summaryrefslogtreecommitdiffstats
path: root/media/libstagefright/codecs/aacdec/imdct_fxp.cpp
diff options
context:
space:
mode:
authorAndreas Huber <andih@google.com>2009-12-07 09:56:32 -0800
committerAndreas Huber <andih@google.com>2009-12-07 11:02:28 -0800
commitf44de515d3b6098a0b585865c1a0c7b20d3075a6 (patch)
tree028b1d81643bbb332464b42b50a0f79ba5359142 /media/libstagefright/codecs/aacdec/imdct_fxp.cpp
parentbf697e37550d9e8376089b0b5e498613bede798c (diff)
downloadframeworks_av-f44de515d3b6098a0b585865c1a0c7b20d3075a6.zip
frameworks_av-f44de515d3b6098a0b585865c1a0c7b20d3075a6.tar.gz
frameworks_av-f44de515d3b6098a0b585865c1a0c7b20d3075a6.tar.bz2
Initial check in of stagefright software AAC decoder based on PV source code.
Diffstat (limited to 'media/libstagefright/codecs/aacdec/imdct_fxp.cpp')
-rw-r--r--media/libstagefright/codecs/aacdec/imdct_fxp.cpp476
1 files changed, 476 insertions, 0 deletions
diff --git a/media/libstagefright/codecs/aacdec/imdct_fxp.cpp b/media/libstagefright/codecs/aacdec/imdct_fxp.cpp
new file mode 100644
index 0000000..ad67f20
--- /dev/null
+++ b/media/libstagefright/codecs/aacdec/imdct_fxp.cpp
@@ -0,0 +1,476 @@
+/* ------------------------------------------------------------------
+ * Copyright (C) 1998-2009 PacketVideo
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
+ * express or implied.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ * -------------------------------------------------------------------
+ */
+/*
+
+ Pathname: imdct_fxp.c
+ Funtions: imdct_fxp
+
+------------------------------------------------------------------------------
+ INPUT AND OUTPUT DEFINITIONS
+
+ Inputs:
+
+ data_quant = Input vector, with quantized spectral lines:
+ type Int32
+
+ freq_2_time_buffer = Scratch memory used for in-place FFT calculation,
+ min size required 1024,
+ type Int32
+
+ n = Length of input vector "data_quant". Currently 256 or 2048
+ type const Int
+
+ Q_format = Q_format of the input vector "data_quant"
+ type Int
+
+ max = Maximum value inside input vector "data_quant"
+ type Int32
+
+ Local Stores/Buffers/Pointers Needed:
+ None
+
+ Global Stores/Buffers/Pointers Needed:
+ None
+
+ Outputs:
+ shift = shift factor to reflect scaling introduced by IFFT and imdct_fxp,
+
+ Pointers and Buffers Modified:
+ Results are return in "Data_Int_precision"
+
+ Local Stores Modified:
+ None
+
+ Global Stores Modified:
+ None
+
+------------------------------------------------------------------------------
+ FUNCTION DESCRIPTION
+
+ The IMDCT is a linear orthogonal lapped transform, based on the idea of
+ time domain aliasing cancellation (TDAC).
+ IMDCT is critically sampled, which means that though it is 50% overlapped,
+ a sequence data after IMDCT has the same number of coefficients as samples
+ before the transform (after overlap-and-add). This means, that a single
+ block of IMDCT data does not correspond to the original block on which the
+ IMDCT was performed. When subsequent blocks of inverse transformed data
+ are added (still using 50% overlap), the errors introduced by the
+ transform cancels out.Thanks to the overlapping feature, the IMDCT is very
+ useful for quantization. It effectively removes the otherwise easily
+ detectable blocking artifact between transform blocks.
+
+ N = twice the length of input vector X
+ y = vector of length N, will hold fixed point IDCT
+ p = 0:1:N-1
+
+ 2 N/2-1
+ y(p) = --- SUM X(m)*cos(pi/(2*N)*(2*p+1+N/2)*(2*m+1))
+ N m=0
+
+ The window that completes the TDAC is applied before calling this function.
+ The IMDCT can be calculated using an IFFT, for this, the IMDCT need be
+ rewritten as an odd-time odd-frequency discrete Fourier transform. Thus,
+ the IMDCT can be calculated using only one n/4 point FFT and some pre and
+ post-rotation of the sample points.
+
+
+ where X(k) is the input with N frequency lines
+
+ X(k) ----------------------------
+ |
+ |
+ Pre-rotation by exp(j(2pi/N)(k+1/8))
+ |
+ |
+ N/4- point IFFT
+ |
+ |
+ Post-rotation by exp(j(2pi/N)(n+1/8))
+ |
+ |
+ ------------- x(n) In the time domain
+
+
+------------------------------------------------------------------------------
+ REQUIREMENTS
+
+ This function should provide a fixed point IMDCT with an average
+ quantization error less than 1 % (variance and mean).
+
+------------------------------------------------------------------------------
+ REFERENCES
+
+ [1] Analysis/Synthesis Filter Bank design based on time domain
+ aliasing cancellation
+ Jhon Princen, et. al.
+ IEEE Transactions on ASSP, vol ASSP-34, No. 5 October 1986
+ Pg 1153 - 1161
+
+ [2] Regular FFT-related transform kernels for DCT/DST based
+ polyphase filterbanks
+ Rolf Gluth
+ Proc. ICASSP 1991, pg. 2205 - 2208
+
+------------------------------------------------------------------------------
+ PSEUDO-CODE
+
+ Cx, Cy are complex number
+
+
+ exp = log2(n)-1
+
+ FOR ( k=0; k< n/2; k +=2)
+
+ Cx = - data_quant[k] + j data_quant[n/2-1 - k]
+
+ freq_2_time_buffer = Cx * exp(j(2pi/n)(k+1/8))
+
+ ENDFOR
+
+ CALL IFFT( freq_2_time_buffer, n/4)
+
+ MODIFYING( freq_2_time_buffer )
+
+ RETURNING( shift )
+
+ FOR ( k=0; k< n/4; k +=2)
+
+ Cx = freq_2_time_buffer[ k] + j freq_2_time_buffer[ k+1]
+
+ Cy = Cx * exp(j(2pi/n)(k+1/8))
+
+ data_quant[3n/4-1 - k ] = Real(Cy)
+ data_quant[ n/4-1 - k ] = - Imag(Cy)
+ data_quant[3n/4 + k ] = Real(Cy)
+ data_quant[ n/4 + k ] = Imag(Cy)
+
+ ENDFOR
+
+ FOR ( k=n/4; k< n/2; k +=2)
+
+ Cx = freq_2_time_buffer[ k] + j freq_2_time_buffer[ k+1]
+
+ Cy = Cx * exp(j(2pi/n)(k+1/8))
+
+ data_quant[3n/4-1 - k ] = Real(Cy)
+ data_quant[ n/4 + k ] = - Real(Cy)
+ data_quant[5n/4 - k ] = Imag(Cy)
+ data_quant[ n/4 + k ] = Imag(Cy)
+
+ ENDFOR
+
+ MODIFIED data_quant[]
+
+ RETURN (exp - shift)
+
+------------------------------------------------------------------------------
+ RESOURCES USED
+ When the code is written for a specific target processor the
+ the resources used should be documented below.
+
+ STACK USAGE: [stack count for this module] + [variable to represent
+ stack usage for each subroutine called]
+
+ where: [stack usage variable] = stack usage for [subroutine
+ name] (see [filename].ext)
+
+ DATA MEMORY USED: x words
+
+ PROGRAM MEMORY USED: x words
+
+ CLOCK CYCLES: [cycle count equation for this module] + [variable
+ used to represent cycle count for each subroutine
+ called]
+
+ where: [cycle count variable] = cycle count for [subroutine
+ name] (see [filename].ext)
+
+------------------------------------------------------------------------------
+*/
+
+
+/*----------------------------------------------------------------------------
+; INCLUDES
+----------------------------------------------------------------------------*/
+
+#include "pv_audio_type_defs.h"
+#include "imdct_fxp.h"
+
+
+#include "mix_radix_fft.h"
+#include "digit_reversal_tables.h"
+#include "fft_rx4.h"
+#include "inv_short_complex_rot.h"
+#include "inv_long_complex_rot.h"
+#include "pv_normalize.h"
+#include "fxp_mul32.h"
+#include "aac_mem_funcs.h"
+
+#include "window_block_fxp.h"
+
+/*----------------------------------------------------------------------------
+; MACROS
+; Define module specific macros here
+----------------------------------------------------------------------------*/
+
+/*----------------------------------------------------------------------------
+; DEFINES
+; Include all pre-processor statements here. Include conditional
+; compile variables also.
+----------------------------------------------------------------------------*/
+#define ERROR_IN_FRAME_SIZE 10
+
+/*----------------------------------------------------------------------------
+; LOCAL FUNCTION DEFINITIONS
+; Function Prototype declaration
+----------------------------------------------------------------------------*/
+
+/*----------------------------------------------------------------------------
+; LOCAL VARIABLE DEFINITIONS
+; Variable declaration - defined here and used outside this module
+----------------------------------------------------------------------------*/
+
+/*----------------------------------------------------------------------------
+; EXTERNAL FUNCTION REFERENCES
+; Declare functions defined elsewhere and referenced in this module
+----------------------------------------------------------------------------*/
+
+/*----------------------------------------------------------------------------
+; EXTERNAL VARIABLES REFERENCES
+; Declare variables used in this module but defined elsewhere
+----------------------------------------------------------------------------*/
+
+
+/*----------------------------------------------------------------------------
+; EXTERNAL GLOBAL STORE/BUFFER/POINTER REFERENCES
+; Declare variables used in this module but defined elsewhere
+----------------------------------------------------------------------------*/
+
+/*----------------------------------------------------------------------------
+; FUNCTION CODE
+----------------------------------------------------------------------------*/
+
+
+Int imdct_fxp(Int32 data_quant[],
+ Int32 freq_2_time_buffer[],
+ const Int n,
+ Int Q_format,
+ Int32 max)
+{
+
+ Int32 exp_jw;
+ Int shift = 0;
+
+ const Int32 *p_rotate;
+ const Int32 *p_rotate_2;
+
+ Int32 *p_data_1;
+ Int32 *p_data_2;
+
+ Int32 temp_re32;
+ Int32 temp_im32;
+
+ Int shift1 = 0;
+ Int32 temp1;
+ Int32 temp2;
+
+ Int k;
+ Int n_2 = n >> 1;
+ Int n_4 = n >> 2;
+
+
+
+ if (max != 0)
+ {
+
+ switch (n)
+ {
+ case SHORT_WINDOW_TYPE:
+ p_rotate = exp_rotation_N_256;
+ shift = 21; /* log2(n)-1 + 14 acomodates 2/N factor */
+ break;
+
+ case LONG_WINDOW_TYPE:
+ p_rotate = exp_rotation_N_2048;
+ shift = 24; /* log2(n)-1 +14 acomodates 2/N factor */
+ break;
+
+ default:
+ /*
+ * There is no defined behavior for a non supported frame
+ * size. By returning a fixed scaling factor, the input will
+ * scaled down and the will be heard as a low level noise
+ */
+ return(ERROR_IN_FRAME_SIZE);
+
+ }
+
+ /*
+ * p_data_1 p_data_2
+ * | |
+ * RIRIRIRIRIRIRIRIRIRIRIRIRIRIRI....RIRIRIRIRIRI
+ * | |
+ *
+ */
+
+ p_data_1 = data_quant; /* uses first half of buffer */
+ p_data_2 = &data_quant[n_2 - 1]; /* uses second half of buffer */
+
+ p_rotate_2 = &p_rotate[n_4-1];
+
+ shift1 = pv_normalize(max) - 1; /* -1 to leave room for addition */
+ Q_format -= (16 - shift1);
+ max = 0;
+
+
+ if (shift1 >= 0)
+ {
+ temp_re32 = *(p_data_1++) << shift1;
+ temp_im32 = *(p_data_2--) << shift1;
+
+ for (k = n_4 >> 1; k != 0; k--)
+ {
+ /*
+ * Real and Imag parts have been swaped to use FFT as IFFT
+ */
+ /*
+ * cos_n + j*sin_n == exp(j(2pi/N)(k+1/8))
+ */
+ exp_jw = *p_rotate++;
+
+ temp1 = cmplx_mul32_by_16(temp_im32, -temp_re32, exp_jw);
+ temp2 = -cmplx_mul32_by_16(temp_re32, temp_im32, exp_jw);
+
+ temp_im32 = *(p_data_1--) << shift1;
+ temp_re32 = *(p_data_2--) << shift1;
+ *(p_data_1++) = temp1;
+ *(p_data_1++) = temp2;
+ max |= (temp1 >> 31) ^ temp1;
+ max |= (temp2 >> 31) ^ temp2;
+
+
+ /*
+ * Real and Imag parts have been swaped to use FFT as IFFT
+ */
+
+ /*
+ * cos_n + j*sin_n == exp(j(2pi/N)(k+1/8))
+ */
+
+ exp_jw = *p_rotate_2--;
+
+ temp1 = cmplx_mul32_by_16(temp_im32, -temp_re32, exp_jw);
+ temp2 = -cmplx_mul32_by_16(temp_re32, temp_im32, exp_jw);
+
+
+ temp_re32 = *(p_data_1++) << shift1;
+ temp_im32 = *(p_data_2--) << shift1;
+
+ *(p_data_2 + 2) = temp1;
+ *(p_data_2 + 3) = temp2;
+ max |= (temp1 >> 31) ^ temp1;
+ max |= (temp2 >> 31) ^ temp2;
+
+ }
+ }
+ else
+ {
+ temp_re32 = *(p_data_1++) >> 1;
+ temp_im32 = *(p_data_2--) >> 1;
+
+ for (k = n_4 >> 1; k != 0; k--)
+ {
+ /*
+ * Real and Imag parts have been swaped to use FFT as IFFT
+ */
+ /*
+ * cos_n + j*sin_n == exp(j(2pi/N)(k+1/8))
+ */
+ exp_jw = *p_rotate++;
+
+ temp1 = cmplx_mul32_by_16(temp_im32, -temp_re32, exp_jw);
+ temp2 = -cmplx_mul32_by_16(temp_re32, temp_im32, exp_jw);
+
+ temp_im32 = *(p_data_1--) >> 1;
+ temp_re32 = *(p_data_2--) >> 1;
+ *(p_data_1++) = temp1;
+ *(p_data_1++) = temp2;
+
+ max |= (temp1 >> 31) ^ temp1;
+ max |= (temp2 >> 31) ^ temp2;
+
+
+ /*
+ * Real and Imag parts have been swaped to use FFT as IFFT
+ */
+
+ /*
+ * cos_n + j*sin_n == exp(j(2pi/N)(k+1/8))
+ */
+ exp_jw = *p_rotate_2--;
+
+ temp1 = cmplx_mul32_by_16(temp_im32, -temp_re32, exp_jw);
+ temp2 = -cmplx_mul32_by_16(temp_re32, temp_im32, exp_jw);
+
+ temp_re32 = *(p_data_1++) >> 1;
+ temp_im32 = *(p_data_2--) >> 1;
+
+ *(p_data_2 + 3) = temp2;
+ *(p_data_2 + 2) = temp1;
+
+ max |= (temp1 >> 31) ^ temp1;
+ max |= (temp2 >> 31) ^ temp2;
+
+ }
+ }
+
+
+ if (n != SHORT_WINDOW_TYPE)
+ {
+
+ shift -= mix_radix_fft(data_quant,
+ &max);
+
+ shift -= inv_long_complex_rot(data_quant,
+ max);
+
+ }
+ else /* n_4 is 64 */
+ {
+
+ shift -= fft_rx4_short(data_quant, &max);
+
+
+ shift -= inv_short_complex_rot(data_quant,
+ freq_2_time_buffer,
+ max);
+
+ pv_memcpy(data_quant,
+ freq_2_time_buffer,
+ SHORT_WINDOW*sizeof(*data_quant));
+ }
+
+ }
+ else
+ {
+ Q_format = ALL_ZEROS_BUFFER;
+ }
+
+ return(shift + Q_format);
+
+} /* imdct_fxp */