/* * Copyright (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * (C) 2005 Allan Sandfeld Jensen (kde@carewolf.com) * (C) 2005, 2006 Samuel Weinig (sam.weinig@gmail.com) * Copyright (C) 2005, 2006, 2007, 2008, 2009 Apple Inc. All rights reserved. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. * */ #include "config.h" #include "RenderBox.h" #include "CachedImage.h" #include "ChromeClient.h" #include "Document.h" #include "FrameView.h" #include "GraphicsContext.h" #include "htmlediting.h" #include "HTMLElement.h" #include "HTMLNames.h" #include "ImageBuffer.h" #include "FloatQuad.h" #include "Frame.h" #include "Page.h" #include "RenderArena.h" #include "RenderFlexibleBox.h" #include "RenderInline.h" #include "RenderLayer.h" #include "RenderTableCell.h" #include "RenderTheme.h" #ifdef ANDROID_LAYOUT #include "Settings.h" #endif #include "RenderView.h" #include "TransformState.h" #include #include #if ENABLE(WML) #include "WMLNames.h" #endif using namespace std; namespace WebCore { using namespace HTMLNames; // Used by flexible boxes when flexing this element. typedef WTF::HashMap OverrideSizeMap; static OverrideSizeMap* gOverrideSizeMap = 0; bool RenderBox::s_hadOverflowClip = false; RenderBox::RenderBox(Node* node) : RenderBoxModelObject(node) #ifdef ANDROID_LAYOUT , m_visibleWidth(0) #endif , m_marginLeft(0) , m_marginRight(0) , m_marginTop(0) , m_marginBottom(0) , m_minPrefWidth(-1) , m_maxPrefWidth(-1) , m_inlineBoxWrapper(0) { setIsBox(); } RenderBox::~RenderBox() { } void RenderBox::destroy() { // A lot of the code in this function is just pasted into // RenderWidget::destroy. If anything in this function changes, // be sure to fix RenderWidget::destroy() as well. if (hasOverrideSize()) gOverrideSizeMap->remove(this); if (style() && (style()->height().isPercent() || style()->minHeight().isPercent() || style()->maxHeight().isPercent())) RenderBlock::removePercentHeightDescendant(this); RenderBoxModelObject::destroy(); } void RenderBox::removeFloatingOrPositionedChildFromBlockLists() { ASSERT(isFloatingOrPositioned()); if (documentBeingDestroyed()) return; if (isFloating()) { RenderBlock* outermostBlock = containingBlock(); for (RenderBlock* p = outermostBlock; p && !p->isRenderView(); p = p->containingBlock()) { if (p->containsFloat(this)) outermostBlock = p; } if (outermostBlock) outermostBlock->markAllDescendantsWithFloatsForLayout(this, false); } if (isPositioned()) { RenderObject* p; for (p = parent(); p; p = p->parent()) { if (p->isRenderBlock()) toRenderBlock(p)->removePositionedObject(this); } } } void RenderBox::styleWillChange(StyleDifference diff, const RenderStyle* newStyle) { s_hadOverflowClip = hasOverflowClip(); if (style()) { // The background of the root element or the body element could propagate up to // the canvas. Just dirty the entire canvas when our style changes substantially. if (diff >= StyleDifferenceRepaint && node() && (node()->hasTagName(htmlTag) || node()->hasTagName(bodyTag))) view()->repaint(); // When a layout hint happens and an object's position style changes, we have to do a layout // to dirty the render tree using the old position value now. if (diff == StyleDifferenceLayout && parent() && style()->position() != newStyle->position()) { markContainingBlocksForLayout(); if (style()->position() == StaticPosition) repaint(); if (isFloating() && !isPositioned() && (newStyle->position() == AbsolutePosition || newStyle->position() == FixedPosition)) removeFloatingOrPositionedChildFromBlockLists(); } } RenderBoxModelObject::styleWillChange(diff, newStyle); } void RenderBox::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle) { RenderBoxModelObject::styleDidChange(diff, oldStyle); if (needsLayout() && oldStyle && (oldStyle->height().isPercent() || oldStyle->minHeight().isPercent() || oldStyle->maxHeight().isPercent())) RenderBlock::removePercentHeightDescendant(this); // If our zoom factor changes and we have a defined scrollLeft/Top, we need to adjust that value into the // new zoomed coordinate space. if (hasOverflowClip() && oldStyle && style() && oldStyle->effectiveZoom() != style()->effectiveZoom()) { int left = scrollLeft(); if (left) { left = (left / oldStyle->effectiveZoom()) * style()->effectiveZoom(); setScrollLeft(left); } int top = scrollTop(); if (top) { top = (top / oldStyle->effectiveZoom()) * style()->effectiveZoom(); setScrollTop(top); } } // Set the text color if we're the body. if (isBody()) document()->setTextColor(style()->color()); } void RenderBox::updateBoxModelInfoFromStyle() { RenderBoxModelObject::updateBoxModelInfoFromStyle(); bool isRootObject = isRoot(); bool isViewObject = isRenderView(); // The root and the RenderView always paint their backgrounds/borders. if (isRootObject || isViewObject) setHasBoxDecorations(true); setPositioned(style()->position() == AbsolutePosition || style()->position() == FixedPosition); setFloating(!isPositioned() && style()->isFloating()); // We also handle and , whose overflow applies to the viewport. if (style()->overflowX() != OVISIBLE && !isRootObject && (isRenderBlock() || isTableRow() || isTableSection())) { bool boxHasOverflowClip = true; if (isBody()) { // Overflow on the body can propagate to the viewport under the following conditions. // (1) The root element is . // (2) We are the primary (can be checked by looking at document.body). // (3) The root element has visible overflow. if (document()->documentElement()->hasTagName(htmlTag) && document()->body() == node() && document()->documentElement()->renderer()->style()->overflowX() == OVISIBLE) boxHasOverflowClip = false; } // Check for overflow clip. // It's sufficient to just check one direction, since it's illegal to have visible on only one overflow value. if (boxHasOverflowClip) { if (!s_hadOverflowClip) // Erase the overflow repaint(); setHasOverflowClip(); } } setHasTransform(style()->hasTransformRelatedProperty()); setHasReflection(style()->boxReflect()); } void RenderBox::layout() { ASSERT(needsLayout()); RenderObject* child = firstChild(); if (!child) { setNeedsLayout(false); return; } LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y())); while (child) { child->layoutIfNeeded(); ASSERT(!child->needsLayout()); child = child->nextSibling(); } statePusher.pop(); setNeedsLayout(false); } // More IE extensions. clientWidth and clientHeight represent the interior of an object // excluding border and scrollbar. int RenderBox::clientWidth() const { return width() - borderLeft() - borderRight() - verticalScrollbarWidth(); } int RenderBox::clientHeight() const { return height() - borderTop() - borderBottom() - horizontalScrollbarHeight(); } int RenderBox::scrollWidth() const { if (hasOverflowClip()) return layer()->scrollWidth(); // For objects with visible overflow, this matches IE. if (style()->direction() == LTR) return max(clientWidth(), rightmostPosition(true, false) - borderLeft()); return clientWidth() - min(0, leftmostPosition(true, false) - borderLeft()); } int RenderBox::scrollHeight() const { if (hasOverflowClip()) return layer()->scrollHeight(); // For objects with visible overflow, this matches IE. return max(clientHeight(), lowestPosition(true, false) - borderTop()); } int RenderBox::scrollLeft() const { return hasOverflowClip() ? layer()->scrollXOffset() : 0; } int RenderBox::scrollTop() const { return hasOverflowClip() ? layer()->scrollYOffset() : 0; } void RenderBox::setScrollLeft(int newLeft) { if (hasOverflowClip()) layer()->scrollToXOffset(newLeft); } void RenderBox::setScrollTop(int newTop) { if (hasOverflowClip()) layer()->scrollToYOffset(newTop); } void RenderBox::absoluteRects(Vector& rects, int tx, int ty) { rects.append(IntRect(tx, ty, width(), height())); } void RenderBox::absoluteQuads(Vector& quads) { quads.append(localToAbsoluteQuad(FloatRect(0, 0, width(), height()))); } IntRect RenderBox::absoluteContentBox() const { IntRect rect = contentBoxRect(); FloatPoint absPos = localToAbsolute(FloatPoint()); rect.move(absPos.x(), absPos.y()); return rect; } FloatQuad RenderBox::absoluteContentQuad() const { IntRect rect = contentBoxRect(); return localToAbsoluteQuad(FloatRect(rect)); } IntRect RenderBox::outlineBoundsForRepaint(RenderBoxModelObject* repaintContainer) const { IntRect box = borderBoundingBox(); adjustRectForOutlineAndShadow(box); FloatQuad containerRelativeQuad = localToContainerQuad(FloatRect(box), repaintContainer); box = containerRelativeQuad.enclosingBoundingBox(); // FIXME: layoutDelta needs to be applied in parts before/after transforms and // repaint containers. https://bugs.webkit.org/show_bug.cgi?id=23308 box.move(view()->layoutDelta()); return box; } void RenderBox::addFocusRingRects(GraphicsContext* graphicsContext, int tx, int ty) { graphicsContext->addFocusRingRect(IntRect(tx, ty, width(), height())); } IntRect RenderBox::reflectionBox() const { IntRect result; if (!style()->boxReflect()) return result; IntRect box = borderBoxRect(); result = box; switch (style()->boxReflect()->direction()) { case ReflectionBelow: result.move(0, box.height() + reflectionOffset()); break; case ReflectionAbove: result.move(0, -box.height() - reflectionOffset()); break; case ReflectionLeft: result.move(-box.width() - reflectionOffset(), 0); break; case ReflectionRight: result.move(box.width() + reflectionOffset(), 0); break; } return result; } int RenderBox::reflectionOffset() const { if (!style()->boxReflect()) return 0; if (style()->boxReflect()->direction() == ReflectionLeft || style()->boxReflect()->direction() == ReflectionRight) return style()->boxReflect()->offset().calcValue(borderBoxRect().width()); return style()->boxReflect()->offset().calcValue(borderBoxRect().height()); } IntRect RenderBox::reflectedRect(const IntRect& r) const { if (!style()->boxReflect()) return IntRect(); IntRect box = borderBoxRect(); IntRect result = r; switch (style()->boxReflect()->direction()) { case ReflectionBelow: result.setY(box.bottom() + reflectionOffset() + (box.bottom() - r.bottom())); break; case ReflectionAbove: result.setY(box.y() - reflectionOffset() - box.height() + (box.bottom() - r.bottom())); break; case ReflectionLeft: result.setX(box.x() - reflectionOffset() - box.width() + (box.right() - r.right())); break; case ReflectionRight: result.setX(box.right() + reflectionOffset() + (box.right() - r.right())); break; } return result; } int RenderBox::verticalScrollbarWidth() const { return includeVerticalScrollbarSize() ? layer()->verticalScrollbarWidth() : 0; } int RenderBox::horizontalScrollbarHeight() const { return includeHorizontalScrollbarSize() ? layer()->horizontalScrollbarHeight() : 0; } bool RenderBox::scroll(ScrollDirection direction, ScrollGranularity granularity, float multiplier) { RenderLayer* l = layer(); if (l && l->scroll(direction, granularity, multiplier)) return true; RenderBlock* b = containingBlock(); if (b && !b->isRenderView()) return b->scroll(direction, granularity, multiplier); return false; } bool RenderBox::canBeProgramaticallyScrolled(bool) const { return (hasOverflowClip() && (scrollsOverflow() || (node() && node()->isContentEditable()))) || (node() && node()->isDocumentNode()); } void RenderBox::autoscroll() { if (layer()) layer()->autoscroll(); } void RenderBox::panScroll(const IntPoint& source) { if (layer()) layer()->panScrollFromPoint(source); } int RenderBox::minPrefWidth() const { if (prefWidthsDirty()) const_cast(this)->calcPrefWidths(); return m_minPrefWidth; } int RenderBox::maxPrefWidth() const { if (prefWidthsDirty()) const_cast(this)->calcPrefWidths(); return m_maxPrefWidth; } int RenderBox::overrideSize() const { if (!hasOverrideSize()) return -1; return gOverrideSizeMap->get(this); } void RenderBox::setOverrideSize(int s) { if (s == -1) { if (hasOverrideSize()) { setHasOverrideSize(false); gOverrideSizeMap->remove(this); } } else { if (!gOverrideSizeMap) gOverrideSizeMap = new OverrideSizeMap(); setHasOverrideSize(true); gOverrideSizeMap->set(this, s); } } int RenderBox::overrideWidth() const { return hasOverrideSize() ? overrideSize() : width(); } int RenderBox::overrideHeight() const { return hasOverrideSize() ? overrideSize() : height(); } int RenderBox::calcBorderBoxWidth(int width) const { int bordersPlusPadding = borderLeft() + borderRight() + paddingLeft() + paddingRight(); if (style()->boxSizing() == CONTENT_BOX) return width + bordersPlusPadding; return max(width, bordersPlusPadding); } int RenderBox::calcBorderBoxHeight(int height) const { int bordersPlusPadding = borderTop() + borderBottom() + paddingTop() + paddingBottom(); if (style()->boxSizing() == CONTENT_BOX) return height + bordersPlusPadding; return max(height, bordersPlusPadding); } int RenderBox::calcContentBoxWidth(int width) const { if (style()->boxSizing() == BORDER_BOX) width -= (borderLeft() + borderRight() + paddingLeft() + paddingRight()); return max(0, width); } int RenderBox::calcContentBoxHeight(int height) const { if (style()->boxSizing() == BORDER_BOX) height -= (borderTop() + borderBottom() + paddingTop() + paddingBottom()); return max(0, height); } // Hit Testing bool RenderBox::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, int xPos, int yPos, int tx, int ty, HitTestAction action) { tx += x(); ty += y(); // Check kids first. for (RenderObject* child = lastChild(); child; child = child->previousSibling()) { if (!child->hasLayer() && child->nodeAtPoint(request, result, xPos, yPos, tx, ty, action)) { updateHitTestResult(result, IntPoint(xPos - tx, yPos - ty)); return true; } } // Check our bounds next. For this purpose always assume that we can only be hit in the // foreground phase (which is true for replaced elements like images). if (visibleToHitTesting() && action == HitTestForeground && IntRect(tx, ty, width(), height()).contains(xPos, yPos)) { updateHitTestResult(result, IntPoint(xPos - tx, yPos - ty)); return true; } return false; } // --------------------- painting stuff ------------------------------- void RenderBox::paint(PaintInfo& paintInfo, int tx, int ty) { tx += x(); ty += y(); // default implementation. Just pass paint through to the children PaintInfo childInfo(paintInfo); childInfo.paintingRoot = paintingRootForChildren(paintInfo); for (RenderObject* child = firstChild(); child; child = child->nextSibling()) child->paint(childInfo, tx, ty); } void RenderBox::paintRootBoxDecorations(PaintInfo& paintInfo, int tx, int ty) { const FillLayer* bgLayer = style()->backgroundLayers(); Color bgColor = style()->backgroundColor(); if (!style()->hasBackground() && node() && node()->hasTagName(HTMLNames::htmlTag)) { // Locate the element using the DOM. This is easier than trying // to crawl around a render tree with potential :before/:after content and // anonymous blocks created by inline tags etc. We can locate the // render object very easily via the DOM. HTMLElement* body = document()->body(); RenderObject* bodyObject = (body && body->hasLocalName(bodyTag)) ? body->renderer() : 0; if (bodyObject) { bgLayer = bodyObject->style()->backgroundLayers(); bgColor = bodyObject->style()->backgroundColor(); } } int w = width(); int h = height(); int rw; int rh; if (view()->frameView()) { rw = view()->frameView()->contentsWidth(); rh = view()->frameView()->contentsHeight(); } else { rw = view()->width(); rh = view()->height(); } // CSS2 14.2: // The background of the box generated by the root element covers the entire canvas including // its margins. int bx = tx - marginLeft(); int by = ty - marginTop(); int bw = max(w + marginLeft() + marginRight() + borderLeft() + borderRight(), rw); int bh = max(h + marginTop() + marginBottom() + borderTop() + borderBottom(), rh); paintFillLayers(paintInfo, bgColor, bgLayer, bx, by, bw, bh); if (style()->hasBorder() && style()->display() != INLINE) paintBorder(paintInfo.context, tx, ty, w, h, style()); } void RenderBox::paintBoxDecorations(PaintInfo& paintInfo, int tx, int ty) { if (!shouldPaintWithinRoot(paintInfo)) return; if (isRoot()) { paintRootBoxDecorations(paintInfo, tx, ty); return; } int w = width(); int h = height(); // border-fit can adjust where we paint our border and background. If set, we snugly fit our line box descendants. (The iChat // balloon layout is an example of this). borderFitAdjust(tx, w); // FIXME: Should eventually give the theme control over whether the box shadow should paint, since controls could have // custom shadows of their own. paintBoxShadow(paintInfo.context, tx, ty, w, h, style(), Normal); // If we have a native theme appearance, paint that before painting our background. // The theme will tell us whether or not we should also paint the CSS background. bool themePainted = style()->hasAppearance() && !theme()->paint(this, paintInfo, IntRect(tx, ty, w, h)); if (!themePainted) { // The only paints its background if the root element has defined a background // independent of the body. Go through the DOM to get to the root element's render object, // since the root could be inline and wrapped in an anonymous block. if (!isBody() || document()->documentElement()->renderer()->style()->hasBackground()) paintFillLayers(paintInfo, style()->backgroundColor(), style()->backgroundLayers(), tx, ty, w, h); if (style()->hasAppearance()) theme()->paintDecorations(this, paintInfo, IntRect(tx, ty, w, h)); } paintBoxShadow(paintInfo.context, tx, ty, w, h, style(), Inset); // The theme will tell us whether or not we should also paint the CSS border. if ((!style()->hasAppearance() || (!themePainted && theme()->paintBorderOnly(this, paintInfo, IntRect(tx, ty, w, h)))) && style()->hasBorder()) paintBorder(paintInfo.context, tx, ty, w, h, style()); } void RenderBox::paintMask(PaintInfo& paintInfo, int tx, int ty) { if (!shouldPaintWithinRoot(paintInfo) || style()->visibility() != VISIBLE || paintInfo.phase != PaintPhaseMask) return; int w = width(); int h = height(); // border-fit can adjust where we paint our border and background. If set, we snugly fit our line box descendants. (The iChat // balloon layout is an example of this). borderFitAdjust(tx, w); paintMaskImages(paintInfo, tx, ty, w, h); } void RenderBox::paintMaskImages(const PaintInfo& paintInfo, int tx, int ty, int w, int h) { // Figure out if we need to push a transparency layer to render our mask. bool pushTransparencyLayer = false; StyleImage* maskBoxImage = style()->maskBoxImage().image(); if (maskBoxImage && style()->maskLayers()->hasImage()) { pushTransparencyLayer = true; } else { // We have to use an extra image buffer to hold the mask. Multiple mask images need // to composite together using source-over so that they can then combine into a single unified mask that // can be composited with the content using destination-in. SVG images need to be able to set compositing modes // as they draw images contained inside their sub-document, so we paint all our images into a separate buffer // and composite that buffer as the mask. // We have to check that the mask images to be rendered contain at least one image that can be actually used in rendering // before pushing the transparency layer. for (const FillLayer* fillLayer = style()->maskLayers()->next(); fillLayer; fillLayer = fillLayer->next()) { if (fillLayer->hasImage() && fillLayer->image()->canRender(style()->effectiveZoom())) { pushTransparencyLayer = true; // We found one image that can be used in rendering, exit the loop break; } } } CompositeOperator compositeOp = CompositeDestinationIn; if (pushTransparencyLayer) { paintInfo.context->setCompositeOperation(CompositeDestinationIn); paintInfo.context->beginTransparencyLayer(1.0f); compositeOp = CompositeSourceOver; } paintFillLayers(paintInfo, Color(), style()->maskLayers(), tx, ty, w, h, compositeOp); paintNinePieceImage(paintInfo.context, tx, ty, w, h, style(), style()->maskBoxImage(), compositeOp); if (pushTransparencyLayer) paintInfo.context->endTransparencyLayer(); } IntRect RenderBox::maskClipRect() { IntRect bbox = borderBoxRect(); if (style()->maskBoxImage().image()) return bbox; IntRect result; for (const FillLayer* maskLayer = style()->maskLayers(); maskLayer; maskLayer = maskLayer->next()) { if (maskLayer->image()) { IntRect maskRect; IntPoint phase; IntSize tileSize; calculateBackgroundImageGeometry(maskLayer, bbox.x(), bbox.y(), bbox.width(), bbox.height(), maskRect, phase, tileSize); result.unite(maskRect); } } return result; } void RenderBox::paintFillLayers(const PaintInfo& paintInfo, const Color& c, const FillLayer* fillLayer, int tx, int ty, int width, int height, CompositeOperator op) { if (!fillLayer) return; paintFillLayers(paintInfo, c, fillLayer->next(), tx, ty, width, height, op); paintFillLayer(paintInfo, c, fillLayer, tx, ty, width, height, op); } void RenderBox::paintFillLayer(const PaintInfo& paintInfo, const Color& c, const FillLayer* fillLayer, int tx, int ty, int width, int height, CompositeOperator op) { paintFillLayerExtended(paintInfo, c, fillLayer, tx, ty, width, height, 0, op); } void RenderBox::imageChanged(WrappedImagePtr image, const IntRect*) { if (!parent()) return; if ((style()->borderImage().image() && style()->borderImage().image()->data() == image) || (style()->maskBoxImage().image() && style()->maskBoxImage().image()->data() == image)) { repaint(); return; } bool didFullRepaint = repaintLayerRectsForImage(image, style()->backgroundLayers(), true); if (!didFullRepaint) repaintLayerRectsForImage(image, style()->maskLayers(), false); } bool RenderBox::repaintLayerRectsForImage(WrappedImagePtr image, const FillLayer* layers, bool drawingBackground) { IntRect rendererRect; RenderBox* layerRenderer = 0; for (const FillLayer* curLayer = layers; curLayer; curLayer = curLayer->next()) { if (curLayer->image() && image == curLayer->image()->data() && curLayer->image()->canRender(style()->effectiveZoom())) { // Now that we know this image is being used, compute the renderer and the rect // if we haven't already if (!layerRenderer) { bool drawingRootBackground = drawingBackground && (isRoot() || (isBody() && !document()->documentElement()->renderer()->style()->hasBackground())); if (drawingRootBackground) { layerRenderer = view(); int rw; int rh; if (FrameView* frameView = toRenderView(layerRenderer)->frameView()) { rw = frameView->contentsWidth(); rh = frameView->contentsHeight(); } else { rw = layerRenderer->width(); rh = layerRenderer->height(); } rendererRect = IntRect(-layerRenderer->marginLeft(), -layerRenderer->marginTop(), max(layerRenderer->width() + layerRenderer->marginLeft() + layerRenderer->marginRight() + layerRenderer->borderLeft() + layerRenderer->borderRight(), rw), max(layerRenderer->height() + layerRenderer->marginTop() + layerRenderer->marginBottom() + layerRenderer->borderTop() + layerRenderer->borderBottom(), rh)); } else { layerRenderer = this; rendererRect = borderBoxRect(); } } IntRect repaintRect; IntPoint phase; IntSize tileSize; layerRenderer->calculateBackgroundImageGeometry(curLayer, rendererRect.x(), rendererRect.y(), rendererRect.width(), rendererRect.height(), repaintRect, phase, tileSize); layerRenderer->repaintRectangle(repaintRect); if (repaintRect == rendererRect) return true; } } return false; } #if PLATFORM(MAC) void RenderBox::paintCustomHighlight(int tx, int ty, const AtomicString& type, bool behindText) { Frame* frame = document()->frame(); if (!frame) return; Page* page = frame->page(); if (!page) return; InlineBox* boxWrap = inlineBoxWrapper(); RootInlineBox* r = boxWrap ? boxWrap->root() : 0; if (r) { FloatRect rootRect(tx + r->x(), ty + r->selectionTop(), r->width(), r->selectionHeight()); FloatRect imageRect(tx + x(), rootRect.y(), width(), rootRect.height()); page->chrome()->client()->paintCustomHighlight(node(), type, imageRect, rootRect, behindText, false); } else { FloatRect imageRect(tx + x(), ty + y(), width(), height()); page->chrome()->client()->paintCustomHighlight(node(), type, imageRect, imageRect, behindText, false); } } #endif bool RenderBox::pushContentsClip(PaintInfo& paintInfo, int tx, int ty) { if (paintInfo.phase == PaintPhaseBlockBackground || paintInfo.phase == PaintPhaseSelfOutline || paintInfo.phase == PaintPhaseMask) return false; bool isControlClip = hasControlClip(); bool isOverflowClip = hasOverflowClip() && !layer()->isSelfPaintingLayer(); if (!isControlClip && !isOverflowClip) return false; if (paintInfo.phase == PaintPhaseOutline) paintInfo.phase = PaintPhaseChildOutlines; else if (paintInfo.phase == PaintPhaseChildBlockBackground) { paintInfo.phase = PaintPhaseBlockBackground; paintObject(paintInfo, tx, ty); paintInfo.phase = PaintPhaseChildBlockBackgrounds; } IntRect clipRect(isControlClip ? controlClipRect(tx, ty) : overflowClipRect(tx, ty)); paintInfo.context->save(); if (style()->hasBorderRadius()) { IntSize topLeft, topRight, bottomLeft, bottomRight; IntRect borderRect = IntRect(tx, ty, width(), height()); style()->getBorderRadiiForRect(borderRect, topLeft, topRight, bottomLeft, bottomRight); paintInfo.context->addRoundedRectClip(borderRect, topLeft, topRight, bottomLeft, bottomRight); } paintInfo.context->clip(clipRect); return true; } void RenderBox::popContentsClip(PaintInfo& paintInfo, PaintPhase originalPhase, int tx, int ty) { ASSERT(hasControlClip() || (hasOverflowClip() && !layer()->isSelfPaintingLayer())); paintInfo.context->restore(); if (originalPhase == PaintPhaseOutline) { paintInfo.phase = PaintPhaseSelfOutline; paintObject(paintInfo, tx, ty); paintInfo.phase = originalPhase; } else if (originalPhase == PaintPhaseChildBlockBackground) paintInfo.phase = originalPhase; } IntRect RenderBox::overflowClipRect(int tx, int ty) { // FIXME: When overflow-clip (CSS3) is implemented, we'll obtain the property // here. int bLeft = borderLeft(); int bTop = borderTop(); int clipX = tx + bLeft; int clipY = ty + bTop; int clipWidth = width() - bLeft - borderRight(); int clipHeight = height() - bTop - borderBottom(); // Subtract out scrollbars if we have them. if (layer()) { clipWidth -= layer()->verticalScrollbarWidth(); clipHeight -= layer()->horizontalScrollbarHeight(); } return IntRect(clipX, clipY, clipWidth, clipHeight); } IntRect RenderBox::clipRect(int tx, int ty) { int clipX = tx; int clipY = ty; int clipWidth = width(); int clipHeight = height(); if (!style()->clipLeft().isAuto()) { int c = style()->clipLeft().calcValue(width()); clipX += c; clipWidth -= c; } if (!style()->clipRight().isAuto()) clipWidth -= width() - style()->clipRight().calcValue(width()); if (!style()->clipTop().isAuto()) { int c = style()->clipTop().calcValue(height()); clipY += c; clipHeight -= c; } if (!style()->clipBottom().isAuto()) clipHeight -= height() - style()->clipBottom().calcValue(height()); return IntRect(clipX, clipY, clipWidth, clipHeight); } int RenderBox::containingBlockWidthForContent() const { RenderBlock* cb = containingBlock(); if (shrinkToAvoidFloats()) return cb->lineWidth(y(), false); return cb->availableWidth(); } void RenderBox::mapLocalToContainer(RenderBoxModelObject* repaintContainer, bool fixed, bool useTransforms, TransformState& transformState) const { if (repaintContainer == this) return; if (RenderView* v = view()) { if (v->layoutStateEnabled() && !repaintContainer) { LayoutState* layoutState = v->layoutState(); IntSize offset = layoutState->m_offset; offset.expand(x(), y()); if (style()->position() == RelativePosition && layer()) offset += layer()->relativePositionOffset(); transformState.move(offset); return; } } if (style()->position() == FixedPosition) fixed = true; RenderObject* o = container(); if (!o) return; bool hasTransform = hasLayer() && layer()->transform(); if (hasTransform) fixed = false; // Elements with transforms act as a containing block for fixed position descendants IntSize containerOffset = offsetFromContainer(o); bool preserve3D = useTransforms && (o->style()->preserves3D() || style()->preserves3D()); if (useTransforms && shouldUseTransformFromContainer(o)) { TransformationMatrix t; getTransformFromContainer(o, containerOffset, t); transformState.applyTransform(t, preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform); } else transformState.move(containerOffset.width(), containerOffset.height(), preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform); o->mapLocalToContainer(repaintContainer, fixed, useTransforms, transformState); } void RenderBox::mapAbsoluteToLocalPoint(bool fixed, bool useTransforms, TransformState& transformState) const { // We don't expect absoluteToLocal() to be called during layout (yet) ASSERT(!view() || !view()->layoutStateEnabled()); if (style()->position() == FixedPosition) fixed = true; bool hasTransform = hasLayer() && layer()->transform(); if (hasTransform) fixed = false; // Elements with transforms act as a containing block for fixed position descendants RenderObject* o = container(); if (!o) return; o->mapAbsoluteToLocalPoint(fixed, useTransforms, transformState); IntSize containerOffset = offsetFromContainer(o); bool preserve3D = useTransforms && (o->style()->preserves3D() || style()->preserves3D()); if (useTransforms && shouldUseTransformFromContainer(o)) { TransformationMatrix t; getTransformFromContainer(o, containerOffset, t); transformState.applyTransform(t, preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform); } else transformState.move(-containerOffset.width(), -containerOffset.height(), preserve3D ? TransformState::AccumulateTransform : TransformState::FlattenTransform); } IntSize RenderBox::offsetFromContainer(RenderObject* o) const { ASSERT(o == container()); IntSize offset; if (isRelPositioned()) offset += relativePositionOffset(); if (!isInline() || isReplaced()) { RenderBlock* cb; if (o->isBlockFlow() && style()->position() != AbsolutePosition && style()->position() != FixedPosition && (cb = toRenderBlock(o))->hasColumns()) { IntRect rect(x(), y(), 1, 1); cb->adjustRectForColumns(rect); offset.expand(rect.x(), rect.y()); } else offset.expand(x(), y()); } if (o->hasOverflowClip()) offset -= toRenderBox(o)->layer()->scrolledContentOffset(); if (style()->position() == AbsolutePosition && o->isRelPositioned() && o->isRenderInline()) offset += toRenderInline(o)->relativePositionedInlineOffset(this); return offset; } InlineBox* RenderBox::createInlineBox() { return new (renderArena()) InlineBox(this); } void RenderBox::dirtyLineBoxes(bool fullLayout) { if (m_inlineBoxWrapper) { if (fullLayout) { m_inlineBoxWrapper->destroy(renderArena()); m_inlineBoxWrapper = 0; } else m_inlineBoxWrapper->dirtyLineBoxes(); } } void RenderBox::positionLineBox(InlineBox* box) { if (isPositioned()) { // Cache the x position only if we were an INLINE type originally. bool wasInline = style()->isOriginalDisplayInlineType(); if (wasInline && style()->hasStaticX()) { // The value is cached in the xPos of the box. We only need this value if // our object was inline originally, since otherwise it would have ended up underneath // the inlines. layer()->setStaticX(box->x()); setChildNeedsLayout(true, false); // Just go ahead and mark the positioned object as needing layout, so it will update its position properly. } else if (!wasInline && style()->hasStaticY()) { // Our object was a block originally, so we make our normal flow position be // just below the line box (as though all the inlines that came before us got // wrapped in an anonymous block, which is what would have happened had we been // in flow). This value was cached in the y() of the box. layer()->setStaticY(box->y()); setChildNeedsLayout(true, false); // Just go ahead and mark the positioned object as needing layout, so it will update its position properly. } // Nuke the box. box->remove(); box->destroy(renderArena()); } else if (isReplaced()) { setLocation(box->x(), box->y()); m_inlineBoxWrapper = box; } } void RenderBox::deleteLineBoxWrapper() { if (m_inlineBoxWrapper) { if (!documentBeingDestroyed()) m_inlineBoxWrapper->remove(); m_inlineBoxWrapper->destroy(renderArena()); m_inlineBoxWrapper = 0; } } IntRect RenderBox::clippedOverflowRectForRepaint(RenderBoxModelObject* repaintContainer) { if (style()->visibility() != VISIBLE && !enclosingLayer()->hasVisibleContent()) return IntRect(); IntRect r = overflowRect(false); RenderView* v = view(); if (v) { // FIXME: layoutDelta needs to be applied in parts before/after transforms and // repaint containers. https://bugs.webkit.org/show_bug.cgi?id=23308 r.move(v->layoutDelta()); } if (style()) { if (style()->hasAppearance()) // The theme may wish to inflate the rect used when repainting. theme()->adjustRepaintRect(this, r); // We have to use maximalOutlineSize() because a child might have an outline // that projects outside of our overflowRect. if (v) { ASSERT(style()->outlineSize() <= v->maximalOutlineSize()); r.inflate(v->maximalOutlineSize()); } } computeRectForRepaint(repaintContainer, r); return r; } void RenderBox::computeRectForRepaint(RenderBoxModelObject* repaintContainer, IntRect& rect, bool fixed) { if (RenderView* v = view()) { // LayoutState is only valid for root-relative repainting if (v->layoutStateEnabled() && !repaintContainer) { LayoutState* layoutState = v->layoutState(); if (layer() && layer()->transform()) rect = layer()->transform()->mapRect(rect); if (style()->position() == RelativePosition && layer()) rect.move(layer()->relativePositionOffset()); rect.move(x(), y()); rect.move(layoutState->m_offset); if (layoutState->m_clipped) rect.intersect(layoutState->m_clipRect); return; } } if (hasReflection()) rect.unite(reflectedRect(rect)); if (repaintContainer == this) return; RenderObject* o = container(); if (!o) return; IntPoint topLeft = rect.location(); topLeft.move(x(), y()); if (style()->position() == FixedPosition) fixed = true; if (o->isBlockFlow() && style()->position() != AbsolutePosition && style()->position() != FixedPosition) { RenderBlock* cb = toRenderBlock(o); if (cb->hasColumns()) { IntRect repaintRect(topLeft, rect.size()); cb->adjustRectForColumns(repaintRect); topLeft = repaintRect.location(); rect = repaintRect; } } // We are now in our parent container's coordinate space. Apply our transform to obtain a bounding box // in the parent's coordinate space that encloses us. if (layer() && layer()->transform()) { fixed = false; rect = layer()->transform()->mapRect(rect); // FIXME: this clobbers topLeft adjustment done for multicol above topLeft = rect.location(); topLeft.move(x(), y()); } if (style()->position() == AbsolutePosition && o->isRelPositioned() && o->isRenderInline()) topLeft += toRenderInline(o)->relativePositionedInlineOffset(this); else if (style()->position() == RelativePosition && layer()) { // Apply the relative position offset when invalidating a rectangle. The layer // is translated, but the render box isn't, so we need to do this to get the // right dirty rect. Since this is called from RenderObject::setStyle, the relative position // flag on the RenderObject has been cleared, so use the one on the style(). topLeft += layer()->relativePositionOffset(); } // FIXME: We ignore the lightweight clipping rect that controls use, since if |o| is in mid-layout, // its controlClipRect will be wrong. For overflow clip we use the values cached by the layer. if (o->hasOverflowClip()) { RenderBox* containerBox = toRenderBox(o); // o->height() is inaccurate if we're in the middle of a layout of |o|, so use the // layer's size instead. Even if the layer's size is wrong, the layer itself will repaint // anyway if its size does change. topLeft -= containerBox->layer()->scrolledContentOffset(); // For overflow:auto/scroll/hidden. IntRect repaintRect(topLeft, rect.size()); IntRect boxRect(0, 0, containerBox->layer()->width(), containerBox->layer()->height()); rect = intersection(repaintRect, boxRect); if (rect.isEmpty()) return; } else rect.setLocation(topLeft); o->computeRectForRepaint(repaintContainer, rect, fixed); } void RenderBox::repaintDuringLayoutIfMoved(const IntRect& rect) { int newX = x(); int newY = y(); int newWidth = width(); int newHeight = height(); if (rect.x() != newX || rect.y() != newY) { // The child moved. Invalidate the object's old and new positions. We have to do this // since the object may not have gotten a layout. m_frameRect = rect; repaint(); repaintOverhangingFloats(true); m_frameRect = IntRect(newX, newY, newWidth, newHeight); repaint(); repaintOverhangingFloats(true); } } void RenderBox::calcWidth() { #ifdef ANDROID_LAYOUT if (view()->frameView()) { const Settings* settings = document()->settings(); ASSERT(settings); if (settings->layoutAlgorithm() == Settings::kLayoutFitColumnToScreen) { m_visibleWidth = view()->frameView()->screenWidth(); } } #endif if (isPositioned()) { calcAbsoluteHorizontal(); return; } // If layout is limited to a subtree, the subtree root's width does not change. if (node() && view()->frameView() && view()->frameView()->layoutRoot(true) == this) return; // The parent box is flexing us, so it has increased or decreased our // width. Use the width from the style context. if (hasOverrideSize() && parent()->style()->boxOrient() == HORIZONTAL && parent()->isFlexibleBox() && parent()->isFlexingChildren()) { setWidth(overrideSize()); return; } bool inVerticalBox = parent()->isFlexibleBox() && (parent()->style()->boxOrient() == VERTICAL); bool stretching = (parent()->style()->boxAlign() == BSTRETCH); bool treatAsReplaced = shouldCalculateSizeAsReplaced() && (!inVerticalBox || !stretching); Length w = (treatAsReplaced) ? Length(calcReplacedWidth(), Fixed) : style()->width(); RenderBlock* cb = containingBlock(); int containerWidth = max(0, containingBlockWidthForContent()); Length marginLeft = style()->marginLeft(); Length marginRight = style()->marginRight(); if (isInline() && !isInlineBlockOrInlineTable()) { // just calculate margins m_marginLeft = marginLeft.calcMinValue(containerWidth); m_marginRight = marginRight.calcMinValue(containerWidth); #ifdef ANDROID_LAYOUT if (treatAsReplaced) { #else if (treatAsReplaced) #endif setWidth(max(w.value() + borderLeft() + borderRight() + paddingLeft() + paddingRight(), minPrefWidth())); #ifdef ANDROID_LAYOUT // in SSR mode with replaced box, if the box width is wider than the container width, // it will be shrinked to fit to the container. if (containerWidth && (width() + m_marginLeft + m_marginRight) > containerWidth && document()->frame()->settings()->layoutAlgorithm() == Settings::kLayoutSSR) { m_marginLeft = m_marginRight = 0; setWidth(containerWidth); m_minPrefWidth = m_maxPrefWidth = containerWidth; } } #endif return; } // Width calculations if (treatAsReplaced) setWidth(w.value() + borderLeft() + borderRight() + paddingLeft() + paddingRight()); else { // Calculate Width setWidth(calcWidthUsing(Width, containerWidth)); // Calculate MaxWidth if (!style()->maxWidth().isUndefined()) { int maxW = calcWidthUsing(MaxWidth, containerWidth); if (width() > maxW) { setWidth(maxW); w = style()->maxWidth(); } } // Calculate MinWidth int minW = calcWidthUsing(MinWidth, containerWidth); if (width() < minW) { setWidth(minW); w = style()->minWidth(); } } if (stretchesToMinIntrinsicWidth()) { setWidth(max(width(), minPrefWidth())); w = Length(width(), Fixed); } // Margin calculations if (w.isAuto()) { m_marginLeft = marginLeft.calcMinValue(containerWidth); m_marginRight = marginRight.calcMinValue(containerWidth); } else { m_marginLeft = 0; m_marginRight = 0; calcHorizontalMargins(marginLeft, marginRight, containerWidth); } #ifdef ANDROID_LAYOUT // in SSR mode with non-replaced box, we use ANDROID_SSR_MARGIN_PADDING for left/right margin. // If the box width is wider than the container width, it will be shrinked to fit to the container. if (containerWidth && !treatAsReplaced && document()->settings()->layoutAlgorithm() == Settings::kLayoutSSR) { setWidth(width() + m_marginLeft + m_marginRight); m_marginLeft = m_marginLeft > ANDROID_SSR_MARGIN_PADDING ? ANDROID_SSR_MARGIN_PADDING : m_marginLeft; m_marginRight = m_marginRight > ANDROID_SSR_MARGIN_PADDING ? ANDROID_SSR_MARGIN_PADDING : m_marginRight; if (width() > containerWidth) { m_minPrefWidth = m_maxPrefWidth = containerWidth-(m_marginLeft + m_marginRight); setWidth(m_minPrefWidth); } else setWidth(width() -(m_marginLeft + m_marginRight)); } #endif if (containerWidth && containerWidth != (width() + m_marginLeft + m_marginRight) && !isFloating() && !isInline() && !cb->isFlexibleBox()) { if (cb->style()->direction() == LTR) m_marginRight = containerWidth - width() - m_marginLeft; else m_marginLeft = containerWidth - width() - m_marginRight; } } int RenderBox::calcWidthUsing(WidthType widthType, int cw) { int widthResult = width(); Length w; if (widthType == Width) w = style()->width(); else if (widthType == MinWidth) w = style()->minWidth(); else w = style()->maxWidth(); if (w.isIntrinsicOrAuto()) { int marginLeft = style()->marginLeft().calcMinValue(cw); int marginRight = style()->marginRight().calcMinValue(cw); if (cw) widthResult = cw - marginLeft - marginRight; if (sizesToIntrinsicWidth(widthType)) { widthResult = max(widthResult, minPrefWidth()); widthResult = min(widthResult, maxPrefWidth()); } } else widthResult = calcBorderBoxWidth(w.calcValue(cw)); return widthResult; } bool RenderBox::sizesToIntrinsicWidth(WidthType widthType) const { // Marquees in WinIE are like a mixture of blocks and inline-blocks. They size as though they're blocks, // but they allow text to sit on the same line as the marquee. if (isFloating() || (isInlineBlockOrInlineTable() && !isHTMLMarquee())) return true; // This code may look a bit strange. Basically width:intrinsic should clamp the size when testing both // min-width and width. max-width is only clamped if it is also intrinsic. Length width = (widthType == MaxWidth) ? style()->maxWidth() : style()->width(); if (width.type() == Intrinsic) return true; // Children of a horizontal marquee do not fill the container by default. // FIXME: Need to deal with MAUTO value properly. It could be vertical. if (parent()->style()->overflowX() == OMARQUEE) { EMarqueeDirection dir = parent()->style()->marqueeDirection(); if (dir == MAUTO || dir == MFORWARD || dir == MBACKWARD || dir == MLEFT || dir == MRIGHT) return true; } // Flexible horizontal boxes lay out children at their intrinsic widths. Also vertical boxes // that don't stretch their kids lay out their children at their intrinsic widths. if (parent()->isFlexibleBox() && (parent()->style()->boxOrient() == HORIZONTAL || parent()->style()->boxAlign() != BSTRETCH)) return true; return false; } void RenderBox::calcHorizontalMargins(const Length& marginLeft, const Length& marginRight, int containerWidth) { if (isFloating() || isInline()) { // Inline blocks/tables and floats don't have their margins increased. m_marginLeft = marginLeft.calcMinValue(containerWidth); m_marginRight = marginRight.calcMinValue(containerWidth); return; } if ((marginLeft.isAuto() && marginRight.isAuto() && width() < containerWidth) || (!marginLeft.isAuto() && !marginRight.isAuto() && containingBlock()->style()->textAlign() == WEBKIT_CENTER)) { m_marginLeft = max(0, (containerWidth - width()) / 2); m_marginRight = containerWidth - width() - m_marginLeft; } else if ((marginRight.isAuto() && width() < containerWidth) || (!marginLeft.isAuto() && containingBlock()->style()->direction() == RTL && containingBlock()->style()->textAlign() == WEBKIT_LEFT)) { m_marginLeft = marginLeft.calcValue(containerWidth); m_marginRight = containerWidth - width() - m_marginLeft; } else if ((marginLeft.isAuto() && width() < containerWidth) || (!marginRight.isAuto() && containingBlock()->style()->direction() == LTR && containingBlock()->style()->textAlign() == WEBKIT_RIGHT)) { m_marginRight = marginRight.calcValue(containerWidth); m_marginLeft = containerWidth - width() - m_marginRight; } else { // This makes auto margins 0 if we failed a width() < containerWidth test above (css2.1, 10.3.3). m_marginLeft = marginLeft.calcMinValue(containerWidth); m_marginRight = marginRight.calcMinValue(containerWidth); } } void RenderBox::calcHeight() { // Cell height is managed by the table and inline non-replaced elements do not support a height property. if (isTableCell() || (isInline() && !isReplaced())) return; Length h; if (isPositioned()) calcAbsoluteVertical(); else { calcVerticalMargins(); // For tables, calculate margins only. if (isTable()) return; bool inHorizontalBox = parent()->isFlexibleBox() && parent()->style()->boxOrient() == HORIZONTAL; bool stretching = parent()->style()->boxAlign() == BSTRETCH; bool treatAsReplaced = shouldCalculateSizeAsReplaced() && (!inHorizontalBox || !stretching); bool checkMinMaxHeight = false; // The parent box is flexing us, so it has increased or decreased our height. We have to // grab our cached flexible height. if (hasOverrideSize() && parent()->isFlexibleBox() && parent()->style()->boxOrient() == VERTICAL && parent()->isFlexingChildren()) h = Length(overrideSize() - borderTop() - borderBottom() - paddingTop() - paddingBottom(), Fixed); else if (treatAsReplaced) h = Length(calcReplacedHeight(), Fixed); else { h = style()->height(); checkMinMaxHeight = true; } // Block children of horizontal flexible boxes fill the height of the box. if (h.isAuto() && parent()->isFlexibleBox() && parent()->style()->boxOrient() == HORIZONTAL && parent()->isStretchingChildren()) { h = Length(parentBox()->contentHeight() - marginTop() - marginBottom() - borderTop() - paddingTop() - borderBottom() - paddingBottom(), Fixed); checkMinMaxHeight = false; } int heightResult; if (checkMinMaxHeight) { #ifdef ANDROID_LAYOUT // in SSR mode, ignore CSS height as layout is so different if (document()->settings()->layoutAlgorithm() == Settings::kLayoutSSR) heightResult = -1; else #endif heightResult = calcHeightUsing(style()->height()); if (heightResult == -1) heightResult = height(); int minH = calcHeightUsing(style()->minHeight()); // Leave as -1 if unset. int maxH = style()->maxHeight().isUndefined() ? heightResult : calcHeightUsing(style()->maxHeight()); if (maxH == -1) maxH = heightResult; heightResult = min(maxH, heightResult); heightResult = max(minH, heightResult); } else { // The only times we don't check min/max height are when a fixed length has // been given as an override. Just use that. The value has already been adjusted // for box-sizing. heightResult = h.value() + borderTop() + borderBottom() + paddingTop() + paddingBottom(); } setHeight(heightResult); } // WinIE quirk: The block always fills the entire canvas in quirks mode. The always fills the // block in quirks mode. Only apply this quirk if the block is normal flow and no height // is specified. When we're printing, we also need this quirk if the body or root has a percentage // height since we don't set a height in RenderView when we're printing. So without this quirk, the // height has nothing to be a percentage of, and it ends up being 0. That is bad. bool printingNeedsBaseHeight = document()->printing() && h.isPercent() && (isRoot() || isBody() && document()->documentElement()->renderer()->style()->height().isPercent()); if (stretchesToViewHeight() || printingNeedsBaseHeight) { int margins = collapsedMarginTop() + collapsedMarginBottom(); int visHeight = document()->printing() ? view()->frameView()->visibleHeight() : view()->viewHeight(); if (isRoot()) setHeight(max(height(), visHeight - margins)); else { int marginsBordersPadding = margins + parentBox()->marginTop() + parentBox()->marginBottom() + parentBox()->borderTop() + parentBox()->borderBottom() + parentBox()->paddingTop() + parentBox()->paddingBottom(); setHeight(max(height(), visHeight - marginsBordersPadding)); } } } int RenderBox::calcHeightUsing(const Length& h) { int height = -1; if (!h.isAuto()) { if (h.isFixed()) height = h.value(); else if (h.isPercent()) height = calcPercentageHeight(h); if (height != -1) { height = calcBorderBoxHeight(height); return height; } } return height; } int RenderBox::calcPercentageHeight(const Length& height) { int result = -1; bool includeBorderPadding = isTable(); RenderBlock* cb = containingBlock(); if (style()->htmlHacks()) { // In quirks mode, blocks with auto height are skipped, and we keep looking for an enclosing // block that may have a specified height and then use it. In strict mode, this violates the // specification, which states that percentage heights just revert to auto if the containing // block has an auto height. while (!cb->isRenderView() && !cb->isBody() && !cb->isTableCell() && !cb->isPositioned() && cb->style()->height().isAuto()) { cb = cb->containingBlock(); cb->addPercentHeightDescendant(this); } } // A positioned element that specified both top/bottom or that specifies height should be treated as though it has a height // explicitly specified that can be used for any percentage computations. bool isPositionedWithSpecifiedHeight = cb->isPositioned() && (!cb->style()->height().isAuto() || (!cb->style()->top().isAuto() && !cb->style()->bottom().isAuto())); // Table cells violate what the CSS spec says to do with heights. Basically we // don't care if the cell specified a height or not. We just always make ourselves // be a percentage of the cell's current content height. if (cb->isTableCell()) { result = cb->overrideSize(); if (result == -1) { // Normally we would let the cell size intrinsically, but scrolling overflow has to be // treated differently, since WinIE lets scrolled overflow regions shrink as needed. // While we can't get all cases right, we can at least detect when the cell has a specified // height or when the table has a specified height. In these cases we want to initially have // no size and allow the flexing of the table or the cell to its specified height to cause us // to grow to fill the space. This could end up being wrong in some cases, but it is // preferable to the alternative (sizing intrinsically and making the row end up too big). RenderTableCell* cell = toRenderTableCell(cb); if (scrollsOverflowY() && (!cell->style()->height().isAuto() || !cell->table()->style()->height().isAuto())) return 0; return -1; } includeBorderPadding = true; } // Otherwise we only use our percentage height if our containing block had a specified // height. else if (cb->style()->height().isFixed()) result = cb->calcContentBoxHeight(cb->style()->height().value()); else if (cb->style()->height().isPercent() && !isPositionedWithSpecifiedHeight) { // We need to recur and compute the percentage height for our containing block. result = cb->calcPercentageHeight(cb->style()->height()); if (result != -1) result = cb->calcContentBoxHeight(result); } else if (cb->isRenderView() || (cb->isBody() && style()->htmlHacks()) || isPositionedWithSpecifiedHeight) { // Don't allow this to affect the block' height() member variable, since this // can get called while the block is still laying out its kids. int oldHeight = cb->height(); cb->calcHeight(); result = cb->contentHeight(); cb->setHeight(oldHeight); } else if (cb->isRoot() && isPositioned()) // Match the positioned objects behavior, which is that positioned objects will fill their viewport // always. Note we could only hit this case by recurring into calcPercentageHeight on a positioned containing block. result = cb->calcContentBoxHeight(cb->availableHeight()); if (result != -1) { result = height.calcValue(result); if (includeBorderPadding) { // It is necessary to use the border-box to match WinIE's broken // box model. This is essential for sizing inside // table cells using percentage heights. result -= (borderTop() + paddingTop() + borderBottom() + paddingBottom()); result = max(0, result); } } return result; } int RenderBox::calcReplacedWidth(bool includeMaxWidth) const { int width = calcReplacedWidthUsing(style()->width()); int minW = calcReplacedWidthUsing(style()->minWidth()); int maxW = !includeMaxWidth || style()->maxWidth().isUndefined() ? width : calcReplacedWidthUsing(style()->maxWidth()); return max(minW, min(width, maxW)); } int RenderBox::calcReplacedWidthUsing(Length width) const { switch (width.type()) { case Fixed: return calcContentBoxWidth(width.value()); case Percent: { const int cw = isPositioned() ? containingBlockWidthForPositioned(toRenderBoxModelObject(container())) : containingBlockWidthForContent(); if (cw > 0) return calcContentBoxWidth(width.calcMinValue(cw)); } // fall through default: return intrinsicSize().width(); } } int RenderBox::calcReplacedHeight() const { int height = calcReplacedHeightUsing(style()->height()); int minH = calcReplacedHeightUsing(style()->minHeight()); int maxH = style()->maxHeight().isUndefined() ? height : calcReplacedHeightUsing(style()->maxHeight()); return max(minH, min(height, maxH)); } int RenderBox::calcReplacedHeightUsing(Length height) const { switch (height.type()) { case Fixed: return calcContentBoxHeight(height.value()); case Percent: { RenderObject* cb = isPositioned() ? container() : containingBlock(); while (cb->isAnonymous()) { cb = cb->containingBlock(); toRenderBlock(cb)->addPercentHeightDescendant(const_cast(this)); } if (cb->isPositioned() && cb->style()->height().isAuto() && !(cb->style()->top().isAuto() || cb->style()->bottom().isAuto())) { ASSERT(cb->isRenderBlock()); RenderBlock* block = toRenderBlock(cb); int oldHeight = block->height(); block->calcHeight(); int newHeight = block->calcContentBoxHeight(block->contentHeight()); block->setHeight(oldHeight); return calcContentBoxHeight(height.calcValue(newHeight)); } int availableHeight = isPositioned() ? containingBlockHeightForPositioned(toRenderBoxModelObject(cb)) : toRenderBox(cb)->availableHeight(); // It is necessary to use the border-box to match WinIE's broken // box model. This is essential for sizing inside // table cells using percentage heights. if (cb->isTableCell() && (cb->style()->height().isAuto() || cb->style()->height().isPercent())) { // Don't let table cells squeeze percent-height replaced elements // availableHeight = max(availableHeight, intrinsicSize().height()); return height.calcValue(availableHeight - (borderTop() + borderBottom() + paddingTop() + paddingBottom())); } return calcContentBoxHeight(height.calcValue(availableHeight)); } default: return intrinsicSize().height(); } } int RenderBox::availableHeight() const { return availableHeightUsing(style()->height()); } int RenderBox::availableHeightUsing(const Length& h) const { if (h.isFixed()) return calcContentBoxHeight(h.value()); if (isRenderView()) return toRenderView(this)->frameView()->visibleHeight(); // We need to stop here, since we don't want to increase the height of the table // artificially. We're going to rely on this cell getting expanded to some new // height, and then when we lay out again we'll use the calculation below. if (isTableCell() && (h.isAuto() || h.isPercent())) return overrideSize() - (borderLeft() + borderRight() + paddingLeft() + paddingRight()); if (h.isPercent()) return calcContentBoxHeight(h.calcValue(containingBlock()->availableHeight())); if (isRenderBlock() && isPositioned() && style()->height().isAuto() && !(style()->top().isAuto() || style()->bottom().isAuto())) { RenderBlock* block = const_cast(toRenderBlock(this)); int oldHeight = block->height(); block->calcHeight(); int newHeight = block->calcContentBoxHeight(block->contentHeight()); block->setHeight(oldHeight); return calcContentBoxHeight(newHeight); } return containingBlock()->availableHeight(); } void RenderBox::calcVerticalMargins() { if (isTableCell()) { m_marginTop = 0; m_marginBottom = 0; return; } // margins are calculated with respect to the _width_ of // the containing block (8.3) int cw = containingBlock()->contentWidth(); m_marginTop = style()->marginTop().calcMinValue(cw); m_marginBottom = style()->marginBottom().calcMinValue(cw); } int RenderBox::containingBlockWidthForPositioned(const RenderBoxModelObject* containingBlock) const { if (containingBlock->isBox()) { const RenderBox* containingBlockBox = toRenderBox(containingBlock); return containingBlockBox->width() - containingBlockBox->borderLeft() - containingBlockBox->borderRight() - containingBlockBox->verticalScrollbarWidth(); } ASSERT(containingBlock->isRenderInline() && containingBlock->isRelPositioned()); const RenderInline* flow = toRenderInline(containingBlock); InlineFlowBox* first = flow->firstLineBox(); InlineFlowBox* last = flow->lastLineBox(); // If the containing block is empty, return a width of 0. if (!first || !last) return 0; int fromLeft; int fromRight; if (containingBlock->style()->direction() == LTR) { fromLeft = first->x() + first->borderLeft(); fromRight = last->x() + last->width() - last->borderRight(); } else { fromRight = first->x() + first->width() - first->borderRight(); fromLeft = last->x() + last->borderLeft(); } return max(0, (fromRight - fromLeft)); } int RenderBox::containingBlockHeightForPositioned(const RenderBoxModelObject* containingBlock) const { int heightResult = 0; if (containingBlock->isBox()) heightResult = toRenderBox(containingBlock)->height(); else if (containingBlock->isRenderInline()) { ASSERT(containingBlock->isRelPositioned()); heightResult = toRenderInline(containingBlock)->linesBoundingBox().height(); } return heightResult - containingBlock->borderTop() - containingBlock->borderBottom(); } void RenderBox::calcAbsoluteHorizontal() { if (isReplaced()) { calcAbsoluteHorizontalReplaced(); return; } // QUESTIONS // FIXME 1: Which RenderObject's 'direction' property should used: the // containing block (cb) as the spec seems to imply, the parent (parent()) as // was previously done in calculating the static distances, or ourself, which // was also previously done for deciding what to override when you had // over-constrained margins? Also note that the container block is used // in similar situations in other parts of the RenderBox class (see calcWidth() // and calcHorizontalMargins()). For now we are using the parent for quirks // mode and the containing block for strict mode. // FIXME 2: Should we still deal with these the cases of 'left' or 'right' having // the type 'static' in determining whether to calculate the static distance? // NOTE: 'static' is not a legal value for 'left' or 'right' as of CSS 2.1. // FIXME 3: Can perhaps optimize out cases when max-width/min-width are greater // than or less than the computed width(). Be careful of box-sizing and // percentage issues. // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.3.7 "Absolutely positioned, non-replaced elements" // // (block-style-comments in this function and in calcAbsoluteHorizontalValues() // correspond to text from the spec) // We don't use containingBlock(), since we may be positioned by an enclosing // relative positioned inline. const RenderBoxModelObject* containerBlock = toRenderBoxModelObject(container()); const int containerWidth = containingBlockWidthForPositioned(containerBlock); // To match WinIE, in quirks mode use the parent's 'direction' property // instead of the the container block's. TextDirection containerDirection = (style()->htmlHacks()) ? parent()->style()->direction() : containerBlock->style()->direction(); const int bordersPlusPadding = borderLeft() + borderRight() + paddingLeft() + paddingRight(); const Length marginLeft = style()->marginLeft(); const Length marginRight = style()->marginRight(); Length left = style()->left(); Length right = style()->right(); /*---------------------------------------------------------------------------*\ * For the purposes of this section and the next, the term "static position" * (of an element) refers, roughly, to the position an element would have had * in the normal flow. More precisely: * * * The static position for 'left' is the distance from the left edge of the * containing block to the left margin edge of a hypothetical box that would * have been the first box of the element if its 'position' property had * been 'static' and 'float' had been 'none'. The value is negative if the * hypothetical box is to the left of the containing block. * * The static position for 'right' is the distance from the right edge of the * containing block to the right margin edge of the same hypothetical box as * above. The value is positive if the hypothetical box is to the left of the * containing block's edge. * * But rather than actually calculating the dimensions of that hypothetical box, * user agents are free to make a guess at its probable position. * * For the purposes of calculating the static position, the containing block of * fixed positioned elements is the initial containing block instead of the * viewport, and all scrollable boxes should be assumed to be scrolled to their * origin. \*---------------------------------------------------------------------------*/ // see FIXME 2 // Calculate the static distance if needed. if (left.isAuto() && right.isAuto()) { if (containerDirection == LTR) { // 'staticX' should already have been set through layout of the parent. int staticPosition = layer()->staticX() - containerBlock->borderLeft(); for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent()) { if (po->isBox()) staticPosition += toRenderBox(po)->x(); } left.setValue(Fixed, staticPosition); } else { RenderObject* po = parent(); // 'staticX' should already have been set through layout of the parent. int staticPosition = layer()->staticX() + containerWidth + containerBlock->borderRight(); if (po->isBox()) staticPosition -= toRenderBox(po)->width(); for (; po && po != containerBlock; po = po->parent()) { if (po->isBox()) staticPosition -= toRenderBox(po)->x(); } right.setValue(Fixed, staticPosition); } } // Calculate constraint equation values for 'width' case. int widthResult; int xResult; calcAbsoluteHorizontalValues(style()->width(), containerBlock, containerDirection, containerWidth, bordersPlusPadding, left, right, marginLeft, marginRight, widthResult, m_marginLeft, m_marginRight, xResult); setWidth(widthResult); setX(xResult); // Calculate constraint equation values for 'max-width' case. if (!style()->maxWidth().isUndefined()) { int maxWidth; int maxMarginLeft; int maxMarginRight; int maxXPos; calcAbsoluteHorizontalValues(style()->maxWidth(), containerBlock, containerDirection, containerWidth, bordersPlusPadding, left, right, marginLeft, marginRight, maxWidth, maxMarginLeft, maxMarginRight, maxXPos); if (width() > maxWidth) { setWidth(maxWidth); m_marginLeft = maxMarginLeft; m_marginRight = maxMarginRight; m_frameRect.setX(maxXPos); } } // Calculate constraint equation values for 'min-width' case. if (!style()->minWidth().isZero()) { int minWidth; int minMarginLeft; int minMarginRight; int minXPos; calcAbsoluteHorizontalValues(style()->minWidth(), containerBlock, containerDirection, containerWidth, bordersPlusPadding, left, right, marginLeft, marginRight, minWidth, minMarginLeft, minMarginRight, minXPos); if (width() < minWidth) { setWidth(minWidth); m_marginLeft = minMarginLeft; m_marginRight = minMarginRight; m_frameRect.setX(minXPos); } } if (stretchesToMinIntrinsicWidth() && width() < minPrefWidth() - bordersPlusPadding) { calcAbsoluteHorizontalValues(Length(minPrefWidth() - bordersPlusPadding, Fixed), containerBlock, containerDirection, containerWidth, bordersPlusPadding, left, right, marginLeft, marginRight, widthResult, m_marginLeft, m_marginRight, xResult); setWidth(widthResult); setX(xResult); } // Put width() into correct form. setWidth(width() + bordersPlusPadding); } void RenderBox::calcAbsoluteHorizontalValues(Length width, const RenderBoxModelObject* containerBlock, TextDirection containerDirection, const int containerWidth, const int bordersPlusPadding, const Length left, const Length right, const Length marginLeft, const Length marginRight, int& widthValue, int& marginLeftValue, int& marginRightValue, int& xPos) { // 'left' and 'right' cannot both be 'auto' because one would of been // converted to the static postion already ASSERT(!(left.isAuto() && right.isAuto())); int leftValue = 0; bool widthIsAuto = width.isIntrinsicOrAuto(); bool leftIsAuto = left.isAuto(); bool rightIsAuto = right.isAuto(); if (!leftIsAuto && !widthIsAuto && !rightIsAuto) { /*-----------------------------------------------------------------------*\ * If none of the three is 'auto': If both 'margin-left' and 'margin- * right' are 'auto', solve the equation under the extra constraint that * the two margins get equal values, unless this would make them negative, * in which case when direction of the containing block is 'ltr' ('rtl'), * set 'margin-left' ('margin-right') to zero and solve for 'margin-right' * ('margin-left'). If one of 'margin-left' or 'margin-right' is 'auto', * solve the equation for that value. If the values are over-constrained, * ignore the value for 'left' (in case the 'direction' property of the * containing block is 'rtl') or 'right' (in case 'direction' is 'ltr') * and solve for that value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to solve for 'right' in the over constrained // case because the value is not used for any further calculations. leftValue = left.calcValue(containerWidth); widthValue = calcContentBoxWidth(width.calcValue(containerWidth)); const int availableSpace = containerWidth - (leftValue + widthValue + right.calcValue(containerWidth) + bordersPlusPadding); // Margins are now the only unknown if (marginLeft.isAuto() && marginRight.isAuto()) { // Both margins auto, solve for equality if (availableSpace >= 0) { marginLeftValue = availableSpace / 2; // split the diference marginRightValue = availableSpace - marginLeftValue; // account for odd valued differences } else { // see FIXME 1 if (containerDirection == LTR) { marginLeftValue = 0; marginRightValue = availableSpace; // will be negative } else { marginLeftValue = availableSpace; // will be negative marginRightValue = 0; } } } else if (marginLeft.isAuto()) { // Solve for left margin marginRightValue = marginRight.calcValue(containerWidth); marginLeftValue = availableSpace - marginRightValue; } else if (marginRight.isAuto()) { // Solve for right margin marginLeftValue = marginLeft.calcValue(containerWidth); marginRightValue = availableSpace - marginLeftValue; } else { // Over-constrained, solve for left if direction is RTL marginLeftValue = marginLeft.calcValue(containerWidth); marginRightValue = marginRight.calcValue(containerWidth); // see FIXME 1 -- used to be "this->style()->direction()" if (containerDirection == RTL) leftValue = (availableSpace + leftValue) - marginLeftValue - marginRightValue; } } else { /*--------------------------------------------------------------------*\ * Otherwise, set 'auto' values for 'margin-left' and 'margin-right' * to 0, and pick the one of the following six rules that applies. * * 1. 'left' and 'width' are 'auto' and 'right' is not 'auto', then the * width is shrink-to-fit. Then solve for 'left' * * OMIT RULE 2 AS IT SHOULD NEVER BE HIT * ------------------------------------------------------------------ * 2. 'left' and 'right' are 'auto' and 'width' is not 'auto', then if * the 'direction' property of the containing block is 'ltr' set * 'left' to the static position, otherwise set 'right' to the * static position. Then solve for 'left' (if 'direction is 'rtl') * or 'right' (if 'direction' is 'ltr'). * ------------------------------------------------------------------ * * 3. 'width' and 'right' are 'auto' and 'left' is not 'auto', then the * width is shrink-to-fit . Then solve for 'right' * 4. 'left' is 'auto', 'width' and 'right' are not 'auto', then solve * for 'left' * 5. 'width' is 'auto', 'left' and 'right' are not 'auto', then solve * for 'width' * 6. 'right' is 'auto', 'left' and 'width' are not 'auto', then solve * for 'right' * * Calculation of the shrink-to-fit width is similar to calculating the * width of a table cell using the automatic table layout algorithm. * Roughly: calculate the preferred width by formatting the content * without breaking lines other than where explicit line breaks occur, * and also calculate the preferred minimum width, e.g., by trying all * possible line breaks. CSS 2.1 does not define the exact algorithm. * Thirdly, calculate the available width: this is found by solving * for 'width' after setting 'left' (in case 1) or 'right' (in case 3) * to 0. * * Then the shrink-to-fit width is: * min(max(preferred minimum width, available width), preferred width). \*--------------------------------------------------------------------*/ // NOTE: For rules 3 and 6 it is not necessary to solve for 'right' // because the value is not used for any further calculations. // Calculate margins, 'auto' margins are ignored. marginLeftValue = marginLeft.calcMinValue(containerWidth); marginRightValue = marginRight.calcMinValue(containerWidth); const int availableSpace = containerWidth - (marginLeftValue + marginRightValue + bordersPlusPadding); // FIXME: Is there a faster way to find the correct case? // Use rule/case that applies. if (leftIsAuto && widthIsAuto && !rightIsAuto) { // RULE 1: (use shrink-to-fit for width, and solve of left) int rightValue = right.calcValue(containerWidth); // FIXME: would it be better to have shrink-to-fit in one step? int preferredWidth = maxPrefWidth() - bordersPlusPadding; int preferredMinWidth = minPrefWidth() - bordersPlusPadding; int availableWidth = availableSpace - rightValue; widthValue = min(max(preferredMinWidth, availableWidth), preferredWidth); leftValue = availableSpace - (widthValue + rightValue); } else if (!leftIsAuto && widthIsAuto && rightIsAuto) { // RULE 3: (use shrink-to-fit for width, and no need solve of right) leftValue = left.calcValue(containerWidth); // FIXME: would it be better to have shrink-to-fit in one step? int preferredWidth = maxPrefWidth() - bordersPlusPadding; int preferredMinWidth = minPrefWidth() - bordersPlusPadding; int availableWidth = availableSpace - leftValue; widthValue = min(max(preferredMinWidth, availableWidth), preferredWidth); } else if (leftIsAuto && !width.isAuto() && !rightIsAuto) { // RULE 4: (solve for left) widthValue = calcContentBoxWidth(width.calcValue(containerWidth)); leftValue = availableSpace - (widthValue + right.calcValue(containerWidth)); } else if (!leftIsAuto && widthIsAuto && !rightIsAuto) { // RULE 5: (solve for width) leftValue = left.calcValue(containerWidth); widthValue = availableSpace - (leftValue + right.calcValue(containerWidth)); } else if (!leftIsAuto&& !widthIsAuto && rightIsAuto) { // RULE 6: (no need solve for right) leftValue = left.calcValue(containerWidth); widthValue = calcContentBoxWidth(width.calcValue(containerWidth)); } } // Use computed values to calculate the horizontal position. // FIXME: This hack is needed to calculate the xPos for a 'rtl' relatively // positioned, inline because right now, it is using the xPos // of the first line box when really it should use the last line box. When // this is fixed elsewhere, this block should be removed. if (containerBlock->isRenderInline() && containerBlock->style()->direction() == RTL) { const RenderInline* flow = toRenderInline(containerBlock); InlineFlowBox* firstLine = flow->firstLineBox(); InlineFlowBox* lastLine = flow->lastLineBox(); if (firstLine && lastLine && firstLine != lastLine) { xPos = leftValue + marginLeftValue + lastLine->borderLeft() + (lastLine->x() - firstLine->x()); return; } } xPos = leftValue + marginLeftValue + containerBlock->borderLeft(); } void RenderBox::calcAbsoluteVertical() { if (isReplaced()) { calcAbsoluteVerticalReplaced(); return; } // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.6.4 "Absolutely positioned, non-replaced elements" // // (block-style-comments in this function and in calcAbsoluteVerticalValues() // correspond to text from the spec) // We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline. const RenderBoxModelObject* containerBlock = toRenderBoxModelObject(container()); const int containerHeight = containingBlockHeightForPositioned(containerBlock); const int bordersPlusPadding = borderTop() + borderBottom() + paddingTop() + paddingBottom(); const Length marginTop = style()->marginTop(); const Length marginBottom = style()->marginBottom(); Length top = style()->top(); Length bottom = style()->bottom(); /*---------------------------------------------------------------------------*\ * For the purposes of this section and the next, the term "static position" * (of an element) refers, roughly, to the position an element would have had * in the normal flow. More precisely, the static position for 'top' is the * distance from the top edge of the containing block to the top margin edge * of a hypothetical box that would have been the first box of the element if * its 'position' property had been 'static' and 'float' had been 'none'. The * value is negative if the hypothetical box is above the containing block. * * But rather than actually calculating the dimensions of that hypothetical * box, user agents are free to make a guess at its probable position. * * For the purposes of calculating the static position, the containing block * of fixed positioned elements is the initial containing block instead of * the viewport. \*---------------------------------------------------------------------------*/ // see FIXME 2 // Calculate the static distance if needed. if (top.isAuto() && bottom.isAuto()) { // staticY should already have been set through layout of the parent() int staticTop = layer()->staticY() - containerBlock->borderTop(); for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent()) { if (po->isBox() && !po->isTableRow()) staticTop += toRenderBox(po)->y(); } top.setValue(Fixed, staticTop); } int h; // Needed to compute overflow. int y; // Calculate constraint equation values for 'height' case. calcAbsoluteVerticalValues(style()->height(), containerBlock, containerHeight, bordersPlusPadding, top, bottom, marginTop, marginBottom, h, m_marginTop, m_marginBottom, y); setY(y); // Avoid doing any work in the common case (where the values of min-height and max-height are their defaults). // see FIXME 3 // Calculate constraint equation values for 'max-height' case. if (!style()->maxHeight().isUndefined()) { int maxHeight; int maxMarginTop; int maxMarginBottom; int maxYPos; calcAbsoluteVerticalValues(style()->maxHeight(), containerBlock, containerHeight, bordersPlusPadding, top, bottom, marginTop, marginBottom, maxHeight, maxMarginTop, maxMarginBottom, maxYPos); if (h > maxHeight) { h = maxHeight; m_marginTop = maxMarginTop; m_marginBottom = maxMarginBottom; m_frameRect.setY(maxYPos); } } // Calculate constraint equation values for 'min-height' case. if (!style()->minHeight().isZero()) { int minHeight; int minMarginTop; int minMarginBottom; int minYPos; calcAbsoluteVerticalValues(style()->minHeight(), containerBlock, containerHeight, bordersPlusPadding, top, bottom, marginTop, marginBottom, minHeight, minMarginTop, minMarginBottom, minYPos); if (h < minHeight) { h = minHeight; m_marginTop = minMarginTop; m_marginBottom = minMarginBottom; m_frameRect.setY(minYPos); } } // Set final height value. setHeight(h + bordersPlusPadding); } void RenderBox::calcAbsoluteVerticalValues(Length h, const RenderBoxModelObject* containerBlock, const int containerHeight, const int bordersPlusPadding, const Length top, const Length bottom, const Length marginTop, const Length marginBottom, int& heightValue, int& marginTopValue, int& marginBottomValue, int& yPos) { // 'top' and 'bottom' cannot both be 'auto' because 'top would of been // converted to the static position in calcAbsoluteVertical() ASSERT(!(top.isAuto() && bottom.isAuto())); int contentHeight = height() - bordersPlusPadding; int topValue = 0; bool heightIsAuto = h.isAuto(); bool topIsAuto = top.isAuto(); bool bottomIsAuto = bottom.isAuto(); // Height is never unsolved for tables. if (isTable()) { h.setValue(Fixed, contentHeight); heightIsAuto = false; } if (!topIsAuto && !heightIsAuto && !bottomIsAuto) { /*-----------------------------------------------------------------------*\ * If none of the three are 'auto': If both 'margin-top' and 'margin- * bottom' are 'auto', solve the equation under the extra constraint that * the two margins get equal values. If one of 'margin-top' or 'margin- * bottom' is 'auto', solve the equation for that value. If the values * are over-constrained, ignore the value for 'bottom' and solve for that * value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to solve for 'bottom' in the over constrained // case because the value is not used for any further calculations. heightValue = calcContentBoxHeight(h.calcValue(containerHeight)); topValue = top.calcValue(containerHeight); const int availableSpace = containerHeight - (topValue + heightValue + bottom.calcValue(containerHeight) + bordersPlusPadding); // Margins are now the only unknown if (marginTop.isAuto() && marginBottom.isAuto()) { // Both margins auto, solve for equality // NOTE: This may result in negative values. marginTopValue = availableSpace / 2; // split the diference marginBottomValue = availableSpace - marginTopValue; // account for odd valued differences } else if (marginTop.isAuto()) { // Solve for top margin marginBottomValue = marginBottom.calcValue(containerHeight); marginTopValue = availableSpace - marginBottomValue; } else if (marginBottom.isAuto()) { // Solve for bottom margin marginTopValue = marginTop.calcValue(containerHeight); marginBottomValue = availableSpace - marginTopValue; } else { // Over-constrained, (no need solve for bottom) marginTopValue = marginTop.calcValue(containerHeight); marginBottomValue = marginBottom.calcValue(containerHeight); } } else { /*--------------------------------------------------------------------*\ * Otherwise, set 'auto' values for 'margin-top' and 'margin-bottom' * to 0, and pick the one of the following six rules that applies. * * 1. 'top' and 'height' are 'auto' and 'bottom' is not 'auto', then * the height is based on the content, and solve for 'top'. * * OMIT RULE 2 AS IT SHOULD NEVER BE HIT * ------------------------------------------------------------------ * 2. 'top' and 'bottom' are 'auto' and 'height' is not 'auto', then * set 'top' to the static position, and solve for 'bottom'. * ------------------------------------------------------------------ * * 3. 'height' and 'bottom' are 'auto' and 'top' is not 'auto', then * the height is based on the content, and solve for 'bottom'. * 4. 'top' is 'auto', 'height' and 'bottom' are not 'auto', and * solve for 'top'. * 5. 'height' is 'auto', 'top' and 'bottom' are not 'auto', and * solve for 'height'. * 6. 'bottom' is 'auto', 'top' and 'height' are not 'auto', and * solve for 'bottom'. \*--------------------------------------------------------------------*/ // NOTE: For rules 3 and 6 it is not necessary to solve for 'bottom' // because the value is not used for any further calculations. // Calculate margins, 'auto' margins are ignored. marginTopValue = marginTop.calcMinValue(containerHeight); marginBottomValue = marginBottom.calcMinValue(containerHeight); const int availableSpace = containerHeight - (marginTopValue + marginBottomValue + bordersPlusPadding); // Use rule/case that applies. if (topIsAuto && heightIsAuto && !bottomIsAuto) { // RULE 1: (height is content based, solve of top) heightValue = contentHeight; topValue = availableSpace - (heightValue + bottom.calcValue(containerHeight)); } else if (!topIsAuto && heightIsAuto && bottomIsAuto) { // RULE 3: (height is content based, no need solve of bottom) topValue = top.calcValue(containerHeight); heightValue = contentHeight; } else if (topIsAuto && !heightIsAuto && !bottomIsAuto) { // RULE 4: (solve of top) heightValue = calcContentBoxHeight(h.calcValue(containerHeight)); topValue = availableSpace - (heightValue + bottom.calcValue(containerHeight)); } else if (!topIsAuto && heightIsAuto && !bottomIsAuto) { // RULE 5: (solve of height) topValue = top.calcValue(containerHeight); heightValue = max(0, availableSpace - (topValue + bottom.calcValue(containerHeight))); } else if (!topIsAuto && !heightIsAuto && bottomIsAuto) { // RULE 6: (no need solve of bottom) heightValue = calcContentBoxHeight(h.calcValue(containerHeight)); topValue = top.calcValue(containerHeight); } } // Use computed values to calculate the vertical position. yPos = topValue + marginTopValue + containerBlock->borderTop(); } void RenderBox::calcAbsoluteHorizontalReplaced() { // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.3.8 "Absolutly positioned, replaced elements" // // (block-style-comments in this function correspond to text from the spec and // the numbers correspond to numbers in spec) // We don't use containingBlock(), since we may be positioned by an enclosing // relative positioned inline. const RenderBoxModelObject* containerBlock = toRenderBoxModelObject(container()); const int containerWidth = containingBlockWidthForPositioned(containerBlock); // To match WinIE, in quirks mode use the parent's 'direction' property // instead of the the container block's. TextDirection containerDirection = (style()->htmlHacks()) ? parent()->style()->direction() : containerBlock->style()->direction(); // Variables to solve. Length left = style()->left(); Length right = style()->right(); Length marginLeft = style()->marginLeft(); Length marginRight = style()->marginRight(); /*-----------------------------------------------------------------------*\ * 1. The used value of 'width' is determined as for inline replaced * elements. \*-----------------------------------------------------------------------*/ // NOTE: This value of width is FINAL in that the min/max width calculations // are dealt with in calcReplacedWidth(). This means that the steps to produce // correct max/min in the non-replaced version, are not necessary. setWidth(calcReplacedWidth() + borderLeft() + borderRight() + paddingLeft() + paddingRight()); const int availableSpace = containerWidth - width(); /*-----------------------------------------------------------------------*\ * 2. If both 'left' and 'right' have the value 'auto', then if 'direction' * of the containing block is 'ltr', set 'left' to the static position; * else if 'direction' is 'rtl', set 'right' to the static position. \*-----------------------------------------------------------------------*/ // see FIXME 2 if (left.isAuto() && right.isAuto()) { // see FIXME 1 if (containerDirection == LTR) { // 'staticX' should already have been set through layout of the parent. int staticPosition = layer()->staticX() - containerBlock->borderLeft(); for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent()) { if (po->isBox()) staticPosition += toRenderBox(po)->x(); } left.setValue(Fixed, staticPosition); } else { RenderObject* po = parent(); // 'staticX' should already have been set through layout of the parent. int staticPosition = layer()->staticX() + containerWidth + containerBlock->borderRight(); for ( ; po && po != containerBlock; po = po->parent()) { if (po->isBox()) staticPosition += toRenderBox(po)->x(); } right.setValue(Fixed, staticPosition); } } /*-----------------------------------------------------------------------*\ * 3. If 'left' or 'right' are 'auto', replace any 'auto' on 'margin-left' * or 'margin-right' with '0'. \*-----------------------------------------------------------------------*/ if (left.isAuto() || right.isAuto()) { if (marginLeft.isAuto()) marginLeft.setValue(Fixed, 0); if (marginRight.isAuto()) marginRight.setValue(Fixed, 0); } /*-----------------------------------------------------------------------*\ * 4. If at this point both 'margin-left' and 'margin-right' are still * 'auto', solve the equation under the extra constraint that the two * margins must get equal values, unless this would make them negative, * in which case when the direction of the containing block is 'ltr' * ('rtl'), set 'margin-left' ('margin-right') to zero and solve for * 'margin-right' ('margin-left'). \*-----------------------------------------------------------------------*/ int leftValue = 0; int rightValue = 0; if (marginLeft.isAuto() && marginRight.isAuto()) { // 'left' and 'right' cannot be 'auto' due to step 3 ASSERT(!(left.isAuto() && right.isAuto())); leftValue = left.calcValue(containerWidth); rightValue = right.calcValue(containerWidth); int difference = availableSpace - (leftValue + rightValue); if (difference > 0) { m_marginLeft = difference / 2; // split the diference m_marginRight = difference - m_marginLeft; // account for odd valued differences } else { // see FIXME 1 if (containerDirection == LTR) { m_marginLeft = 0; m_marginRight = difference; // will be negative } else { m_marginLeft = difference; // will be negative m_marginRight = 0; } } /*-----------------------------------------------------------------------*\ * 5. If at this point there is an 'auto' left, solve the equation for * that value. \*-----------------------------------------------------------------------*/ } else if (left.isAuto()) { m_marginLeft = marginLeft.calcValue(containerWidth); m_marginRight = marginRight.calcValue(containerWidth); rightValue = right.calcValue(containerWidth); // Solve for 'left' leftValue = availableSpace - (rightValue + m_marginLeft + m_marginRight); } else if (right.isAuto()) { m_marginLeft = marginLeft.calcValue(containerWidth); m_marginRight = marginRight.calcValue(containerWidth); leftValue = left.calcValue(containerWidth); // Solve for 'right' rightValue = availableSpace - (leftValue + m_marginLeft + m_marginRight); } else if (marginLeft.isAuto()) { m_marginRight = marginRight.calcValue(containerWidth); leftValue = left.calcValue(containerWidth); rightValue = right.calcValue(containerWidth); // Solve for 'margin-left' m_marginLeft = availableSpace - (leftValue + rightValue + m_marginRight); } else if (marginRight.isAuto()) { m_marginLeft = marginLeft.calcValue(containerWidth); leftValue = left.calcValue(containerWidth); rightValue = right.calcValue(containerWidth); // Solve for 'margin-right' m_marginRight = availableSpace - (leftValue + rightValue + m_marginLeft); } else { // Nothing is 'auto', just calculate the values. m_marginLeft = marginLeft.calcValue(containerWidth); m_marginRight = marginRight.calcValue(containerWidth); rightValue = right.calcValue(containerWidth); leftValue = left.calcValue(containerWidth); } /*-----------------------------------------------------------------------*\ * 6. If at this point the values are over-constrained, ignore the value * for either 'left' (in case the 'direction' property of the * containing block is 'rtl') or 'right' (in case 'direction' is * 'ltr') and solve for that value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to solve for 'right' when the direction is // LTR because the value is not used. int totalWidth = width() + leftValue + rightValue + m_marginLeft + m_marginRight; if (totalWidth > containerWidth && (containerDirection == RTL)) leftValue = containerWidth - (totalWidth - leftValue); // Use computed values to calculate the horizontal position. // FIXME: This hack is needed to calculate the xPos for a 'rtl' relatively // positioned, inline containing block because right now, it is using the xPos // of the first line box when really it should use the last line box. When // this is fixed elsewhere, this block should be removed. if (containerBlock->isInline() && containerBlock->style()->direction() == RTL) { const RenderInline* flow = toRenderInline(containerBlock); InlineFlowBox* firstLine = flow->firstLineBox(); InlineFlowBox* lastLine = flow->lastLineBox(); if (firstLine && lastLine && firstLine != lastLine) { m_frameRect.setX(leftValue + m_marginLeft + lastLine->borderLeft() + (lastLine->x() - firstLine->x())); return; } } m_frameRect.setX(leftValue + m_marginLeft + containerBlock->borderLeft()); } void RenderBox::calcAbsoluteVerticalReplaced() { // The following is based off of the W3C Working Draft from April 11, 2006 of // CSS 2.1: Section 10.6.5 "Absolutly positioned, replaced elements" // // (block-style-comments in this function correspond to text from the spec and // the numbers correspond to numbers in spec) // We don't use containingBlock(), since we may be positioned by an enclosing relpositioned inline. const RenderBoxModelObject* containerBlock = toRenderBoxModelObject(container()); const int containerHeight = containingBlockHeightForPositioned(containerBlock); // Variables to solve. Length top = style()->top(); Length bottom = style()->bottom(); Length marginTop = style()->marginTop(); Length marginBottom = style()->marginBottom(); /*-----------------------------------------------------------------------*\ * 1. The used value of 'height' is determined as for inline replaced * elements. \*-----------------------------------------------------------------------*/ // NOTE: This value of height is FINAL in that the min/max height calculations // are dealt with in calcReplacedHeight(). This means that the steps to produce // correct max/min in the non-replaced version, are not necessary. setHeight(calcReplacedHeight() + borderTop() + borderBottom() + paddingTop() + paddingBottom()); const int availableSpace = containerHeight - height(); /*-----------------------------------------------------------------------*\ * 2. If both 'top' and 'bottom' have the value 'auto', replace 'top' * with the element's static position. \*-----------------------------------------------------------------------*/ // see FIXME 2 if (top.isAuto() && bottom.isAuto()) { // staticY should already have been set through layout of the parent(). int staticTop = layer()->staticY() - containerBlock->borderTop(); for (RenderObject* po = parent(); po && po != containerBlock; po = po->parent()) { if (po->isBox() && !po->isTableRow()) staticTop += toRenderBox(po)->y(); } top.setValue(Fixed, staticTop); } /*-----------------------------------------------------------------------*\ * 3. If 'bottom' is 'auto', replace any 'auto' on 'margin-top' or * 'margin-bottom' with '0'. \*-----------------------------------------------------------------------*/ // FIXME: The spec. says that this step should only be taken when bottom is // auto, but if only top is auto, this makes step 4 impossible. if (top.isAuto() || bottom.isAuto()) { if (marginTop.isAuto()) marginTop.setValue(Fixed, 0); if (marginBottom.isAuto()) marginBottom.setValue(Fixed, 0); } /*-----------------------------------------------------------------------*\ * 4. If at this point both 'margin-top' and 'margin-bottom' are still * 'auto', solve the equation under the extra constraint that the two * margins must get equal values. \*-----------------------------------------------------------------------*/ int topValue = 0; int bottomValue = 0; if (marginTop.isAuto() && marginBottom.isAuto()) { // 'top' and 'bottom' cannot be 'auto' due to step 2 and 3 combinded. ASSERT(!(top.isAuto() || bottom.isAuto())); topValue = top.calcValue(containerHeight); bottomValue = bottom.calcValue(containerHeight); int difference = availableSpace - (topValue + bottomValue); // NOTE: This may result in negative values. m_marginTop = difference / 2; // split the difference m_marginBottom = difference - m_marginTop; // account for odd valued differences /*-----------------------------------------------------------------------*\ * 5. If at this point there is only one 'auto' left, solve the equation * for that value. \*-----------------------------------------------------------------------*/ } else if (top.isAuto()) { m_marginTop = marginTop.calcValue(containerHeight); m_marginBottom = marginBottom.calcValue(containerHeight); bottomValue = bottom.calcValue(containerHeight); // Solve for 'top' topValue = availableSpace - (bottomValue + m_marginTop + m_marginBottom); } else if (bottom.isAuto()) { m_marginTop = marginTop.calcValue(containerHeight); m_marginBottom = marginBottom.calcValue(containerHeight); topValue = top.calcValue(containerHeight); // Solve for 'bottom' // NOTE: It is not necessary to solve for 'bottom' because we don't ever // use the value. } else if (marginTop.isAuto()) { m_marginBottom = marginBottom.calcValue(containerHeight); topValue = top.calcValue(containerHeight); bottomValue = bottom.calcValue(containerHeight); // Solve for 'margin-top' m_marginTop = availableSpace - (topValue + bottomValue + m_marginBottom); } else if (marginBottom.isAuto()) { m_marginTop = marginTop.calcValue(containerHeight); topValue = top.calcValue(containerHeight); bottomValue = bottom.calcValue(containerHeight); // Solve for 'margin-bottom' m_marginBottom = availableSpace - (topValue + bottomValue + m_marginTop); } else { // Nothing is 'auto', just calculate the values. m_marginTop = marginTop.calcValue(containerHeight); m_marginBottom = marginBottom.calcValue(containerHeight); topValue = top.calcValue(containerHeight); // NOTE: It is not necessary to solve for 'bottom' because we don't ever // use the value. } /*-----------------------------------------------------------------------*\ * 6. If at this point the values are over-constrained, ignore the value * for 'bottom' and solve for that value. \*-----------------------------------------------------------------------*/ // NOTE: It is not necessary to do this step because we don't end up using // the value of 'bottom' regardless of whether the values are over-constrained // or not. // Use computed values to calculate the vertical position. m_frameRect.setY(topValue + m_marginTop + containerBlock->borderTop()); } IntRect RenderBox::localCaretRect(InlineBox* box, int caretOffset, int* extraWidthToEndOfLine) { // VisiblePositions at offsets inside containers either a) refer to the positions before/after // those containers (tables and select elements) or b) refer to the position inside an empty block. // They never refer to children. // FIXME: Paint the carets inside empty blocks differently than the carets before/after elements. // FIXME: What about border and padding? IntRect rect(x(), y(), caretWidth, height()); TextDirection direction = box ? box->direction() : style()->direction(); if ((!caretOffset) ^ (direction == LTR)) rect.move(IntSize(width() - caretWidth, 0)); if (box) { RootInlineBox* rootBox = box->root(); int top = rootBox->topOverflow(); rect.setY(top); rect.setHeight(rootBox->bottomOverflow() - top); } // If height of box is smaller than font height, use the latter one, // otherwise the caret might become invisible. // // Also, if the box is not a replaced element, always use the font height. // This prevents the "big caret" bug described in: // Deleting all content in a document can result in giant tall-as-window insertion point // // FIXME: ignoring :first-line, missing good reason to take care of int fontHeight = style()->font().height(); if (fontHeight > rect.height() || (!isReplaced() && !isTable())) rect.setHeight(fontHeight); if (extraWidthToEndOfLine) *extraWidthToEndOfLine = x() + width() - rect.right(); // Move to local coords rect.move(-x(), -y()); return rect; } int RenderBox::lowestPosition(bool /*includeOverflowInterior*/, bool includeSelf) const { if (!includeSelf || !width()) return 0; int bottom = height(); if (isRelPositioned()) bottom += relativePositionOffsetY(); return bottom; } int RenderBox::rightmostPosition(bool /*includeOverflowInterior*/, bool includeSelf) const { if (!includeSelf || !height()) return 0; int right = width(); if (isRelPositioned()) right += relativePositionOffsetX(); return right; } int RenderBox::leftmostPosition(bool /*includeOverflowInterior*/, bool includeSelf) const { if (!includeSelf || !height()) return width(); int left = 0; if (isRelPositioned()) left += relativePositionOffsetX(); return left; } bool RenderBox::isAfterContent(RenderObject* child) const { return (child && child->style()->styleType() == AFTER && (!child->isText() || child->isBR())); } VisiblePosition RenderBox::positionForPoint(const IntPoint& point) { // no children...return this render object's element, if there is one, and offset 0 if (!firstChild()) return createVisiblePosition(firstDeepEditingPositionForNode(node())); int xPos = point.x(); int yPos = point.y(); if (isTable() && node()) { int right = contentWidth() + borderRight() + paddingRight() + borderLeft() + paddingLeft(); int bottom = contentHeight() + borderTop() + paddingTop() + borderBottom() + paddingBottom(); if (xPos < 0 || xPos > right || yPos < 0 || yPos > bottom) { if (xPos <= right / 2) return createVisiblePosition(firstDeepEditingPositionForNode(node())); return createVisiblePosition(lastDeepEditingPositionForNode(node())); } } // Pass off to the closest child. int minDist = INT_MAX; RenderBox* closestRenderer = 0; int newX = xPos; int newY = yPos; if (isTableRow()) { newX += x(); newY += y(); } for (RenderObject* renderObject = firstChild(); renderObject; renderObject = renderObject->nextSibling()) { if ((!renderObject->firstChild() && !renderObject->isInline() && !renderObject->isBlockFlow() ) || renderObject->style()->visibility() != VISIBLE) continue; if (!renderObject->isBox()) continue; RenderBox* renderer = toRenderBox(renderObject); int top = renderer->borderTop() + renderer->paddingTop() + (isTableRow() ? 0 : renderer->y()); int bottom = top + renderer->contentHeight(); int left = renderer->borderLeft() + renderer->paddingLeft() + (isTableRow() ? 0 : renderer->x()); int right = left + renderer->contentWidth(); if (xPos <= right && xPos >= left && yPos <= top && yPos >= bottom) { if (renderer->isTableRow()) return renderer->positionForCoordinates(xPos + newX - renderer->x(), yPos + newY - renderer->y()); return renderer->positionForCoordinates(xPos - renderer->x(), yPos - renderer->y()); } // Find the distance from (x, y) to the box. Split the space around the box into 8 pieces // and use a different compare depending on which piece (x, y) is in. IntPoint cmp; if (xPos > right) { if (yPos < top) cmp = IntPoint(right, top); else if (yPos > bottom) cmp = IntPoint(right, bottom); else cmp = IntPoint(right, yPos); } else if (xPos < left) { if (yPos < top) cmp = IntPoint(left, top); else if (yPos > bottom) cmp = IntPoint(left, bottom); else cmp = IntPoint(left, yPos); } else { if (yPos < top) cmp = IntPoint(xPos, top); else cmp = IntPoint(xPos, bottom); } int x1minusx2 = cmp.x() - xPos; int y1minusy2 = cmp.y() - yPos; int dist = x1minusx2 * x1minusx2 + y1minusy2 * y1minusy2; if (dist < minDist) { closestRenderer = renderer; minDist = dist; } } if (closestRenderer) return closestRenderer->positionForCoordinates(newX - closestRenderer->x(), newY - closestRenderer->y()); return createVisiblePosition(firstDeepEditingPositionForNode(node())); } bool RenderBox::shrinkToAvoidFloats() const { // FIXME: Technically we should be able to shrink replaced elements on a line, but this is difficult to accomplish, since this // involves doing a relayout during findNextLineBreak and somehow overriding the containingBlockWidth method to return the // current remaining width on a line. if ((isInline() && !isHTMLMarquee()) || !avoidsFloats()) return false; // All auto-width objects that avoid floats should always use lineWidth. return style()->width().isAuto(); } bool RenderBox::avoidsFloats() const { return isReplaced() || hasOverflowClip() || isHR(); } #if ENABLE(SVG) TransformationMatrix RenderBox::localTransform() const { return TransformationMatrix(1, 0, 0, 1, x(), y()); } #endif } // namespace WebCore