/* * Copyright (C) 1997 Martin Jones (mjones@kde.org) * (C) 1997 Torben Weis (weis@kde.org) * (C) 1998 Waldo Bastian (bastian@kde.org) * (C) 1999 Lars Knoll (knoll@kde.org) * (C) 1999 Antti Koivisto (koivisto@kde.org) * Copyright (C) 2003, 2004, 2005, 2006, 2008 Apple Inc. All rights reserved. * Copyright (C) 2006 Alexey Proskuryakov (ap@nypop.com) * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Library General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Library General Public License * along with this library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include "config.h" #include "RenderTableSection.h" #include "CachedImage.h" #include "Document.h" #include "HitTestResult.h" #include "HTMLNames.h" #include "RenderTableCell.h" #include "RenderTableCol.h" #include "RenderTableRow.h" #include "RenderView.h" #include #include #include #ifdef ANDROID_LAYOUT #include "Frame.h" #include "Settings.h" #endif using namespace std; namespace WebCore { using namespace HTMLNames; static inline void setRowHeightToRowStyleHeightIfNotRelative(RenderTableSection::RowStruct* row) { ASSERT(row && row->rowRenderer); row->height = row->rowRenderer->style()->height(); if (row->height.isRelative()) row->height = Length(); } RenderTableSection::RenderTableSection(Node* node) : RenderBox(node) , m_gridRows(0) , m_cCol(0) , m_cRow(-1) , m_outerBorderLeft(0) , m_outerBorderRight(0) , m_outerBorderTop(0) , m_outerBorderBottom(0) , m_needsCellRecalc(false) , m_hasOverflowingCell(false) , m_hasMultipleCellLevels(false) { // init RenderObject attributes setInline(false); // our object is not Inline } RenderTableSection::~RenderTableSection() { clearGrid(); } void RenderTableSection::destroy() { RenderTable* recalcTable = table(); RenderBox::destroy(); // recalc cell info because RenderTable has unguarded pointers // stored that point to this RenderTableSection. if (recalcTable) recalcTable->setNeedsSectionRecalc(); } void RenderTableSection::addChild(RenderObject* child, RenderObject* beforeChild) { // Make sure we don't append things after :after-generated content if we have it. if (!beforeChild && isAfterContent(lastChild())) beforeChild = lastChild(); if (!child->isTableRow()) { RenderObject* last = beforeChild; if (!last) last = lastChild(); if (last && last->isAnonymous()) { last->addChild(child); return; } // If beforeChild is inside an anonymous cell/row, insert into the cell or into // the anonymous row containing it, if there is one. RenderObject* lastBox = last; while (lastBox && lastBox->parent()->isAnonymous() && !lastBox->isTableRow()) lastBox = lastBox->parent(); if (lastBox && lastBox->isAnonymous()) { lastBox->addChild(child, beforeChild); return; } RenderObject* row = new (renderArena()) RenderTableRow(document() /* anonymous table row */); RefPtr newStyle = RenderStyle::create(); newStyle->inheritFrom(style()); newStyle->setDisplay(TABLE_ROW); row->setStyle(newStyle.release()); addChild(row, beforeChild); row->addChild(child); return; } if (beforeChild) setNeedsCellRecalc(); ++m_cRow; m_cCol = 0; // make sure we have enough rows if (!ensureRows(m_cRow + 1)) return; m_grid[m_cRow].rowRenderer = toRenderTableRow(child); if (!beforeChild) setRowHeightToRowStyleHeightIfNotRelative(&m_grid[m_cRow]); // If the next renderer is actually wrapped in an anonymous table row, we need to go up and find that. while (beforeChild && beforeChild->parent() != this) beforeChild = beforeChild->parent(); ASSERT(!beforeChild || beforeChild->isTableRow()); RenderBox::addChild(child, beforeChild); } void RenderTableSection::removeChild(RenderObject* oldChild) { setNeedsCellRecalc(); RenderBox::removeChild(oldChild); } bool RenderTableSection::ensureRows(int numRows) { int nRows = m_gridRows; if (numRows > nRows) { if (numRows > static_cast(m_grid.size())) { size_t maxSize = numeric_limits::max() / sizeof(RowStruct); if (static_cast(numRows) > maxSize) return false; m_grid.grow(numRows); } m_gridRows = numRows; int nCols = max(1, table()->numEffCols()); for (int r = nRows; r < numRows; r++) { m_grid[r].row = new Row(nCols); m_grid[r].rowRenderer = 0; m_grid[r].baseline = 0; m_grid[r].height = Length(); } } return true; } void RenderTableSection::addCell(RenderTableCell* cell, RenderTableRow* row) { int rSpan = cell->rowSpan(); int cSpan = cell->colSpan(); Vector& columns = table()->columns(); int nCols = columns.size(); // ### mozilla still seems to do the old HTML way, even for strict DTD // (see the annotation on table cell layouting in the CSS specs and the testcase below: // //
1 2 3 4 //
5 //
while (m_cCol < nCols && (cellAt(m_cRow, m_cCol).hasCells() || cellAt(m_cRow, m_cCol).inColSpan)) m_cCol++; if (rSpan == 1) { // we ignore height settings on rowspan cells Length height = cell->style()->height(); if (height.isPositive() || (height.isRelative() && height.value() >= 0)) { Length cRowHeight = m_grid[m_cRow].height; switch (height.type()) { case Percent: if (!(cRowHeight.isPercent()) || (cRowHeight.isPercent() && cRowHeight.rawValue() < height.rawValue())) m_grid[m_cRow].height = height; break; case Fixed: if (cRowHeight.type() < Percent || (cRowHeight.isFixed() && cRowHeight.value() < height.value())) m_grid[m_cRow].height = height; break; case Relative: default: break; } } } // make sure we have enough rows if (!ensureRows(m_cRow + rSpan)) return; m_grid[m_cRow].rowRenderer = row; int col = m_cCol; // tell the cell where it is bool inColSpan = false; while (cSpan) { int currentSpan; if (m_cCol >= nCols) { table()->appendColumn(cSpan); currentSpan = cSpan; } else { if (cSpan < (int)columns[m_cCol].span) table()->splitColumn(m_cCol, cSpan); currentSpan = columns[m_cCol].span; } for (int r = 0; r < rSpan; r++) { CellStruct& c = cellAt(m_cRow + r, m_cCol); ASSERT(cell); c.cells.append(cell); // If cells overlap then we take the slow path for painting. if (c.cells.size() > 1) m_hasMultipleCellLevels = true; if (inColSpan) c.inColSpan = true; } m_cCol++; cSpan -= currentSpan; inColSpan = true; } cell->setRow(m_cRow); cell->setCol(table()->effColToCol(col)); } void RenderTableSection::setCellWidths() { Vector& columnPos = table()->columnPositions(); LayoutStateMaintainer statePusher(view()); #ifdef ANDROID_LAYOUT int visibleWidth = 0; if (view()->frameView()) { const Settings* settings = document()->settings(); ASSERT(settings); if (settings->layoutAlgorithm() == Settings::kLayoutFitColumnToScreen) visibleWidth = view()->frameView()->textWrapWidth(); } #endif for (int i = 0; i < m_gridRows; i++) { Row& row = *m_grid[i].row; int cols = row.size(); for (int j = 0; j < cols; j++) { CellStruct& current = row[j]; RenderTableCell* cell = current.primaryCell(); if (!cell || current.inColSpan) continue; int endCol = j; int cspan = cell->colSpan(); while (cspan && endCol < cols) { ASSERT(endCol < (int)table()->columns().size()); cspan -= table()->columns()[endCol].span; endCol++; } int w = columnPos[endCol] - columnPos[j] - table()->hBorderSpacing(); #ifdef ANDROID_LAYOUT if (table()->isSingleColumn()) { int b = table()->collapseBorders() ? 0 : table()->paddingLeft() + table()->paddingRight() + 2 * table()->hBorderSpacing(); w = table()->width() - (table()->borderLeft() + table()->borderRight() + b); } #endif int oldWidth = cell->width(); #ifdef ANDROID_LAYOUT if (w != oldWidth || (visibleWidth > 0 && visibleWidth != cell->getVisibleWidth())) { #else if (w != oldWidth) { #endif cell->setNeedsLayout(true); if (!table()->selfNeedsLayout() && cell->checkForRepaintDuringLayout()) { if (!statePusher.didPush()) { // Technically, we should also push state for the row, but since // rows don't push a coordinate transform, that's not necessary. statePusher.push(this, IntSize(x(), y())); } cell->repaint(); } #ifdef ANDROID_LAYOUT if (w != oldWidth) #endif cell->updateWidth(w); } } } statePusher.pop(); // only pops if we pushed } int RenderTableSection::calcRowHeight() { #ifndef NDEBUG setNeedsLayoutIsForbidden(true); #endif ASSERT(!needsLayout()); #ifdef ANDROID_LAYOUT if (table()->isSingleColumn()) { int height = 0; int spacing = table()->vBorderSpacing(); for (int r = 0; r < m_gridRows; r++) height += m_grid[r].height.calcMinValue(0) + (m_grid[r].rowRenderer ? spacing : 0); return height; } #endif RenderTableCell* cell; int spacing = table()->vBorderSpacing(); LayoutStateMaintainer statePusher(view()); m_rowPos.resize(m_gridRows + 1); m_rowPos[0] = spacing; for (int r = 0; r < m_gridRows; r++) { m_rowPos[r + 1] = 0; m_grid[r].baseline = 0; int baseline = 0; int bdesc = 0; int ch = m_grid[r].height.calcMinValue(0); int pos = m_rowPos[r] + ch + (m_grid[r].rowRenderer ? spacing : 0); m_rowPos[r + 1] = max(m_rowPos[r + 1], pos); Row* row = m_grid[r].row; int totalCols = row->size(); for (int c = 0; c < totalCols; c++) { CellStruct& current = cellAt(r, c); cell = current.primaryCell(); if (!cell || current.inColSpan) continue; if ((cell->row() + cell->rowSpan() - 1) > r) continue; int indx = max(r - cell->rowSpan() + 1, 0); if (cell->overrideSize() != -1) { if (!statePusher.didPush()) { // Technically, we should also push state for the row, but since // rows don't push a coordinate transform, that's not necessary. statePusher.push(this, IntSize(x(), y())); } cell->setOverrideSize(-1); cell->setChildNeedsLayout(true, false); cell->layoutIfNeeded(); } int adjustedPaddingTop = cell->paddingTop() - cell->intrinsicPaddingBefore(); int adjustedPaddingBottom = cell->paddingBottom() - cell->intrinsicPaddingAfter(); int adjustedHeight = cell->height() - (cell->intrinsicPaddingBefore() + cell->intrinsicPaddingAfter()); // Explicit heights use the border box in quirks mode. In strict mode do the right // thing and actually add in the border and padding. ch = cell->style()->height().calcValue(0) + (document()->inQuirksMode() ? 0 : (adjustedPaddingTop + adjustedPaddingBottom + cell->borderTop() + cell->borderBottom())); ch = max(ch, adjustedHeight); pos = m_rowPos[indx] + ch + (m_grid[r].rowRenderer ? spacing : 0); m_rowPos[r + 1] = max(m_rowPos[r + 1], pos); // find out the baseline EVerticalAlign va = cell->style()->verticalAlign(); if (va == BASELINE || va == TEXT_BOTTOM || va == TEXT_TOP || va == SUPER || va == SUB) { int b = cell->baselinePosition(); if (b > cell->borderTop() + cell->paddingTop()) { baseline = max(baseline, b - cell->intrinsicPaddingBefore()); bdesc = max(bdesc, m_rowPos[indx] + ch - (b - cell->intrinsicPaddingBefore())); } } } // do we have baseline aligned elements? if (baseline) { // increase rowheight if baseline requires m_rowPos[r + 1] = max(m_rowPos[r + 1], baseline + bdesc + (m_grid[r].rowRenderer ? spacing : 0)); m_grid[r].baseline = baseline; } m_rowPos[r + 1] = max(m_rowPos[r + 1], m_rowPos[r]); } #ifndef NDEBUG setNeedsLayoutIsForbidden(false); #endif ASSERT(!needsLayout()); statePusher.pop(); return m_rowPos[m_gridRows]; } void RenderTableSection::layout() { ASSERT(needsLayout()); LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y())); for (RenderObject* child = children()->firstChild(); child; child = child->nextSibling()) { if (child->isTableRow()) { child->layoutIfNeeded(); ASSERT(!child->needsLayout()); } } statePusher.pop(); setNeedsLayout(false); } int RenderTableSection::layoutRows(int toAdd) { #ifndef NDEBUG setNeedsLayoutIsForbidden(true); #endif ASSERT(!needsLayout()); #ifdef ANDROID_LAYOUT if (table()->isSingleColumn()) { int totalRows = m_gridRows; int hspacing = table()->hBorderSpacing(); int vspacing = table()->vBorderSpacing(); int rHeight = vspacing; int leftOffset = hspacing; int nEffCols = table()->numEffCols(); for (int r = 0; r < totalRows; r++) { for (int c = 0; c < nEffCols; c++) { CellStruct current = cellAt(r, c); RenderTableCell* cell = current.primaryCell(); if (!cell || current.inColSpan) continue; if (r > 0 && (primaryCellAt(r-1, c) == cell)) continue; // cell->setCellTopExtra(0); // cell->setCellBottomExtra(0); int oldCellX = cell->x(); int oldCellY = cell->y(); if (style()->direction() == RTL) { cell->setX(table()->width()); cell->setY(rHeight); } else { cell->setX(leftOffset); cell->setY(rHeight); } // If the cell moved, we have to repaint it as well as any floating/positioned // descendants. An exception is if we need a layout. In this case, we know we're going to // repaint ourselves (and the cell) anyway. if (!table()->selfNeedsLayout() && cell->checkForRepaintDuringLayout()) { // IntRect cellRect(oldCellX, oldCellY - cell->borderTopExtra() , cell->width(), cell->height()); IntRect cellRect(oldCellX, oldCellY, cell->width(), cell->height()); cell->repaintDuringLayoutIfMoved(cellRect); } rHeight += cell->height() + vspacing; } } setHeight(rHeight); return height(); } #endif int rHeight; int rindx; int totalRows = m_gridRows; // Set the width of our section now. The rows will also be this width. setWidth(table()->contentWidth()); m_overflow.clear(); m_hasOverflowingCell = false; if (toAdd && totalRows && (m_rowPos[totalRows] || !nextSibling())) { int totalHeight = m_rowPos[totalRows] + toAdd; int dh = toAdd; int totalPercent = 0; int numAuto = 0; for (int r = 0; r < totalRows; r++) { if (m_grid[r].height.isAuto()) numAuto++; else if (m_grid[r].height.isPercent()) totalPercent += m_grid[r].height.rawValue(); } if (totalPercent) { // try to satisfy percent int add = 0; totalPercent = min(totalPercent, 100 * percentScaleFactor); int rh = m_rowPos[1] - m_rowPos[0]; for (int r = 0; r < totalRows; r++) { if (totalPercent > 0 && m_grid[r].height.isPercent()) { int toAdd = min(dh, (totalHeight * m_grid[r].height.rawValue() / (100 * percentScaleFactor)) - rh); // If toAdd is negative, then we don't want to shrink the row (this bug // affected Outlook Web Access). toAdd = max(0, toAdd); add += toAdd; dh -= toAdd; totalPercent -= m_grid[r].height.rawValue(); } if (r < totalRows - 1) rh = m_rowPos[r + 2] - m_rowPos[r + 1]; m_rowPos[r + 1] += add; } } if (numAuto) { // distribute over variable cols int add = 0; for (int r = 0; r < totalRows; r++) { if (numAuto > 0 && m_grid[r].height.isAuto()) { int toAdd = dh / numAuto; add += toAdd; dh -= toAdd; numAuto--; } m_rowPos[r + 1] += add; } } if (dh > 0 && m_rowPos[totalRows]) { // if some left overs, distribute equally. int tot = m_rowPos[totalRows]; int add = 0; int prev = m_rowPos[0]; for (int r = 0; r < totalRows; r++) { // weight with the original height add += dh * (m_rowPos[r + 1] - prev) / tot; prev = m_rowPos[r + 1]; m_rowPos[r + 1] += add; } } } int hspacing = table()->hBorderSpacing(); int vspacing = table()->vBorderSpacing(); int nEffCols = table()->numEffCols(); LayoutStateMaintainer statePusher(view(), this, IntSize(x(), y())); for (int r = 0; r < totalRows; r++) { // Set the row's x/y position and width/height. if (RenderTableRow* rowRenderer = m_grid[r].rowRenderer) { rowRenderer->setLocation(0, m_rowPos[r]); rowRenderer->setWidth(width()); rowRenderer->setHeight(m_rowPos[r + 1] - m_rowPos[r] - vspacing); } for (int c = 0; c < nEffCols; c++) { CellStruct& cs = cellAt(r, c); RenderTableCell* cell = cs.primaryCell(); if (!cell || cs.inColSpan) continue; rindx = cell->row(); rHeight = m_rowPos[rindx + cell->rowSpan()] - m_rowPos[rindx] - vspacing; // Force percent height children to lay themselves out again. // This will cause these children to grow to fill the cell. // FIXME: There is still more work to do here to fully match WinIE (should // it become necessary to do so). In quirks mode, WinIE behaves like we // do, but it will clip the cells that spill out of the table section. In // strict mode, Mozilla and WinIE both regrow the table to accommodate the // new height of the cell (thus letting the percentages cause growth one // time only). We may also not be handling row-spanning cells correctly. // // Note also the oddity where replaced elements always flex, and yet blocks/tables do // not necessarily flex. WinIE is crazy and inconsistent, and we can't hope to // match the behavior perfectly, but we'll continue to refine it as we discover new // bugs. :) bool cellChildrenFlex = false; bool flexAllChildren = cell->style()->height().isFixed() || (!table()->style()->height().isAuto() && rHeight != cell->height()); for (RenderObject* o = cell->firstChild(); o; o = o->nextSibling()) { if (!o->isText() && o->style()->height().isPercent() && (flexAllChildren || o->isReplaced() || (o->isBox() && toRenderBox(o)->scrollsOverflow()))) { // Tables with no sections do not flex. if (!o->isTable() || toRenderTable(o)->hasSections()) { o->setNeedsLayout(true, false); cellChildrenFlex = true; } } } if (HashSet* percentHeightDescendants = cell->percentHeightDescendants()) { HashSet::iterator end = percentHeightDescendants->end(); for (HashSet::iterator it = percentHeightDescendants->begin(); it != end; ++it) { RenderBox* box = *it; if (!box->isReplaced() && !box->scrollsOverflow() && !flexAllChildren) continue; while (box != cell) { if (box->normalChildNeedsLayout()) break; box->setChildNeedsLayout(true, false); box = box->containingBlock(); ASSERT(box); if (!box) break; } cellChildrenFlex = true; } } if (cellChildrenFlex) { cell->setChildNeedsLayout(true, false); // Alignment within a cell is based off the calculated // height, which becomes irrelevant once the cell has // been resized based off its percentage. cell->setOverrideSize(max(0, rHeight - cell->borderTop() - cell->paddingTop() - cell->borderBottom() - cell->paddingBottom())); cell->layoutIfNeeded(); // If the baseline moved, we may have to update the data for our row. Find out the new baseline. EVerticalAlign va = cell->style()->verticalAlign(); if (va == BASELINE || va == TEXT_BOTTOM || va == TEXT_TOP || va == SUPER || va == SUB) { int b = cell->baselinePosition(); if (b > cell->borderTop() + cell->paddingTop()) m_grid[r].baseline = max(m_grid[r].baseline, b); } } int oldTe = cell->intrinsicPaddingBefore(); int oldBe = cell->intrinsicPaddingAfter(); int heightWithoutIntrinsicPadding = cell->height() - oldTe - oldBe; int te = 0; switch (cell->style()->verticalAlign()) { case SUB: case SUPER: case TEXT_TOP: case TEXT_BOTTOM: case BASELINE: { int b = cell->baselinePosition(); if (b > cell->borderTop() + cell->paddingTop()) te = getBaseline(r) - (b - oldTe); break; } case TOP: te = 0; break; case MIDDLE: te = (rHeight - heightWithoutIntrinsicPadding) / 2; break; case BOTTOM: te = rHeight - heightWithoutIntrinsicPadding; break; default: break; } int be = rHeight - heightWithoutIntrinsicPadding - te; cell->setIntrinsicPaddingBefore(te); cell->setIntrinsicPaddingAfter(be); IntRect oldCellRect(cell->x(), cell->y() , cell->width(), cell->height()); if (!style()->isLeftToRightDirection()) cell->setLocation(table()->columnPositions()[nEffCols] - table()->columnPositions()[table()->colToEffCol(cell->col() + cell->colSpan())] + hspacing, m_rowPos[rindx]); else cell->setLocation(table()->columnPositions()[c] + hspacing, m_rowPos[rindx]); view()->addLayoutDelta(IntSize(oldCellRect.x() - cell->x(), oldCellRect.y() - cell->y())); if (te != oldTe || be != oldBe) cell->setNeedsLayout(true, false); if (!cell->needsLayout() && view()->layoutState()->m_pageHeight && view()->layoutState()->pageY(cell->y()) != cell->pageY()) cell->setChildNeedsLayout(true, false); cell->layoutIfNeeded(); if (view()->layoutState()->m_pageHeight && cell->height() != rHeight) cell->setHeight(rHeight); // FIXME: Pagination might have made us change size. For now just shrink or grow the cell to fit without doing a relayout. IntSize childOffset(cell->x() - oldCellRect.x(), cell->y() - oldCellRect.y()); if (childOffset.width() || childOffset.height()) { view()->addLayoutDelta(childOffset); // If the child moved, we have to repaint it as well as any floating/positioned // descendants. An exception is if we need a layout. In this case, we know we're going to // repaint ourselves (and the child) anyway. if (!table()->selfNeedsLayout() && cell->checkForRepaintDuringLayout()) cell->repaintDuringLayoutIfMoved(oldCellRect); } } } #ifndef NDEBUG setNeedsLayoutIsForbidden(false); #endif ASSERT(!needsLayout()); setHeight(m_rowPos[totalRows]); // Now that our height has been determined, add in overflow from cells. for (int r = 0; r < totalRows; r++) { for (int c = 0; c < nEffCols; c++) { CellStruct& cs = cellAt(r, c); RenderTableCell* cell = cs.primaryCell(); if (!cell || cs.inColSpan) continue; if (r < totalRows - 1 && cell == primaryCellAt(r + 1, c)) continue; addOverflowFromChild(cell); m_hasOverflowingCell |= cell->hasVisibleOverflow(); } } statePusher.pop(); return height(); } int RenderTableSection::topmostPosition(bool includeOverflowInterior, bool includeSelf, ApplyTransform applyTransform) const { int top = RenderBox::topmostPosition(includeOverflowInterior, includeSelf, applyTransform); if (!includeOverflowInterior && hasOverflowClip()) return top; for (RenderObject* row = firstChild(); row; row = row->nextSibling()) { for (RenderObject* curr = row->firstChild(); curr; curr = curr->nextSibling()) { if (curr->isTableCell()) { RenderTableCell* cell = toRenderTableCell(curr); top = min(top, cell->transformedFrameRect().y() + cell->topmostPosition(false)); } } } return top; } int RenderTableSection::lowestPosition(bool includeOverflowInterior, bool includeSelf, ApplyTransform applyTransform) const { int bottom = RenderBox::lowestPosition(includeOverflowInterior, includeSelf, applyTransform); if (!includeOverflowInterior && hasOverflowClip()) return bottom; for (RenderObject* row = firstChild(); row; row = row->nextSibling()) { for (RenderObject* curr = row->firstChild(); curr; curr = curr->nextSibling()) { if (curr->isTableCell()) { RenderTableCell* cell = toRenderTableCell(curr); bottom = max(bottom, cell->transformedFrameRect().y() + cell->lowestPosition(false)); } } } return bottom; } int RenderTableSection::rightmostPosition(bool includeOverflowInterior, bool includeSelf, ApplyTransform applyTransform) const { int right = RenderBox::rightmostPosition(includeOverflowInterior, includeSelf, applyTransform); if (!includeOverflowInterior && hasOverflowClip()) return right; for (RenderObject* row = firstChild(); row; row = row->nextSibling()) { for (RenderObject* curr = row->firstChild(); curr; curr = curr->nextSibling()) { if (curr->isTableCell()) { RenderTableCell* cell = toRenderTableCell(curr); right = max(right, cell->transformedFrameRect().x() + cell->rightmostPosition(false)); } } } return right; } int RenderTableSection::leftmostPosition(bool includeOverflowInterior, bool includeSelf, ApplyTransform applyTransform) const { int left = RenderBox::leftmostPosition(includeOverflowInterior, includeSelf, applyTransform); if (!includeOverflowInterior && hasOverflowClip()) return left; for (RenderObject* row = firstChild(); row; row = row->nextSibling()) { for (RenderObject* curr = row->firstChild(); curr; curr = curr->nextSibling()) { if (curr->isTableCell()) { RenderTableCell* cell = toRenderTableCell(curr); left = min(left, cell->transformedFrameRect().x() + cell->leftmostPosition(false)); } } } return left; } int RenderTableSection::calcOuterBorderTop() const { int totalCols = table()->numEffCols(); if (!m_gridRows || !totalCols) return 0; unsigned borderWidth = 0; const BorderValue& sb = style()->borderTop(); if (sb.style() == BHIDDEN) return -1; if (sb.style() > BHIDDEN) borderWidth = sb.width(); const BorderValue& rb = firstChild()->style()->borderTop(); if (rb.style() == BHIDDEN) return -1; if (rb.style() > BHIDDEN && rb.width() > borderWidth) borderWidth = rb.width(); bool allHidden = true; for (int c = 0; c < totalCols; c++) { const CellStruct& current = cellAt(0, c); if (current.inColSpan || !current.hasCells()) continue; const BorderValue& cb = current.primaryCell()->style()->borderTop(); // FIXME: Don't repeat for the same col group RenderTableCol* colGroup = table()->colElement(c); if (colGroup) { const BorderValue& gb = colGroup->style()->borderTop(); if (gb.style() == BHIDDEN || cb.style() == BHIDDEN) continue; allHidden = false; if (gb.style() > BHIDDEN && gb.width() > borderWidth) borderWidth = gb.width(); if (cb.style() > BHIDDEN && cb.width() > borderWidth) borderWidth = cb.width(); } else { if (cb.style() == BHIDDEN) continue; allHidden = false; if (cb.style() > BHIDDEN && cb.width() > borderWidth) borderWidth = cb.width(); } } if (allHidden) return -1; return borderWidth / 2; } int RenderTableSection::calcOuterBorderBottom() const { int totalCols = table()->numEffCols(); if (!m_gridRows || !totalCols) return 0; unsigned borderWidth = 0; const BorderValue& sb = style()->borderBottom(); if (sb.style() == BHIDDEN) return -1; if (sb.style() > BHIDDEN) borderWidth = sb.width(); const BorderValue& rb = lastChild()->style()->borderBottom(); if (rb.style() == BHIDDEN) return -1; if (rb.style() > BHIDDEN && rb.width() > borderWidth) borderWidth = rb.width(); bool allHidden = true; for (int c = 0; c < totalCols; c++) { const CellStruct& current = cellAt(m_gridRows - 1, c); if (current.inColSpan || !current.hasCells()) continue; const BorderValue& cb = current.primaryCell()->style()->borderBottom(); // FIXME: Don't repeat for the same col group RenderTableCol* colGroup = table()->colElement(c); if (colGroup) { const BorderValue& gb = colGroup->style()->borderBottom(); if (gb.style() == BHIDDEN || cb.style() == BHIDDEN) continue; allHidden = false; if (gb.style() > BHIDDEN && gb.width() > borderWidth) borderWidth = gb.width(); if (cb.style() > BHIDDEN && cb.width() > borderWidth) borderWidth = cb.width(); } else { if (cb.style() == BHIDDEN) continue; allHidden = false; if (cb.style() > BHIDDEN && cb.width() > borderWidth) borderWidth = cb.width(); } } if (allHidden) return -1; return (borderWidth + 1) / 2; } int RenderTableSection::calcOuterBorderLeft(bool rtl) const { int totalCols = table()->numEffCols(); if (!m_gridRows || !totalCols) return 0; unsigned borderWidth = 0; const BorderValue& sb = style()->borderLeft(); if (sb.style() == BHIDDEN) return -1; if (sb.style() > BHIDDEN) borderWidth = sb.width(); int leftmostColumn = rtl ? totalCols - 1 : 0; RenderTableCol* colGroup = table()->colElement(leftmostColumn); if (colGroup) { const BorderValue& gb = colGroup->style()->borderLeft(); if (gb.style() == BHIDDEN) return -1; if (gb.style() > BHIDDEN && gb.width() > borderWidth) borderWidth = gb.width(); } bool allHidden = true; for (int r = 0; r < m_gridRows; r++) { const CellStruct& current = cellAt(r, leftmostColumn); if (!current.hasCells()) continue; // FIXME: Don't repeat for the same cell const BorderValue& cb = current.primaryCell()->style()->borderLeft(); const BorderValue& rb = current.primaryCell()->parent()->style()->borderLeft(); if (cb.style() == BHIDDEN || rb.style() == BHIDDEN) continue; allHidden = false; if (cb.style() > BHIDDEN && cb.width() > borderWidth) borderWidth = cb.width(); if (rb.style() > BHIDDEN && rb.width() > borderWidth) borderWidth = rb.width(); } if (allHidden) return -1; return borderWidth / 2; } int RenderTableSection::calcOuterBorderRight(bool rtl) const { int totalCols = table()->numEffCols(); if (!m_gridRows || !totalCols) return 0; unsigned borderWidth = 0; const BorderValue& sb = style()->borderRight(); if (sb.style() == BHIDDEN) return -1; if (sb.style() > BHIDDEN) borderWidth = sb.width(); int rightmostColumn = rtl ? 0 : totalCols - 1; RenderTableCol* colGroup = table()->colElement(rightmostColumn); if (colGroup) { const BorderValue& gb = colGroup->style()->borderRight(); if (gb.style() == BHIDDEN) return -1; if (gb.style() > BHIDDEN && gb.width() > borderWidth) borderWidth = gb.width(); } bool allHidden = true; for (int r = 0; r < m_gridRows; r++) { const CellStruct& current = cellAt(r, rightmostColumn); if (!current.hasCells()) continue; // FIXME: Don't repeat for the same cell const BorderValue& cb = current.primaryCell()->style()->borderRight(); const BorderValue& rb = current.primaryCell()->parent()->style()->borderRight(); if (cb.style() == BHIDDEN || rb.style() == BHIDDEN) continue; allHidden = false; if (cb.style() > BHIDDEN && cb.width() > borderWidth) borderWidth = cb.width(); if (rb.style() > BHIDDEN && rb.width() > borderWidth) borderWidth = rb.width(); } if (allHidden) return -1; return (borderWidth + 1) / 2; } void RenderTableSection::recalcOuterBorder() { bool rtl = !table()->style()->isLeftToRightDirection(); m_outerBorderTop = calcOuterBorderTop(); m_outerBorderBottom = calcOuterBorderBottom(); m_outerBorderLeft = calcOuterBorderLeft(rtl); m_outerBorderRight = calcOuterBorderRight(rtl); } int RenderTableSection::firstLineBoxBaseline() const { if (!m_gridRows) return -1; int firstLineBaseline = m_grid[0].baseline; if (firstLineBaseline) return firstLineBaseline + m_rowPos[0]; firstLineBaseline = -1; Row* firstRow = m_grid[0].row; for (size_t i = 0; i < firstRow->size(); ++i) { CellStruct& cs = firstRow->at(i); RenderTableCell* cell = cs.primaryCell(); if (cell) firstLineBaseline = max(firstLineBaseline, cell->y() + cell->paddingTop() + cell->borderTop() + cell->contentHeight()); } return firstLineBaseline; } void RenderTableSection::paint(PaintInfo& paintInfo, int tx, int ty) { // put this back in when all layout tests can handle it // ASSERT(!needsLayout()); // avoid crashing on bugs that cause us to paint with dirty layout if (needsLayout()) return; unsigned totalRows = m_gridRows; unsigned totalCols = table()->columns().size(); if (!totalRows || !totalCols) return; tx += x(); ty += y(); PaintPhase phase = paintInfo.phase; bool pushedClip = pushContentsClip(paintInfo, tx, ty); paintObject(paintInfo, tx, ty); if (pushedClip) popContentsClip(paintInfo, phase, tx, ty); } static inline bool compareCellPositions(RenderTableCell* elem1, RenderTableCell* elem2) { return elem1->row() < elem2->row(); } void RenderTableSection::paintCell(RenderTableCell* cell, PaintInfo& paintInfo, int tx, int ty) { PaintPhase paintPhase = paintInfo.phase; RenderTableRow* row = toRenderTableRow(cell->parent()); if (paintPhase == PaintPhaseBlockBackground || paintPhase == PaintPhaseChildBlockBackground) { // We need to handle painting a stack of backgrounds. This stack (from bottom to top) consists of // the column group, column, row group, row, and then the cell. RenderObject* col = table()->colElement(cell->col()); RenderObject* colGroup = 0; if (col && col->parent()->style()->display() == TABLE_COLUMN_GROUP) colGroup = col->parent(); // Column groups and columns first. // FIXME: Columns and column groups do not currently support opacity, and they are being painted "too late" in // the stack, since we have already opened a transparency layer (potentially) for the table row group. // Note that we deliberately ignore whether or not the cell has a layer, since these backgrounds paint "behind" the // cell. cell->paintBackgroundsBehindCell(paintInfo, tx, ty, colGroup); cell->paintBackgroundsBehindCell(paintInfo, tx, ty, col); // Paint the row group next. cell->paintBackgroundsBehindCell(paintInfo, tx, ty, this); // Paint the row next, but only if it doesn't have a layer. If a row has a layer, it will be responsible for // painting the row background for the cell. if (!row->hasSelfPaintingLayer()) cell->paintBackgroundsBehindCell(paintInfo, tx, ty, row); } if ((!cell->hasSelfPaintingLayer() && !row->hasSelfPaintingLayer()) || paintInfo.phase == PaintPhaseCollapsedTableBorders) cell->paint(paintInfo, tx, ty); } void RenderTableSection::paintObject(PaintInfo& paintInfo, int tx, int ty) { // Check which rows and cols are visible and only paint these. // FIXME: Could use a binary search here. unsigned totalRows = m_gridRows; unsigned totalCols = table()->columns().size(); PaintPhase paintPhase = paintInfo.phase; int x = paintInfo.rect.x(); int y = paintInfo.rect.y(); int w = paintInfo.rect.width(); int h = paintInfo.rect.height(); #ifdef ANDROID_LAYOUT unsigned int startrow = 0; unsigned int endrow = totalRows; unsigned int startcol = 0; unsigned int endcol = totalCols; if (table()->isSingleColumn()) { // FIXME: should we be smarter too? } else { // FIXME: possible to rollback to the common tree. // rowPos size is set in calcRowHeight(), which is called from table layout(). // BUT RenderTableSection is init through parsing. On a slow device, paint() as // the result of layout() can come after the next parse() as everything is triggered // by timer. So we have to check rowPos before using it. if (m_rowPos.size() != (totalRows + 1)) return; #endif int os = 2 * maximalOutlineSize(paintPhase); unsigned startrow = 0; unsigned endrow = totalRows; // If some cell overflows, just paint all of them. if (!m_hasOverflowingCell) { int relativeY = y - ty; int top = relativeY - os; // binary search to find a row startrow = std::lower_bound(m_rowPos.begin(), m_rowPos.end(), top) - m_rowPos.begin(); // The binary search above gives us the first row with // a y position >= the top of the paint rect. Thus, the previous // may need to be repainted as well. if (startrow == m_rowPos.size() || (startrow > 0 && (m_rowPos[startrow] > top))) --startrow; int bottom = relativeY + h + os; endrow = std::lower_bound(m_rowPos.begin(), m_rowPos.end(), bottom) - m_rowPos.begin(); if (endrow == m_rowPos.size()) --endrow; if (!endrow && ty + m_rowPos[0] - table()->outerBorderTop() <= y + h + os) ++endrow; } unsigned startcol = 0; unsigned endcol = totalCols; // FIXME: Implement RTL. if (!m_hasOverflowingCell && style()->isLeftToRightDirection()) { int relativeX = x - tx; int left = relativeX - os; Vector& columnPos = table()->columnPositions(); startcol = std::lower_bound(columnPos.begin(), columnPos.end(), left) - columnPos.begin(); if ((startcol == columnPos.size()) || (startcol > 0 && (columnPos[startcol] > left))) --startcol; int right = relativeX + w + os; endcol = std::lower_bound(columnPos.begin(), columnPos.end(), right) - columnPos.begin(); if (endcol == columnPos.size()) --endcol; if (!endcol && tx + table()->columnPositions()[0] - table()->outerBorderLeft() <= y + w + os) ++endcol; } #ifdef ANDROID_LAYOUT } #endif if (startcol < endcol) { if (!m_hasMultipleCellLevels) { // Draw the dirty cells in the order that they appear. for (unsigned r = startrow; r < endrow; r++) { for (unsigned c = startcol; c < endcol; c++) { CellStruct& current = cellAt(r, c); RenderTableCell* cell = current.primaryCell(); if (!cell || (r > startrow && primaryCellAt(r - 1, c) == cell) || (c > startcol && primaryCellAt(r, c - 1) == cell)) continue; paintCell(cell, paintInfo, tx, ty); } } } else { // Draw the cells in the correct paint order. Vector cells; HashSet spanningCells; for (unsigned r = startrow; r < endrow; r++) { for (unsigned c = startcol; c < endcol; c++) { CellStruct& current = cellAt(r, c); if (!current.hasCells()) continue; for (unsigned i = 0; i < current.cells.size(); ++i) { if (current.cells[i]->rowSpan() > 1 || current.cells[i]->colSpan() > 1) { if (spanningCells.contains(current.cells[i])) continue; spanningCells.add(current.cells[i]); } cells.append(current.cells[i]); } } } // Sort the dirty cells by paint order. std::stable_sort(cells.begin(), cells.end(), compareCellPositions); int size = cells.size(); // Paint the cells. for (int i = 0; i < size; ++i) paintCell(cells[i], paintInfo, tx, ty); } } } void RenderTableSection::imageChanged(WrappedImagePtr, const IntRect*) { // FIXME: Examine cells and repaint only the rect the image paints in. repaint(); } void RenderTableSection::recalcCells() { m_cCol = 0; m_cRow = -1; clearGrid(); m_gridRows = 0; for (RenderObject* row = firstChild(); row; row = row->nextSibling()) { if (row->isTableRow()) { m_cRow++; m_cCol = 0; if (!ensureRows(m_cRow + 1)) break; RenderTableRow* tableRow = toRenderTableRow(row); m_grid[m_cRow].rowRenderer = tableRow; setRowHeightToRowStyleHeightIfNotRelative(&m_grid[m_cRow]); for (RenderObject* cell = row->firstChild(); cell; cell = cell->nextSibling()) { if (cell->isTableCell()) addCell(toRenderTableCell(cell), tableRow); } } } m_needsCellRecalc = false; setNeedsLayout(true); } void RenderTableSection::clearGrid() { int rows = m_gridRows; while (rows--) delete m_grid[rows].row; } int RenderTableSection::numColumns() const { int result = 0; for (int r = 0; r < m_gridRows; ++r) { for (int c = result; c < table()->numEffCols(); ++c) { const CellStruct& cell = cellAt(r, c); if (cell.hasCells() || cell.inColSpan) result = c; } } return result + 1; } void RenderTableSection::appendColumn(int pos) { for (int row = 0; row < m_gridRows; ++row) m_grid[row].row->resize(pos + 1); } void RenderTableSection::splitColumn(int pos, int first) { if (m_cCol > pos) m_cCol++; for (int row = 0; row < m_gridRows; ++row) { Row& r = *m_grid[row].row; r.insert(pos + 1, CellStruct()); if (r[pos].hasCells()) { r[pos + 1].cells.append(r[pos].cells); RenderTableCell* cell = r[pos].primaryCell(); ASSERT(cell); int colleft = cell->colSpan() - r[pos].inColSpan; if (first > colleft) r[pos + 1].inColSpan = 0; else r[pos + 1].inColSpan = first + r[pos].inColSpan; } else { r[pos + 1].inColSpan = 0; } } } // Hit Testing bool RenderTableSection::nodeAtPoint(const HitTestRequest& request, HitTestResult& result, int xPos, int yPos, int tx, int ty, HitTestAction action) { // If we have no children then we have nothing to do. if (!firstChild()) return false; // Table sections cannot ever be hit tested. Effectively they do not exist. // Just forward to our children always. tx += x(); ty += y(); if (hasOverflowClip() && !overflowClipRect(tx, ty).intersects(result.rectForPoint(xPos, yPos))) return false; if (m_hasOverflowingCell) { for (RenderObject* child = lastChild(); child; child = child->previousSibling()) { // FIXME: We have to skip over inline flows, since they can show up inside table rows // at the moment (a demoted inline
for example). If we ever implement a // table-specific hit-test method (which we should do for performance reasons anyway), // then we can remove this check. if (child->isBox() && !toRenderBox(child)->hasSelfPaintingLayer() && child->nodeAtPoint(request, result, xPos, yPos, tx, ty, action)) { updateHitTestResult(result, IntPoint(xPos - tx, yPos - ty)); return true; } } return false; } int relativeY = yPos - ty; // leftrow corresponds to the first row that starts after the y mouse position unsigned leftrow = std::upper_bound(m_rowPos.begin(), m_rowPos.end(), relativeY) - m_rowPos.begin(); if (leftrow == m_rowPos.size()) return false; // Grab the last row that starts before the y mouse position. if (leftrow > 0) --leftrow; Vector& columnPos = table()->columnPositions(); bool rtl = !style()->isLeftToRightDirection(); int relativeX = xPos - tx; if (rtl) relativeX = columnPos[columnPos.size() - 1] - relativeX; unsigned leftcol = std::lower_bound(columnPos.begin(), columnPos.end(), relativeX) - columnPos.begin(); if (leftcol == columnPos.size()) return false; if (leftcol > 0) --leftcol; CellStruct& current = cellAt(leftrow, leftcol); // If the cell is empty, there's nothing to do if (!current.hasCells()) return false; for (int i = current.cells.size() - 1; i >= 0; --i) { RenderTableCell* cell = current.cells[i]; if (static_cast(cell)->nodeAtPoint(request, result, xPos, yPos, tx, ty, action)) { updateHitTestResult(result, IntPoint(xPos - tx, yPos - ty)); return true; } } return false; } } // namespace WebCore