have any spillout. bool useOverflowClip = hasOverflowClip() && !hasSelfPaintingLayer(); bool useClip = (hasControlClip() || useOverflowClip); bool checkChildren = !useClip || (hasControlClip() ? controlClipRect(tx, ty).contains(_x, _y) : overflowClipRect(tx, ty).contains(_x, _y)); if (checkChildren) { // Hit test descendants first. int scrolledX = tx; int scrolledY = ty; if (hasOverflowClip()) layer()->subtractScrolledContentOffset(scrolledX, scrolledY); // Hit test contents if we don't have columns. if (!hasColumns() && hitTestContents(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) return true; // Hit test our columns if we do have them. if (hasColumns() && hitTestColumns(request, result, _x, _y, scrolledX, scrolledY, hitTestAction)) return true; // Hit test floats. if (hitTestAction == HitTestFloat && m_floatingObjects) { if (isRenderView()) { scrolledX += toRenderView(this)->frameView()->scrollX(); scrolledY += toRenderView(this)->frameView()->scrollY(); } FloatingObject* o; DeprecatedPtrListIterator it(*m_floatingObjects); for (it.toLast(); (o = it.current()); --it) { if (o->m_shouldPaint && !o->m_renderer->hasSelfPaintingLayer()) { int xoffset = scrolledX + o->m_left + o->m_renderer->marginLeft() - o->m_renderer->x(); int yoffset = scrolledY + o->m_top + o->m_renderer->marginTop() - o->m_renderer->y(); if (o->m_renderer->hitTest(request, result, IntPoint(_x, _y), xoffset, yoffset)) { updateHitTestResult(result, IntPoint(_x - xoffset, _y - yoffset)); return true; } } } } } // Now hit test our background if (hitTestAction == HitTestBlockBackground || hitTestAction == HitTestChildBlockBackground) { IntRect boundsRect(tx, ty, width(), height()); if (visibleToHitTesting() && boundsRect.contains(_x, _y)) { updateHitTestResult(result, IntPoint(_x - tx, _y - ty)); return true; } } return false; } bool RenderBlock::hitTestColumns(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction) { // We need to do multiple passes, breaking up our hit testing into strips. // We can always go left to right, since column contents are clipped (meaning that there // can't be any overlap). int currXOffset = 0; int currYOffset = 0; int colGap = columnGap(); Vector* colRects = columnRects(); for (unsigned i = 0; i < colRects->size(); i++) { IntRect colRect = colRects->at(i); colRect.move(tx, ty); if (colRect.contains(x, y)) { // The point is inside this column. // Adjust tx and ty to change where we hit test. int finalX = tx + currXOffset; int finalY = ty + currYOffset; return hitTestContents(request, result, x, y, finalX, finalY, hitTestAction); } // Move to the next position. if (style()->direction() == LTR) currXOffset += colRect.width() + colGap; else currXOffset -= (colRect.width() + colGap); currYOffset -= colRect.height(); } return false; } bool RenderBlock::hitTestContents(const HitTestRequest& request, HitTestResult& result, int x, int y, int tx, int ty, HitTestAction hitTestAction) { if (childrenInline() && !isTable()) { // We have to hit-test our line boxes. if (m_lineBoxes.hitTest(this, request, result, x, y, tx, ty, hitTestAction)) { updateHitTestResult(result, IntPoint(x - tx, y - ty)); return true; } } else { // Hit test our children. HitTestAction childHitTest = hitTestAction; if (hitTestAction == HitTestChildBlockBackgrounds) childHitTest = HitTestChildBlockBackground; for (RenderBox* child = lastChildBox(); child; child = child->previousSiblingBox()) { if (!child->hasSelfPaintingLayer() && !child->isFloating() && child->nodeAtPoint(request, result, x, y, tx, ty, childHitTest)) { updateHitTestResult(result, IntPoint(x - tx, y - ty)); return true; } } } return false; } Position RenderBlock::positionForBox(InlineBox *box, bool start) const { if (!box) return Position(); if (!box->renderer()->node()) return Position(node(), start ? caretMinOffset() : caretMaxOffset()); if (!box->isInlineTextBox()) return Position(box->renderer()->node(), start ? box->renderer()->caretMinOffset() : box->renderer()->caretMaxOffset()); InlineTextBox *textBox = static_cast(box); return Position(box->renderer()->node(), start ? textBox->start() : textBox->start() + textBox->len()); } Position RenderBlock::positionForRenderer(RenderObject* renderer, bool start) const { if (!renderer) return Position(node(), 0); Node* n = renderer->node() ? renderer->node() : node(); if (!n) return Position(); ASSERT(renderer == n->renderer()); int offset = start ? renderer->caretMinOffset() : renderer->caretMaxOffset(); // FIXME: This was a runtime check that seemingly couldn't fail; changed it to an assertion for now. ASSERT(!n->isCharacterDataNode() || renderer->isText()); return Position(n, offset); } // FIXME: This function should go on RenderObject as an instance method. Then // all cases in which positionForPoint recurs could call this instead to // prevent crossing editable boundaries. This would require many tests. static VisiblePosition positionForPointRespectingEditingBoundaries(RenderBox* parent, RenderBox* child, const IntPoint& pointInParentCoordinates) { IntPoint pointInChildCoordinates(pointInParentCoordinates - child->location()); // If this is an anonymous renderer, we just recur normally Node* childNode = child->node(); if (!childNode) return child->positionForPoint(pointInChildCoordinates); // Otherwise, first make sure that the editability of the parent and child agree. // If they don't agree, then we return a visible position just before or after the child RenderObject* ancestor = parent; while (ancestor && !ancestor->node()) ancestor = ancestor->parent(); // If we can't find an ancestor to check editability on, or editability is unchanged, we recur like normal if (!ancestor || ancestor->node()->isContentEditable() == childNode->isContentEditable()) return child->positionForPoint(pointInChildCoordinates); // Otherwise return before or after the child, depending on if the click was left or right of the child int childMidX = child->width() / 2; if (pointInChildCoordinates.x() < childMidX) return ancestor->createVisiblePosition(childNode->nodeIndex(), DOWNSTREAM); return ancestor->createVisiblePosition(childNode->nodeIndex() + 1, UPSTREAM); } VisiblePosition RenderBlock::positionForPointWithInlineChildren(const IntPoint& pointInContents) { ASSERT(childrenInline()); if (!firstRootBox()) return createVisiblePosition(0, DOWNSTREAM); // look for the closest line box in the root box which is at the passed-in y coordinate InlineBox* closestBox = 0; RootInlineBox* firstRootBoxWithChildren = 0; RootInlineBox* lastRootBoxWithChildren = 0; for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { if (!root->firstLeafChild()) continue; if (!firstRootBoxWithChildren) firstRootBoxWithChildren = root; lastRootBoxWithChildren = root; // set the bottom based on whether there is a next root box // FIXME: This will consider nextRootBox even if it has no children, and maybe it shouldn't. int bottom; if (root->nextRootBox()) { // FIXME: We would prefer to make the break point halfway between the bottom // of the previous root box and the top of the next root box. bottom = root->nextRootBox()->lineTop(); } else bottom = root->lineBottom() + verticalLineClickFudgeFactor; // check if this root line box is located at this y coordinate if (pointInContents.y() < bottom) { closestBox = root->closestLeafChildForXPos(pointInContents.x()); if (closestBox) break; } } Settings* settings = document()->settings(); bool useWindowsBehavior = settings && settings->editingBehavior() == EditingWindowsBehavior; if (useWindowsBehavior && !closestBox && lastRootBoxWithChildren) { // y coordinate is below last root line box, pretend we hit it closestBox = lastRootBoxWithChildren->closestLeafChildForXPos(pointInContents.x()); } if (closestBox) { if (!useWindowsBehavior && pointInContents.y() < firstRootBoxWithChildren->lineTop() - verticalLineClickFudgeFactor) { // y coordinate is above first root line box, so return the start of the first return VisiblePosition(positionForBox(firstRootBoxWithChildren->firstLeafChild(), true), DOWNSTREAM); } // pass the box a y position that is inside it return closestBox->renderer()->positionForPoint(IntPoint(pointInContents.x(), closestBox->m_y)); } if (lastRootBoxWithChildren) { // We hit this case for Mac behavior when the Y coordinate is below the last box. ASSERT(!useWindowsBehavior); return VisiblePosition(positionForBox(lastRootBoxWithChildren->lastLeafChild(), false), DOWNSTREAM); } // Can't reach this. We have a root line box, but it has no kids. // FIXME: This should ASSERT_NOT_REACHED(), but clicking on placeholder text // seems to hit this code path. return createVisiblePosition(0, DOWNSTREAM); } static inline bool isChildHitTestCandidate(RenderBox* box) { return box->height() && box->style()->visibility() == VISIBLE && !box->isFloatingOrPositioned(); } VisiblePosition RenderBlock::positionForPoint(const IntPoint& point) { if (isTable()) return RenderBox::positionForPoint(point); if (isReplaced()) { if (point.y() < 0 || (point.y() < height() && point.x() < 0)) return createVisiblePosition(caretMinOffset(), DOWNSTREAM); if (point.y() >= height() || (point.y() >= 0 && point.x() >= width())) return createVisiblePosition(caretMaxOffset(), DOWNSTREAM); } int contentsX = point.x(); int contentsY = point.y(); offsetForContents(contentsX, contentsY); IntPoint pointInContents(contentsX, contentsY); if (childrenInline()) return positionForPointWithInlineChildren(pointInContents); if (lastChildBox() && contentsY > lastChildBox()->y()) { for (RenderBox* childBox = lastChildBox(); childBox; childBox = childBox->previousSiblingBox()) { if (isChildHitTestCandidate(childBox)) return positionForPointRespectingEditingBoundaries(this, childBox, pointInContents); } } else { for (RenderBox* childBox = firstChildBox(); childBox; childBox = childBox->nextSiblingBox()) { // We hit child if our click is above the bottom of its padding box (like IE6/7 and FF3). if (isChildHitTestCandidate(childBox) && contentsY < childBox->frameRect().bottom()) return positionForPointRespectingEditingBoundaries(this, childBox, pointInContents); } } // We only get here if there are no hit test candidate children below the click. return RenderBox::positionForPoint(point); } void RenderBlock::offsetForContents(int& tx, int& ty) const { if (hasOverflowClip()) layer()->addScrolledContentOffset(tx, ty); if (hasColumns()) { IntPoint contentsPoint(tx, ty); adjustPointToColumnContents(contentsPoint); tx = contentsPoint.x(); ty = contentsPoint.y(); } } int RenderBlock::availableWidth() const { // If we have multiple columns, then the available width is reduced to our column width. if (hasColumns()) return desiredColumnWidth(); return contentWidth(); } int RenderBlock::columnGap() const { if (style()->hasNormalColumnGap()) return style()->fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches

margins. return static_cast(style()->columnGap()); } void RenderBlock::calcColumnWidth() { // Calculate our column width and column count. unsigned desiredColumnCount = 1; int desiredColumnWidth = contentWidth(); // For now, we don't support multi-column layouts when printing, since we have to do a lot of work for proper pagination. if (document()->printing() || (style()->hasAutoColumnCount() && style()->hasAutoColumnWidth())) { setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); return; } int availWidth = desiredColumnWidth; int colGap = columnGap(); int colWidth = max(1, static_cast(style()->columnWidth())); int colCount = max(1, static_cast(style()->columnCount())); if (style()->hasAutoColumnWidth()) { if ((colCount - 1) * colGap < availWidth) { desiredColumnCount = colCount; desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; } else if (colGap < availWidth) { desiredColumnCount = availWidth / colGap; if (desiredColumnCount < 1) desiredColumnCount = 1; desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; } } else if (style()->hasAutoColumnCount()) { if (colWidth < availWidth) { desiredColumnCount = (availWidth + colGap) / (colWidth + colGap); if (desiredColumnCount < 1) desiredColumnCount = 1; desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; } } else { // Both are set. if (colCount * colWidth + (colCount - 1) * colGap <= availWidth) { desiredColumnCount = colCount; desiredColumnWidth = colWidth; } else if (colWidth < availWidth) { desiredColumnCount = (availWidth + colGap) / (colWidth + colGap); if (desiredColumnCount < 1) desiredColumnCount = 1; desiredColumnWidth = (availWidth - (desiredColumnCount - 1) * colGap) / desiredColumnCount; } } setDesiredColumnCountAndWidth(desiredColumnCount, desiredColumnWidth); } void RenderBlock::setDesiredColumnCountAndWidth(int count, int width) { if (count == 1 && style()->hasAutoColumnWidth()) { if (hasColumns()) { delete gColumnInfoMap->take(this); setHasColumns(false); } } else { ColumnInfo* info; if (hasColumns()) info = gColumnInfoMap->get(this); else { if (!gColumnInfoMap) gColumnInfoMap = new ColumnInfoMap; info = new ColumnInfo; gColumnInfoMap->add(this, info); setHasColumns(true); } info->m_desiredColumnCount = count; info->m_desiredColumnWidth = width; } } int RenderBlock::desiredColumnWidth() const { if (!hasColumns()) return contentWidth(); return gColumnInfoMap->get(this)->m_desiredColumnWidth; } unsigned RenderBlock::desiredColumnCount() const { if (!hasColumns()) return 1; return gColumnInfoMap->get(this)->m_desiredColumnCount; } Vector* RenderBlock::columnRects() const { if (!hasColumns()) return 0; return &gColumnInfoMap->get(this)->m_columnRects; } int RenderBlock::layoutColumns(int endOfContent, int requestedColumnHeight) { // Don't do anything if we have no columns if (!hasColumns()) return -1; ColumnInfo* info = gColumnInfoMap->get(this); int desiredColumnWidth = info->m_desiredColumnWidth; int desiredColumnCount = info->m_desiredColumnCount; Vector* columnRects = &info->m_columnRects; bool computeIntrinsicHeight = (endOfContent == -1); // Fill the columns in to the available height. Attempt to balance the height of the columns. // Add in half our line-height to help with best-guess initial balancing. int columnSlop = lineHeight(false) / 2; int remainingSlopSpace = columnSlop * desiredColumnCount; int availableHeight = contentHeight(); int colHeight; if (computeIntrinsicHeight && requestedColumnHeight >= 0) colHeight = requestedColumnHeight; else if (computeIntrinsicHeight) colHeight = availableHeight / desiredColumnCount + columnSlop; else colHeight = availableHeight; int originalColHeight = colHeight; int colGap = columnGap(); // Compute a collection of column rects. columnRects->clear(); // Then we do a simulated "paint" into the column slices and allow the content to slightly adjust our individual column rects. // FIXME: We need to take into account layers that are affected by the columns as well here so that they can have an opportunity // to adjust column rects also. RenderView* v = view(); int left = borderLeft() + paddingLeft(); int top = borderTop() + paddingTop(); int currX = style()->direction() == LTR ? borderLeft() + paddingLeft() : borderLeft() + paddingLeft() + contentWidth() - desiredColumnWidth; int currY = top; unsigned colCount = desiredColumnCount; int maxColBottom = borderTop() + paddingTop(); int contentBottom = top + availableHeight; int minimumColumnHeight = -1; for (unsigned i = 0; i < colCount; i++) { // If we aren't constrained, then the last column can just get all the remaining space. if (computeIntrinsicHeight && i == colCount - 1) colHeight = availableHeight; // This represents the real column position. IntRect colRect(currX, top, desiredColumnWidth, colHeight); // For the simulated paint, we pretend like everything is in one long strip. IntRect pageRect(left, currY, desiredColumnWidth, colHeight); v->setPrintRect(pageRect); v->setTruncatedAt(currY + colHeight); GraphicsContext context((PlatformGraphicsContext*)0); RenderObject::PaintInfo paintInfo(&context, pageRect, PaintPhaseForeground, false, 0, 0); setHasColumns(false); paintObject(paintInfo, 0, 0); setHasColumns(true); if (computeIntrinsicHeight && v->minimumColumnHeight() > originalColHeight) { // The initial column height was too small to contain one line of text. minimumColumnHeight = max(minimumColumnHeight, v->minimumColumnHeight()); } int adjustedBottom = v->bestTruncatedAt(); if (adjustedBottom <= currY) adjustedBottom = currY + colHeight; colRect.setHeight(adjustedBottom - currY); // Add in the lost space to the subsequent columns. // FIXME: This will create a "staircase" effect if there are enough columns, but the effect should be pretty subtle. if (computeIntrinsicHeight) { int lostSpace = colHeight - colRect.height(); if (lostSpace > remainingSlopSpace) { // Redestribute the space among the remaining columns. int spaceToRedistribute = lostSpace - remainingSlopSpace; int remainingColumns = colCount - i + 1; colHeight += spaceToRedistribute / remainingColumns; } remainingSlopSpace = max(0, remainingSlopSpace - lostSpace); } if (style()->direction() == LTR) currX += desiredColumnWidth + colGap; else currX -= (desiredColumnWidth + colGap); currY += colRect.height(); availableHeight -= colRect.height(); maxColBottom = max(colRect.bottom(), maxColBottom); columnRects->append(colRect); // Start adding in more columns as long as there's still content left. if (currY < endOfContent && i == colCount - 1 && (computeIntrinsicHeight || contentHeight())) colCount++; } if (minimumColumnHeight >= 0) { // If originalColHeight was too small, we need to try to layout again. return layoutColumns(endOfContent, minimumColumnHeight); } int overflowRight = max(width(), currX - colGap); int overflowLeft = min(0, currX + desiredColumnWidth + colGap); int overflowHeight = maxColBottom; int toAdd = borderBottom() + paddingBottom() + horizontalScrollbarHeight(); if (computeIntrinsicHeight) setHeight(maxColBottom + toAdd); m_overflow.clear(); addLayoutOverflow(IntRect(overflowLeft, 0, overflowRight - overflowLeft, overflowHeight)); v->setPrintRect(IntRect()); v->setTruncatedAt(0); ASSERT(colCount == columnRects->size()); return contentBottom; } void RenderBlock::adjustPointToColumnContents(IntPoint& point) const { // Just bail if we have no columns. if (!hasColumns()) return; Vector* colRects = columnRects(); // Determine which columns we intersect. int colGap = columnGap(); int leftGap = colGap / 2; IntPoint columnPoint(colRects->at(0).location()); int yOffset = 0; for (unsigned i = 0; i < colRects->size(); i++) { // Add in half the column gap to the left and right of the rect. IntRect colRect = colRects->at(i); IntRect gapAndColumnRect(colRect.x() - leftGap, colRect.y(), colRect.width() + colGap, colRect.height()); if (gapAndColumnRect.contains(point)) { // We're inside the column. Translate the x and y into our column coordinate space. point.move(columnPoint.x() - colRect.x(), yOffset); return; } // Move to the next position. yOffset += colRect.height(); } } void RenderBlock::adjustRectForColumns(IntRect& r) const { // Just bail if we have no columns. if (!hasColumns()) return; Vector* colRects = columnRects(); // Begin with a result rect that is empty. IntRect result; // Determine which columns we intersect. int currXOffset = 0; int currYOffset = 0; int colGap = columnGap(); for (unsigned i = 0; i < colRects->size(); i++) { IntRect colRect = colRects->at(i); IntRect repaintRect = r; repaintRect.move(currXOffset, currYOffset); repaintRect.intersect(colRect); result.unite(repaintRect); // Move to the next position. if (style()->direction() == LTR) currXOffset += colRect.width() + colGap; else currXOffset -= (colRect.width() + colGap); currYOffset -= colRect.height(); } r = result; } void RenderBlock::calcPrefWidths() { ASSERT(prefWidthsDirty()); updateFirstLetter(); if (!isTableCell() && style()->width().isFixed() && style()->width().value() > 0) m_minPrefWidth = m_maxPrefWidth = calcContentBoxWidth(style()->width().value()); else { m_minPrefWidth = 0; m_maxPrefWidth = 0; if (childrenInline()) calcInlinePrefWidths(); else calcBlockPrefWidths(); m_maxPrefWidth = max(m_minPrefWidth, m_maxPrefWidth); if (!style()->autoWrap() && childrenInline()) { m_minPrefWidth = m_maxPrefWidth; // A horizontal marquee with inline children has no minimum width. if (layer() && layer()->marquee() && layer()->marquee()->isHorizontal()) m_minPrefWidth = 0; } if (isTableCell()) { Length w = toRenderTableCell(this)->styleOrColWidth(); if (w.isFixed() && w.value() > 0) m_maxPrefWidth = max(m_minPrefWidth, calcContentBoxWidth(w.value())); } } if (style()->minWidth().isFixed() && style()->minWidth().value() > 0) { m_maxPrefWidth = max(m_maxPrefWidth, calcContentBoxWidth(style()->minWidth().value())); m_minPrefWidth = max(m_minPrefWidth, calcContentBoxWidth(style()->minWidth().value())); } if (style()->maxWidth().isFixed() && style()->maxWidth().value() != undefinedLength) { m_maxPrefWidth = min(m_maxPrefWidth, calcContentBoxWidth(style()->maxWidth().value())); m_minPrefWidth = min(m_minPrefWidth, calcContentBoxWidth(style()->maxWidth().value())); } int toAdd = 0; toAdd = borderLeft() + borderRight() + paddingLeft() + paddingRight(); if (hasOverflowClip() && style()->overflowY() == OSCROLL) toAdd += verticalScrollbarWidth(); m_minPrefWidth += toAdd; m_maxPrefWidth += toAdd; setPrefWidthsDirty(false); } struct InlineMinMaxIterator { /* InlineMinMaxIterator is a class that will iterate over all render objects that contribute to inline min/max width calculations. Note the following about the way it walks: (1) Positioned content is skipped (since it does not contribute to min/max width of a block) (2) We do not drill into the children of floats or replaced elements, since you can't break in the middle of such an element. (3) Inline flows (e.g., , , ) are walked twice, since each side can have distinct borders/margin/padding that contribute to the min/max width. */ RenderObject* parent; RenderObject* current; bool endOfInline; InlineMinMaxIterator(RenderObject* p, bool end = false) :parent(p), current(p), endOfInline(end) {} RenderObject* next(); }; RenderObject* InlineMinMaxIterator::next() { RenderObject* result = 0; bool oldEndOfInline = endOfInline; endOfInline = false; while (current || current == parent) { if (!oldEndOfInline && (current == parent || (!current->isFloating() && !current->isReplaced() && !current->isPositioned()))) result = current->firstChild(); if (!result) { // We hit the end of our inline. (It was empty, e.g., .) if (!oldEndOfInline && current->isRenderInline()) { result = current; endOfInline = true; break; } while (current && current != parent) { result = current->nextSibling(); if (result) break; current = current->parent(); if (current && current != parent && current->isRenderInline()) { result = current; endOfInline = true; break; } } } if (!result) break; if (!result->isPositioned() && (result->isText() || result->isFloating() || result->isReplaced() || result->isRenderInline())) break; current = result; result = 0; } // Update our position. current = result; return current; } static int getBPMWidth(int childValue, Length cssUnit) { if (cssUnit.type() != Auto) return (cssUnit.isFixed() ? cssUnit.value() : childValue); return 0; } static int getBorderPaddingMargin(const RenderBoxModelObject* child, bool endOfInline) { RenderStyle* cstyle = child->style(); int result = 0; bool leftSide = (cstyle->direction() == LTR) ? !endOfInline : endOfInline; result += getBPMWidth((leftSide ? child->marginLeft() : child->marginRight()), (leftSide ? cstyle->marginLeft() : cstyle->marginRight())); result += getBPMWidth((leftSide ? child->paddingLeft() : child->paddingRight()), (leftSide ? cstyle->paddingLeft() : cstyle->paddingRight())); result += leftSide ? child->borderLeft() : child->borderRight(); return result; } static inline void stripTrailingSpace(int& inlineMax, int& inlineMin, RenderObject* trailingSpaceChild) { if (trailingSpaceChild && trailingSpaceChild->isText()) { // Collapse away the trailing space at the end of a block. RenderText* t = toRenderText(trailingSpaceChild); const UChar space = ' '; const Font& font = t->style()->font(); // FIXME: This ignores first-line. int spaceWidth = font.width(TextRun(&space, 1)); inlineMax -= spaceWidth + font.wordSpacing(); if (inlineMin > inlineMax) inlineMin = inlineMax; } } void RenderBlock::calcInlinePrefWidths() { int inlineMax = 0; int inlineMin = 0; int cw = containingBlock()->contentWidth(); // If we are at the start of a line, we want to ignore all white-space. // Also strip spaces if we previously had text that ended in a trailing space. bool stripFrontSpaces = true; RenderObject* trailingSpaceChild = 0; // Firefox and Opera will allow a table cell to grow to fit an image inside it under // very specific cirucumstances (in order to match common WinIE renderings). // Not supporting the quirk has caused us to mis-render some real sites. (See Bugzilla 10517.) bool allowImagesToBreak = !style()->htmlHacks() || !isTableCell() || !style()->width().isIntrinsicOrAuto(); bool autoWrap, oldAutoWrap; autoWrap = oldAutoWrap = style()->autoWrap(); InlineMinMaxIterator childIterator(this); bool addedTextIndent = false; // Only gets added in once. RenderObject* prevFloat = 0; RenderObject* previousLeaf = 0; while (RenderObject* child = childIterator.next()) { autoWrap = child->isReplaced() ? child->parent()->style()->autoWrap() : child->style()->autoWrap(); if (!child->isBR()) { // Step One: determine whether or not we need to go ahead and // terminate our current line. Each discrete chunk can become // the new min-width, if it is the widest chunk seen so far, and // it can also become the max-width. // Children fall into three categories: // (1) An inline flow object. These objects always have a min/max of 0, // and are included in the iteration solely so that their margins can // be added in. // // (2) An inline non-text non-flow object, e.g., an inline replaced element. // These objects can always be on a line by themselves, so in this situation // we need to go ahead and break the current line, and then add in our own // margins and min/max width on its own line, and then terminate the line. // // (3) A text object. Text runs can have breakable characters at the start, // the middle or the end. They may also lose whitespace off the front if // we're already ignoring whitespace. In order to compute accurate min-width // information, we need three pieces of information. // (a) the min-width of the first non-breakable run. Should be 0 if the text string // starts with whitespace. // (b) the min-width of the last non-breakable run. Should be 0 if the text string // ends with whitespace. // (c) the min/max width of the string (trimmed for whitespace). // // If the text string starts with whitespace, then we need to go ahead and // terminate our current line (unless we're already in a whitespace stripping // mode. // // If the text string has a breakable character in the middle, but didn't start // with whitespace, then we add the width of the first non-breakable run and // then end the current line. We then need to use the intermediate min/max width // values (if any of them are larger than our current min/max). We then look at // the width of the last non-breakable run and use that to start a new line // (unless we end in whitespace). RenderStyle* cstyle = child->style(); int childMin = 0; int childMax = 0; if (!child->isText()) { // Case (1) and (2). Inline replaced and inline flow elements. if (child->isRenderInline()) { // Add in padding/border/margin from the appropriate side of // the element. int bpm = getBorderPaddingMargin(toRenderInline(child), childIterator.endOfInline); childMin += bpm; childMax += bpm; inlineMin += childMin; inlineMax += childMax; child->setPrefWidthsDirty(false); } else { // Inline replaced elts add in their margins to their min/max values. int margins = 0; Length leftMargin = cstyle->marginLeft(); Length rightMargin = cstyle->marginRight(); if (leftMargin.isFixed()) margins += leftMargin.value(); if (rightMargin.isFixed()) margins += rightMargin.value(); childMin += margins; childMax += margins; } } if (!child->isRenderInline() && !child->isText()) { // Case (2). Inline replaced elements and floats. // Go ahead and terminate the current line as far as // minwidth is concerned. childMin += child->minPrefWidth(); childMax += child->maxPrefWidth(); bool clearPreviousFloat; if (child->isFloating()) { clearPreviousFloat = (prevFloat && ((prevFloat->style()->floating() == FLEFT && (child->style()->clear() & CLEFT)) || (prevFloat->style()->floating() == FRIGHT && (child->style()->clear() & CRIGHT)))); prevFloat = child; } else clearPreviousFloat = false; bool canBreakReplacedElement = !child->isImage() || allowImagesToBreak; if ((canBreakReplacedElement && (autoWrap || oldAutoWrap)) || clearPreviousFloat) { m_minPrefWidth = max(inlineMin, m_minPrefWidth); inlineMin = 0; } // If we're supposed to clear the previous float, then terminate maxwidth as well. if (clearPreviousFloat) { m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); inlineMax = 0; } // Add in text-indent. This is added in only once. int ti = 0; if (!addedTextIndent) { addedTextIndent = true; ti = style()->textIndent().calcMinValue(cw); childMin+=ti; childMax+=ti; } // Add our width to the max. inlineMax += childMax; if (!autoWrap || !canBreakReplacedElement) { if (child->isFloating()) m_minPrefWidth = max(childMin, m_minPrefWidth); else inlineMin += childMin; } else { // Now check our line. m_minPrefWidth = max(childMin, m_minPrefWidth); // Now start a new line. inlineMin = 0; } // We are no longer stripping whitespace at the start of // a line. if (!child->isFloating()) { stripFrontSpaces = false; trailingSpaceChild = 0; } } else if (child->isText()) { // Case (3). Text. RenderText* t = toRenderText(child); if (t->isWordBreak()) { m_minPrefWidth = max(inlineMin, m_minPrefWidth); inlineMin = 0; continue; } // Determine if we have a breakable character. Pass in // whether or not we should ignore any spaces at the front // of the string. If those are going to be stripped out, // then they shouldn't be considered in the breakable char // check. bool hasBreakableChar, hasBreak; int beginMin, endMin; #ifdef ANDROID_FIX // bug found by valgrind bool beginWS = false, endWS = false; #else bool beginWS, endWS; #endif int beginMax, endMax; t->trimmedPrefWidths(inlineMax, beginMin, beginWS, endMin, endWS, hasBreakableChar, hasBreak, beginMax, endMax, childMin, childMax, stripFrontSpaces); // This text object will not be rendered, but it may still provide a breaking opportunity. if (!hasBreak && childMax == 0) { if (autoWrap && (beginWS || endWS)) { m_minPrefWidth = max(inlineMin, m_minPrefWidth); inlineMin = 0; } continue; } if (stripFrontSpaces) trailingSpaceChild = child; else trailingSpaceChild = 0; // Add in text-indent. This is added in only once. int ti = 0; if (!addedTextIndent) { addedTextIndent = true; ti = style()->textIndent().calcMinValue(cw); childMin+=ti; beginMin += ti; childMax+=ti; beginMax += ti; } // If we have no breakable characters at all, // then this is the easy case. We add ourselves to the current // min and max and continue. if (!hasBreakableChar) { inlineMin += childMin; } else { // We have a breakable character. Now we need to know if // we start and end with whitespace. if (beginWS) // Go ahead and end the current line. m_minPrefWidth = max(inlineMin, m_minPrefWidth); else { inlineMin += beginMin; m_minPrefWidth = max(inlineMin, m_minPrefWidth); childMin -= ti; } inlineMin = childMin; if (endWS) { // We end in whitespace, which means we can go ahead // and end our current line. m_minPrefWidth = max(inlineMin, m_minPrefWidth); inlineMin = 0; } else { m_minPrefWidth = max(inlineMin, m_minPrefWidth); inlineMin = endMin; } } if (hasBreak) { inlineMax += beginMax; m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); m_maxPrefWidth = max(childMax, m_maxPrefWidth); inlineMax = endMax; } else inlineMax += childMax; } // Ignore spaces after a list marker. if (child->isListMarker()) stripFrontSpaces = true; } else { m_minPrefWidth = max(inlineMin, m_minPrefWidth); m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); inlineMin = inlineMax = 0; stripFrontSpaces = true; trailingSpaceChild = 0; } oldAutoWrap = autoWrap; if (!child->isRenderInline()) previousLeaf = child; } if (style()->collapseWhiteSpace()) stripTrailingSpace(inlineMax, inlineMin, trailingSpaceChild); m_minPrefWidth = max(inlineMin, m_minPrefWidth); m_maxPrefWidth = max(inlineMax, m_maxPrefWidth); } // Use a very large value (in effect infinite). #define BLOCK_MAX_WIDTH 15000 void RenderBlock::calcBlockPrefWidths() { bool nowrap = style()->whiteSpace() == NOWRAP; RenderObject *child = firstChild(); int floatLeftWidth = 0, floatRightWidth = 0; while (child) { // Positioned children don't affect the min/max width if (child->isPositioned()) { child = child->nextSibling(); continue; } if (child->isFloating() || (child->isBox() && toRenderBox(child)->avoidsFloats())) { int floatTotalWidth = floatLeftWidth + floatRightWidth; if (child->style()->clear() & CLEFT) { m_maxPrefWidth = max(floatTotalWidth, m_maxPrefWidth); floatLeftWidth = 0; } if (child->style()->clear() & CRIGHT) { m_maxPrefWidth = max(floatTotalWidth, m_maxPrefWidth); floatRightWidth = 0; } } // A margin basically has three types: fixed, percentage, and auto (variable). // Auto and percentage margins simply become 0 when computing min/max width. // Fixed margins can be added in as is. Length ml = child->style()->marginLeft(); Length mr = child->style()->marginRight(); int margin = 0, marginLeft = 0, marginRight = 0; if (ml.isFixed()) marginLeft += ml.value(); if (mr.isFixed()) marginRight += mr.value(); margin = marginLeft + marginRight; int w = child->minPrefWidth() + margin; m_minPrefWidth = max(w, m_minPrefWidth); // IE ignores tables for calculation of nowrap. Makes some sense. if (nowrap && !child->isTable()) m_maxPrefWidth = max(w, m_maxPrefWidth); w = child->maxPrefWidth() + margin; if (!child->isFloating()) { if (child->isBox() && toRenderBox(child)->avoidsFloats()) { // Determine a left and right max value based off whether or not the floats can fit in the // margins of the object. For negative margins, we will attempt to overlap the float if the negative margin // is smaller than the float width. int maxLeft = marginLeft > 0 ? max(floatLeftWidth, marginLeft) : floatLeftWidth + marginLeft; int maxRight = marginRight > 0 ? max(floatRightWidth, marginRight) : floatRightWidth + marginRight; w = child->maxPrefWidth() + maxLeft + maxRight; w = max(w, floatLeftWidth + floatRightWidth); } else m_maxPrefWidth = max(floatLeftWidth + floatRightWidth, m_maxPrefWidth); floatLeftWidth = floatRightWidth = 0; } if (child->isFloating()) { if (style()->floating() == FLEFT) floatLeftWidth += w; else floatRightWidth += w; } else m_maxPrefWidth = max(w, m_maxPrefWidth); // A very specific WinIE quirk. // Example: /*

*/ // In the above example, the inner absolute positioned block should have a computed width // of 100px because of the table. // We can achieve this effect by making the maxwidth of blocks that contain tables // with percentage widths be infinite (as long as they are not inside a table cell). if (style()->htmlHacks() && child->style()->width().isPercent() && !isTableCell() && child->isTable() && m_maxPrefWidth < BLOCK_MAX_WIDTH) { RenderBlock* cb = containingBlock(); while (!cb->isRenderView() && !cb->isTableCell()) cb = cb->containingBlock(); if (!cb->isTableCell()) m_maxPrefWidth = BLOCK_MAX_WIDTH; } child = child->nextSibling(); } // Always make sure these values are non-negative. m_minPrefWidth = max(0, m_minPrefWidth); m_maxPrefWidth = max(0, m_maxPrefWidth); m_maxPrefWidth = max(floatLeftWidth + floatRightWidth, m_maxPrefWidth); } bool RenderBlock::hasLineIfEmpty() const { if (!node()) return false; if (node()->isContentEditable() && node()->rootEditableElement() == node()) return true; if (node()->isShadowNode() && (node()->shadowParentNode()->hasTagName(inputTag) || node()->shadowParentNode()->hasTagName(textareaTag))) return true; return false; } int RenderBlock::lineHeight(bool firstLine, bool isRootLineBox) const { // Inline blocks are replaced elements. Otherwise, just pass off to // the base class. If we're being queried as though we're the root line // box, then the fact that we're an inline-block is irrelevant, and we behave // just like a block. if (isReplaced() && !isRootLineBox) return height() + marginTop() + marginBottom(); if (firstLine && document()->usesFirstLineRules()) { RenderStyle* s = style(firstLine); if (s != style()) return s->computedLineHeight(); } if (m_lineHeight == -1) m_lineHeight = style()->computedLineHeight(); return m_lineHeight; } int RenderBlock::baselinePosition(bool b, bool isRootLineBox) const { // Inline blocks are replaced elements. Otherwise, just pass off to // the base class. If we're being queried as though we're the root line // box, then the fact that we're an inline-block is irrelevant, and we behave // just like a block. if (isReplaced() && !isRootLineBox) { // For "leaf" theme objects, let the theme decide what the baseline position is. // FIXME: Might be better to have a custom CSS property instead, so that if the theme // is turned off, checkboxes/radios will still have decent baselines. if (style()->hasAppearance() && !theme()->isControlContainer(style()->appearance())) return theme()->baselinePosition(this); // CSS2.1 states that the baseline of an inline block is the baseline of the last line box in // the normal flow. We make an exception for marquees, since their baselines are meaningless // (the content inside them moves). This matches WinIE as well, which just bottom-aligns them. // We also give up on finding a baseline if we have a vertical scrollbar, or if we are scrolled // vertically (e.g., an overflow:hidden block that has had scrollTop moved) or if the baseline is outside // of our content box. int baselinePos = (layer() && (layer()->marquee() || layer()->verticalScrollbar() || layer()->scrollYOffset() != 0)) ? -1 : lastLineBoxBaseline(); if (baselinePos != -1 && baselinePos <= borderTop() + paddingTop() + contentHeight()) return marginTop() + baselinePos; return height() + marginTop() + marginBottom(); } return RenderBox::baselinePosition(b, isRootLineBox); } int RenderBlock::firstLineBoxBaseline() const { if (!isBlockFlow()) return -1; if (childrenInline()) { if (firstLineBox()) return firstLineBox()->y() + style(true)->font().ascent(); else return -1; } else { for (RenderBox* curr = firstChildBox(); curr; curr = curr->nextSiblingBox()) { if (!curr->isFloatingOrPositioned()) { int result = curr->firstLineBoxBaseline(); if (result != -1) return curr->y() + result; // Translate to our coordinate space. } } } return -1; } int RenderBlock::lastLineBoxBaseline() const { if (!isBlockFlow()) return -1; if (childrenInline()) { if (!firstLineBox() && hasLineIfEmpty()) return RenderBox::baselinePosition(true, true) + borderTop() + paddingTop(); if (lastLineBox()) return lastLineBox()->y() + style(lastLineBox() == firstLineBox())->font().ascent(); return -1; } else { bool haveNormalFlowChild = false; for (RenderBox* curr = lastChildBox(); curr; curr = curr->previousSiblingBox()) { if (!curr->isFloatingOrPositioned()) { haveNormalFlowChild = true; int result = curr->lastLineBoxBaseline(); if (result != -1) return curr->y() + result; // Translate to our coordinate space. } } if (!haveNormalFlowChild && hasLineIfEmpty()) return RenderBox::baselinePosition(true, true) + borderTop() + paddingTop(); } return -1; } bool RenderBlock::containsNonZeroBidiLevel() const { for (RootInlineBox* root = firstRootBox(); root; root = root->nextRootBox()) { for (InlineBox* box = root->firstLeafChild(); box; box = box->nextLeafChild()) { if (box->bidiLevel()) return true; } } return false; } RenderBlock* RenderBlock::firstLineBlock() const { RenderBlock* firstLineBlock = const_cast(this); bool hasPseudo = false; while (true) { hasPseudo = firstLineBlock->style()->hasPseudoStyle(FIRST_LINE); if (hasPseudo) break; RenderObject* parentBlock = firstLineBlock->parent(); if (firstLineBlock->isReplaced() || firstLineBlock->isFloating() || !parentBlock || parentBlock->firstChild() != firstLineBlock || !parentBlock->isBlockFlow()) break; ASSERT(parentBlock->isRenderBlock()); firstLineBlock = toRenderBlock(parentBlock); } if (!hasPseudo) return 0; return firstLineBlock; } void RenderBlock::updateFirstLetter() { if (!document()->usesFirstLetterRules()) return; // Don't recur if (style()->styleType() == FIRST_LETTER) return; // FIXME: We need to destroy the first-letter object if it is no longer the first child. Need to find // an efficient way to check for that situation though before implementing anything. RenderObject* firstLetterBlock = this; bool hasPseudoStyle = false; while (true) { // We only honor first-letter if the firstLetterBlock can have children in the DOM. This correctly // prevents form controls from honoring first-letter. hasPseudoStyle = firstLetterBlock->style()->hasPseudoStyle(FIRST_LETTER) && firstLetterBlock->canHaveChildren(); if (hasPseudoStyle) break; RenderObject* parentBlock = firstLetterBlock->parent(); if (firstLetterBlock->isReplaced() || !parentBlock || parentBlock->firstChild() != firstLetterBlock || !parentBlock->isBlockFlow()) break; firstLetterBlock = parentBlock; } if (!hasPseudoStyle) return; // Drill into inlines looking for our first text child. RenderObject* currChild = firstLetterBlock->firstChild(); while (currChild && currChild->needsLayout() && (!currChild->isReplaced() || currChild->isFloatingOrPositioned()) && !currChild->isText()) { if (currChild->isFloatingOrPositioned()) { if (currChild->style()->styleType() == FIRST_LETTER) break; currChild = currChild->nextSibling(); } else currChild = currChild->firstChild(); } // Get list markers out of the way. while (currChild && currChild->isListMarker()) currChild = currChild->nextSibling(); if (!currChild) return; RenderObject* firstLetterContainer = currChild->parent(); // If the child already has style, then it has already been created, so we just want // to update it. if (currChild->style()->styleType() == FIRST_LETTER) { RenderStyle* pseudo = firstLetterBlock->getCachedPseudoStyle(FIRST_LETTER, firstLetterContainer->firstLineStyle()); currChild->setStyle(pseudo); for (RenderObject* genChild = currChild->firstChild(); genChild; genChild = genChild->nextSibling()) { if (genChild->isText()) genChild->setStyle(pseudo); } return; } // If the child does not already have style, we create it here. if (currChild->isText() && !currChild->isBR() && currChild->parent()->style()->styleType() != FIRST_LETTER) { // Our layout state is not valid for the repaints we are going to trigger by // adding and removing children of firstLetterContainer. view()->disableLayoutState(); RenderText* textObj = toRenderText(currChild); // Create our pseudo style now that we have our firstLetterContainer determined. RenderStyle* pseudoStyle = firstLetterBlock->getCachedPseudoStyle(FIRST_LETTER, firstLetterContainer->firstLineStyle()); // Force inline display (except for floating first-letters) pseudoStyle->setDisplay(pseudoStyle->isFloating() ? BLOCK : INLINE); pseudoStyle->setPosition(StaticPosition); // CSS2 says first-letter can't be positioned. RenderObject* firstLetter = 0; if (pseudoStyle->display() == INLINE) firstLetter = new (renderArena()) RenderInline(document()); else firstLetter = new (renderArena()) RenderBlock(document()); firstLetter->setStyle(pseudoStyle); firstLetterContainer->addChild(firstLetter, currChild); // The original string is going to be either a generated content string or a DOM node's // string. We want the original string before it got transformed in case first-letter has // no text-transform or a different text-transform applied to it. RefPtr oldText = textObj->originalText(); ASSERT(oldText); if (oldText && oldText->length() > 0) { unsigned int length = 0; // account for leading spaces and punctuation while (length < oldText->length() && (isSpaceOrNewline((*oldText)[length]) || Unicode::isPunct((*oldText)[length]))) length++; // account for first letter length++; // construct text fragment for the text after the first letter // NOTE: this might empty RenderTextFragment* remainingText = new (renderArena()) RenderTextFragment(textObj->node() ? textObj->node() : textObj->document(), oldText.get(), length, oldText->length() - length); remainingText->setStyle(textObj->style()); if (remainingText->node()) remainingText->node()->setRenderer(remainingText); RenderObject* nextObj = textObj->nextSibling(); firstLetterContainer->removeChild(textObj); firstLetterContainer->addChild(remainingText, nextObj); remainingText->setFirstLetter(firstLetter); // construct text fragment for the first letter RenderTextFragment* letter = new (renderArena()) RenderTextFragment(remainingText->node() ? remainingText->node() : remainingText->document(), oldText.get(), 0, length); RefPtr newStyle = RenderStyle::create(); newStyle->inheritFrom(pseudoStyle); letter->setStyle(newStyle.release()); firstLetter->addChild(letter); textObj->destroy(); } view()->enableLayoutState(); } } bool RenderBlock::inRootBlockContext() const { if (isTableCell() || isFloatingOrPositioned() || hasOverflowClip()) return false; if (isRoot() || isRenderView()) return true; return containingBlock()->inRootBlockContext(); } // Helper methods for obtaining the last line, computing line counts and heights for line counts // (crawling into blocks). static bool shouldCheckLines(RenderObject* obj) { return !obj->isFloatingOrPositioned() && !obj->isRunIn() && obj->isBlockFlow() && obj->style()->height().isAuto() && (!obj->isFlexibleBox() || obj->style()->boxOrient() == VERTICAL); } static RootInlineBox* getLineAtIndex(RenderBlock* block, int i, int& count) { if (block->style()->visibility() == VISIBLE) { if (block->childrenInline()) { for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { if (count++ == i) return box; } } else { for (RenderObject* obj = block->firstChild(); obj; obj = obj->nextSibling()) { if (shouldCheckLines(obj)) { RootInlineBox *box = getLineAtIndex(toRenderBlock(obj), i, count); if (box) return box; } } } } return 0; } static int getHeightForLineCount(RenderBlock* block, int l, bool includeBottom, int& count) { if (block->style()->visibility() == VISIBLE) { if (block->childrenInline()) { for (RootInlineBox* box = block->firstRootBox(); box; box = box->nextRootBox()) { if (++count == l) return box->lineBottom() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0); } } else { RenderBox* normalFlowChildWithoutLines = 0; for (RenderBox* obj = block->firstChildBox(); obj; obj = obj->nextSiblingBox()) { if (shouldCheckLines(obj)) { int result = getHeightForLineCount(toRenderBlock(obj), l, false, count); if (result != -1) return result + obj->y() + (includeBottom ? (block->borderBottom() + block->paddingBottom()) : 0); } else if (!obj->isFloatingOrPositioned() && !obj->isRunIn()) normalFlowChildWithoutLines = obj; } if (normalFlowChildWithoutLines && l == 0) return normalFlowChildWithoutLines->y() + normalFlowChildWithoutLines->height(); } } return -1; } RootInlineBox* RenderBlock::lineAtIndex(int i) { int count = 0; return getLineAtIndex(this, i, count); } int RenderBlock::lineCount() { int count = 0; if (style()->visibility() == VISIBLE) { if (childrenInline()) for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) count++; else for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) if (shouldCheckLines(obj)) count += toRenderBlock(obj)->lineCount(); } return count; } int RenderBlock::heightForLineCount(int l) { int count = 0; return getHeightForLineCount(this, l, true, count); } void RenderBlock::adjustForBorderFit(int x, int& left, int& right) const { // We don't deal with relative positioning. Our assumption is that you shrink to fit the lines without accounting // for either overflow or translations via relative positioning. if (style()->visibility() == VISIBLE) { if (childrenInline()) { for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) { if (box->firstChild()) left = min(left, x + box->firstChild()->x()); if (box->lastChild()) right = max(right, x + box->lastChild()->x() + box->lastChild()->width()); } } else { for (RenderBox* obj = firstChildBox(); obj; obj = obj->nextSiblingBox()) { if (!obj->isFloatingOrPositioned()) { if (obj->isBlockFlow() && !obj->hasOverflowClip()) toRenderBlock(obj)->adjustForBorderFit(x + obj->x(), left, right); else if (obj->style()->visibility() == VISIBLE) { // We are a replaced element or some kind of non-block-flow object. left = min(left, x + obj->x()); right = max(right, x + obj->x() + obj->width()); } } } } if (m_floatingObjects) { FloatingObject* r; DeprecatedPtrListIterator it(*m_floatingObjects); for (; (r = it.current()); ++it) { // Only examine the object if our m_shouldPaint flag is set. if (r->m_shouldPaint) { int floatLeft = r->m_left - r->m_renderer->x() + r->m_renderer->marginLeft(); int floatRight = floatLeft + r->m_renderer->width(); left = min(left, floatLeft); right = max(right, floatRight); } } } } } void RenderBlock::borderFitAdjust(int& x, int& w) const { if (style()->borderFit() == BorderFitBorder) return; // Walk any normal flow lines to snugly fit. int left = INT_MAX; int right = INT_MIN; int oldWidth = w; adjustForBorderFit(0, left, right); if (left != INT_MAX) { left -= (borderLeft() + paddingLeft()); if (left > 0) { x += left; w -= left; } } if (right != INT_MIN) { right += (borderRight() + paddingRight()); if (right < oldWidth) w -= (oldWidth - right); } } void RenderBlock::clearTruncation() { if (style()->visibility() == VISIBLE) { if (childrenInline() && hasMarkupTruncation()) { setHasMarkupTruncation(false); for (RootInlineBox* box = firstRootBox(); box; box = box->nextRootBox()) box->clearTruncation(); } else for (RenderObject* obj = firstChild(); obj; obj = obj->nextSibling()) if (shouldCheckLines(obj)) toRenderBlock(obj)->clearTruncation(); } } void RenderBlock::setMaxTopMargins(int pos, int neg) { if (!m_maxMargin) { if (pos == MaxMargin::topPosDefault(this) && neg == MaxMargin::topNegDefault(this)) return; m_maxMargin = new MaxMargin(this); } m_maxMargin->m_topPos = pos; m_maxMargin->m_topNeg = neg; } void RenderBlock::setMaxBottomMargins(int pos, int neg) { if (!m_maxMargin) { if (pos == MaxMargin::bottomPosDefault(this) && neg == MaxMargin::bottomNegDefault(this)) return; m_maxMargin = new MaxMargin(this); } m_maxMargin->m_bottomPos = pos; m_maxMargin->m_bottomNeg = neg; } void RenderBlock::absoluteRects(Vector& rects, int tx, int ty) { // For blocks inside inlines, we go ahead and include margins so that we run right up to the // inline boxes above and below us (thus getting merged with them to form a single irregular // shape). if (inlineContinuation()) { rects.append(IntRect(tx, ty - collapsedMarginTop(), width(), height() + collapsedMarginTop() + collapsedMarginBottom())); inlineContinuation()->absoluteRects(rects, tx - x() + inlineContinuation()->containingBlock()->x(), ty - y() + inlineContinuation()->containingBlock()->y()); } else rects.append(IntRect(tx, ty, width(), height())); } void RenderBlock::absoluteQuads(Vector& quads) { // For blocks inside inlines, we go ahead and include margins so that we run right up to the // inline boxes above and below us (thus getting merged with them to form a single irregular // shape). if (inlineContinuation()) { FloatRect localRect(0, -collapsedMarginTop(), width(), height() + collapsedMarginTop() + collapsedMarginBottom()); quads.append(localToAbsoluteQuad(localRect)); inlineContinuation()->absoluteQuads(quads); } else quads.append(RenderBox::localToAbsoluteQuad(FloatRect(0, 0, width(), height()))); } IntRect RenderBlock::rectWithOutlineForRepaint(RenderBoxModelObject* repaintContainer, int outlineWidth) { IntRect r(RenderBox::rectWithOutlineForRepaint(repaintContainer, outlineWidth)); if (inlineContinuation()) r.inflateY(collapsedMarginTop()); return r; } RenderObject* RenderBlock::hoverAncestor() const { return inlineContinuation() ? inlineContinuation() : RenderBox::hoverAncestor(); } void RenderBlock::updateDragState(bool dragOn) { RenderBox::updateDragState(dragOn); if (inlineContinuation()) inlineContinuation()->updateDragState(dragOn); } RenderStyle* RenderBlock::outlineStyleForRepaint() const { return inlineContinuation() ? inlineContinuation()->style() : style(); } void RenderBlock::childBecameNonInline(RenderObject*) { makeChildrenNonInline(); if (isAnonymousBlock() && parent() && parent()->isRenderBlock()) toRenderBlock(parent())->removeLeftoverAnonymousBlock(this); // |this| may be dead here } void RenderBlock::updateHitTestResult(HitTestResult& result, const IntPoint& point) { if (result.innerNode()) return; Node* n = node(); if (inlineContinuation()) // We are in the margins of block elements that are part of a continuation. In // this case we're actually still inside the enclosing inline element that was // split. Go ahead and set our inner node accordingly. n = inlineContinuation()->node(); if (n) { result.setInnerNode(n); if (!result.innerNonSharedNode()) result.setInnerNonSharedNode(n); result.setLocalPoint(point); } } IntRect RenderBlock::localCaretRect(InlineBox* inlineBox, int caretOffset, int* extraWidthToEndOfLine) { // Do the normal calculation in most cases. if (firstChild()) return RenderBox::localCaretRect(inlineBox, caretOffset, extraWidthToEndOfLine); // This is a special case: // The element is not an inline element, and it's empty. So we have to // calculate a fake position to indicate where objects are to be inserted. // FIXME: This does not take into account either :first-line or :first-letter // However, as soon as some content is entered, the line boxes will be // constructed and this kludge is not called any more. So only the caret size // of an empty :first-line'd block is wrong. I think we can live with that. RenderStyle* currentStyle = firstLineStyle(); int height = lineHeight(true); enum CaretAlignment { alignLeft, alignRight, alignCenter }; CaretAlignment alignment = alignLeft; switch (currentStyle->textAlign()) { case TAAUTO: case JUSTIFY: if (currentStyle->direction() == RTL) alignment = alignRight; break; case LEFT: case WEBKIT_LEFT: break; case CENTER: case WEBKIT_CENTER: alignment = alignCenter; break; case RIGHT: case WEBKIT_RIGHT: alignment = alignRight; break; } int x = borderLeft() + paddingLeft(); int w = width(); switch (alignment) { case alignLeft: break; case alignCenter: x = (x + w - (borderRight() + paddingRight())) / 2; break; case alignRight: x = w - (borderRight() + paddingRight()) - caretWidth; break; } if (extraWidthToEndOfLine) { if (isRenderBlock()) { *extraWidthToEndOfLine = w - (x + caretWidth); } else { // FIXME: This code looks wrong. // myRight and containerRight are set up, but then clobbered. // So *extraWidthToEndOfLine will always be 0 here. int myRight = x + caretWidth; // FIXME: why call localToAbsoluteForContent() twice here, too? FloatPoint absRightPoint = localToAbsolute(FloatPoint(myRight, 0)); int containerRight = containingBlock()->x() + containingBlockWidthForContent(); FloatPoint absContainerPoint = localToAbsolute(FloatPoint(containerRight, 0)); *extraWidthToEndOfLine = absContainerPoint.x() - absRightPoint.x(); } } int y = paddingTop() + borderTop(); return IntRect(x, y, caretWidth, height); } void RenderBlock::addFocusRingRects(GraphicsContext* graphicsContext, int tx, int ty) { // For blocks inside inlines, we go ahead and include margins so that we run right up to the // inline boxes above and below us (thus getting merged with them to form a single irregular // shape). if (inlineContinuation()) { // FIXME: This check really isn't accurate. bool nextInlineHasLineBox = inlineContinuation()->firstLineBox(); // FIXME: This is wrong. The principal renderer may not be the continuation preceding this block. bool prevInlineHasLineBox = toRenderInline(inlineContinuation()->node()->renderer())->firstLineBox(); int topMargin = prevInlineHasLineBox ? collapsedMarginTop() : 0; int bottomMargin = nextInlineHasLineBox ? collapsedMarginBottom() : 0; graphicsContext->addFocusRingRect(IntRect(tx, ty - topMargin, width(), height() + topMargin + bottomMargin)); } else graphicsContext->addFocusRingRect(IntRect(tx, ty, width(), height())); if (!hasOverflowClip() && !hasControlClip()) { for (RootInlineBox* curr = firstRootBox(); curr; curr = curr->nextRootBox()) { int top = max(curr->lineTop(), curr->y()); int bottom = min(curr->lineBottom(), curr->y() + curr->height()); graphicsContext->addFocusRingRect(IntRect(tx + curr->x(), ty + top, curr->width(), bottom - top)); } for (RenderObject* curr = firstChild(); curr; curr = curr->nextSibling()) { if (!curr->isText() && !curr->isListMarker() && curr->isBox()) { RenderBox* box = toRenderBox(curr); FloatPoint pos; // FIXME: This doesn't work correctly with transforms. if (box->layer()) pos = curr->localToAbsolute(); else pos = FloatPoint(tx + box->x(), ty + box->y()); box->addFocusRingRects(graphicsContext, pos.x(), pos.y()); } } } if (inlineContinuation()) inlineContinuation()->addFocusRingRects(graphicsContext, tx - x() + inlineContinuation()->containingBlock()->x(), ty - y() + inlineContinuation()->containingBlock()->y()); } RenderBlock* RenderBlock::createAnonymousBlock(bool isFlexibleBox) const { RefPtr newStyle = RenderStyle::create(); newStyle->inheritFrom(style()); RenderBlock* newBox = 0; if (isFlexibleBox) { newStyle->setDisplay(BOX); newBox = new (renderArena()) RenderFlexibleBox(document() /* anonymous box */); } else { newStyle->setDisplay(BLOCK); newBox = new (renderArena()) RenderBlock(document() /* anonymous box */); } newBox->setStyle(newStyle.release()); return newBox; } const char* RenderBlock::renderName() const { if (isBody()) return "RenderBody"; // FIXME: Temporary hack until we know that the regression tests pass. if (isFloating()) return "RenderBlock (floating)"; if (isPositioned()) return "RenderBlock (positioned)"; if (isAnonymousBlock()) return "RenderBlock (anonymous)"; else if (isAnonymous()) return "RenderBlock (generated)"; if (isRelPositioned()) return "RenderBlock (relative positioned)"; if (isRunIn()) return "RenderBlock (run-in)"; return "RenderBlock"; } } // namespace WebCore