summaryrefslogtreecommitdiffstats
path: root/services/audioflinger/AudioResamplerDyn.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'services/audioflinger/AudioResamplerDyn.cpp')
-rw-r--r--services/audioflinger/AudioResamplerDyn.cpp556
1 files changed, 556 insertions, 0 deletions
diff --git a/services/audioflinger/AudioResamplerDyn.cpp b/services/audioflinger/AudioResamplerDyn.cpp
new file mode 100644
index 0000000..3abe8fd
--- /dev/null
+++ b/services/audioflinger/AudioResamplerDyn.cpp
@@ -0,0 +1,556 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#define LOG_TAG "AudioResamplerDyn"
+//#define LOG_NDEBUG 0
+
+#include <malloc.h>
+#include <string.h>
+#include <stdlib.h>
+#include <dlfcn.h>
+#include <math.h>
+
+#include <cutils/compiler.h>
+#include <cutils/properties.h>
+#include <utils/Debug.h>
+#include <utils/Log.h>
+
+#include "AudioResamplerFirOps.h" // USE_NEON and USE_INLINE_ASSEMBLY defined here
+#include "AudioResamplerFirProcess.h"
+#include "AudioResamplerFirProcessNeon.h"
+#include "AudioResamplerFirGen.h" // requires math.h
+#include "AudioResamplerDyn.h"
+
+//#define DEBUG_RESAMPLER
+
+namespace android {
+
+// generate a unique resample type compile-time constant (constexpr)
+#define RESAMPLETYPE(CHANNELS, LOCKED, STRIDE) \
+ ((((CHANNELS)-1)&1) | !!(LOCKED)<<1 \
+ | ((STRIDE)==8 ? 1 : (STRIDE)==16 ? 2 : 0)<<2)
+
+/*
+ * InBuffer is a type agnostic input buffer.
+ *
+ * Layout of the state buffer for halfNumCoefs=8.
+ *
+ * [rrrrrrppppppppnnnnnnnnrrrrrrrrrrrrrrrrrrr.... rrrrrrr]
+ * S I R
+ *
+ * S = mState
+ * I = mImpulse
+ * R = mRingFull
+ * p = past samples, convoluted with the (p)ositive side of sinc()
+ * n = future samples, convoluted with the (n)egative side of sinc()
+ * r = extra space for implementing the ring buffer
+ */
+
+template<typename TC, typename TI, typename TO>
+AudioResamplerDyn<TC, TI, TO>::InBuffer::InBuffer()
+ : mState(NULL), mImpulse(NULL), mRingFull(NULL), mStateCount(0)
+{
+}
+
+template<typename TC, typename TI, typename TO>
+AudioResamplerDyn<TC, TI, TO>::InBuffer::~InBuffer()
+{
+ init();
+}
+
+template<typename TC, typename TI, typename TO>
+void AudioResamplerDyn<TC, TI, TO>::InBuffer::init()
+{
+ free(mState);
+ mState = NULL;
+ mImpulse = NULL;
+ mRingFull = NULL;
+ mStateCount = 0;
+}
+
+// resizes the state buffer to accommodate the appropriate filter length
+template<typename TC, typename TI, typename TO>
+void AudioResamplerDyn<TC, TI, TO>::InBuffer::resize(int CHANNELS, int halfNumCoefs)
+{
+ // calculate desired state size
+ int stateCount = halfNumCoefs * CHANNELS * 2 * kStateSizeMultipleOfFilterLength;
+
+ // check if buffer needs resizing
+ if (mState
+ && stateCount == mStateCount
+ && mRingFull-mState == mStateCount-halfNumCoefs*CHANNELS) {
+ return;
+ }
+
+ // create new buffer
+ TI* state;
+ (void)posix_memalign(reinterpret_cast<void**>(&state), 32, stateCount*sizeof(*state));
+ memset(state, 0, stateCount*sizeof(*state));
+
+ // attempt to preserve state
+ if (mState) {
+ TI* srcLo = mImpulse - halfNumCoefs*CHANNELS;
+ TI* srcHi = mImpulse + halfNumCoefs*CHANNELS;
+ TI* dst = state;
+
+ if (srcLo < mState) {
+ dst += mState-srcLo;
+ srcLo = mState;
+ }
+ if (srcHi > mState + mStateCount) {
+ srcHi = mState + mStateCount;
+ }
+ memcpy(dst, srcLo, (srcHi - srcLo) * sizeof(*srcLo));
+ free(mState);
+ }
+
+ // set class member vars
+ mState = state;
+ mStateCount = stateCount;
+ mImpulse = state + halfNumCoefs*CHANNELS; // actually one sample greater than needed
+ mRingFull = state + mStateCount - halfNumCoefs*CHANNELS;
+}
+
+// copy in the input data into the head (impulse+halfNumCoefs) of the buffer.
+template<typename TC, typename TI, typename TO>
+template<int CHANNELS>
+void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAgain(TI*& impulse, const int halfNumCoefs,
+ const TI* const in, const size_t inputIndex)
+{
+ TI* head = impulse + halfNumCoefs*CHANNELS;
+ for (size_t i=0 ; i<CHANNELS ; i++) {
+ head[i] = in[inputIndex*CHANNELS + i];
+ }
+}
+
+// advance the impulse pointer, and load in data into the head (impulse+halfNumCoefs)
+template<typename TC, typename TI, typename TO>
+template<int CHANNELS>
+void AudioResamplerDyn<TC, TI, TO>::InBuffer::readAdvance(TI*& impulse, const int halfNumCoefs,
+ const TI* const in, const size_t inputIndex)
+{
+ impulse += CHANNELS;
+
+ if (CC_UNLIKELY(impulse >= mRingFull)) {
+ const size_t shiftDown = mRingFull - mState - halfNumCoefs*CHANNELS;
+ memcpy(mState, mState+shiftDown, halfNumCoefs*CHANNELS*2*sizeof(TI));
+ impulse -= shiftDown;
+ }
+ readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
+}
+
+template<typename TC, typename TI, typename TO>
+void AudioResamplerDyn<TC, TI, TO>::Constants::set(
+ int L, int halfNumCoefs, int inSampleRate, int outSampleRate)
+{
+ int bits = 0;
+ int lscale = inSampleRate/outSampleRate < 2 ? L - 1 :
+ static_cast<int>(static_cast<uint64_t>(L)*inSampleRate/outSampleRate);
+ for (int i=lscale; i; ++bits, i>>=1)
+ ;
+ mL = L;
+ mShift = kNumPhaseBits - bits;
+ mHalfNumCoefs = halfNumCoefs;
+}
+
+template<typename TC, typename TI, typename TO>
+AudioResamplerDyn<TC, TI, TO>::AudioResamplerDyn(int bitDepth,
+ int inChannelCount, int32_t sampleRate, src_quality quality)
+ : AudioResampler(bitDepth, inChannelCount, sampleRate, quality),
+ mResampleFunc(0), mFilterSampleRate(0), mFilterQuality(DEFAULT_QUALITY),
+ mCoefBuffer(NULL)
+{
+ mVolumeSimd[0] = mVolumeSimd[1] = 0;
+ // The AudioResampler base class assumes we are always ready for 1:1 resampling.
+ // We reset mInSampleRate to 0, so setSampleRate() will calculate filters for
+ // setSampleRate() for 1:1. (May be removed if precalculated filters are used.)
+ mInSampleRate = 0;
+ mConstants.set(128, 8, mSampleRate, mSampleRate); // TODO: set better
+}
+
+template<typename TC, typename TI, typename TO>
+AudioResamplerDyn<TC, TI, TO>::~AudioResamplerDyn()
+{
+ free(mCoefBuffer);
+}
+
+template<typename TC, typename TI, typename TO>
+void AudioResamplerDyn<TC, TI, TO>::init()
+{
+ mFilterSampleRate = 0; // always trigger new filter generation
+ mInBuffer.init();
+}
+
+template<typename TC, typename TI, typename TO>
+void AudioResamplerDyn<TC, TI, TO>::setVolume(int16_t left, int16_t right)
+{
+ AudioResampler::setVolume(left, right);
+ // volume is applied on the output type.
+ if (is_same<TO, float>::value || is_same<TO, double>::value) {
+ const TO scale = 1. / (1UL << 12);
+ mVolumeSimd[0] = static_cast<TO>(left) * scale;
+ mVolumeSimd[1] = static_cast<TO>(right) * scale;
+ } else {
+ mVolumeSimd[0] = static_cast<int32_t>(left) << 16;
+ mVolumeSimd[1] = static_cast<int32_t>(right) << 16;
+ }
+}
+
+template<typename T> T max(T a, T b) {return a > b ? a : b;}
+
+template<typename T> T absdiff(T a, T b) {return a > b ? a - b : b - a;}
+
+template<typename TC, typename TI, typename TO>
+void AudioResamplerDyn<TC, TI, TO>::createKaiserFir(Constants &c,
+ double stopBandAtten, int inSampleRate, int outSampleRate, double tbwCheat)
+{
+ TC* buf;
+ static const double atten = 0.9998; // to avoid ripple overflow
+ double fcr;
+ double tbw = firKaiserTbw(c.mHalfNumCoefs, stopBandAtten);
+
+ (void)posix_memalign(reinterpret_cast<void**>(&buf), 32, (c.mL+1)*c.mHalfNumCoefs*sizeof(TC));
+ if (inSampleRate < outSampleRate) { // upsample
+ fcr = max(0.5*tbwCheat - tbw/2, tbw/2);
+ } else { // downsample
+ fcr = max(0.5*tbwCheat*outSampleRate/inSampleRate - tbw/2, tbw/2);
+ }
+ // create and set filter
+ firKaiserGen(buf, c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten);
+ c.mFirCoefs = buf;
+ if (mCoefBuffer) {
+ free(mCoefBuffer);
+ }
+ mCoefBuffer = buf;
+#ifdef DEBUG_RESAMPLER
+ // print basic filter stats
+ printf("L:%d hnc:%d stopBandAtten:%lf fcr:%lf atten:%lf tbw:%lf\n",
+ c.mL, c.mHalfNumCoefs, stopBandAtten, fcr, atten, tbw);
+ // test the filter and report results
+ double fp = (fcr - tbw/2)/c.mL;
+ double fs = (fcr + tbw/2)/c.mL;
+ double passMin, passMax, passRipple;
+ double stopMax, stopRipple;
+ testFir(buf, c.mL, c.mHalfNumCoefs, fp, fs, /*passSteps*/ 1000, /*stopSteps*/ 100000,
+ passMin, passMax, passRipple, stopMax, stopRipple);
+ printf("passband(%lf, %lf): %.8lf %.8lf %.8lf\n", 0., fp, passMin, passMax, passRipple);
+ printf("stopband(%lf, %lf): %.8lf %.3lf\n", fs, 0.5, stopMax, stopRipple);
+#endif
+}
+
+// recursive gcd. Using objdump, it appears the tail recursion is converted to a while loop.
+static int gcd(int n, int m)
+{
+ if (m == 0) {
+ return n;
+ }
+ return gcd(m, n % m);
+}
+
+static bool isClose(int32_t newSampleRate, int32_t prevSampleRate,
+ int32_t filterSampleRate, int32_t outSampleRate)
+{
+
+ // different upsampling ratios do not need a filter change.
+ if (filterSampleRate != 0
+ && filterSampleRate < outSampleRate
+ && newSampleRate < outSampleRate)
+ return true;
+
+ // check design criteria again if downsampling is detected.
+ int pdiff = absdiff(newSampleRate, prevSampleRate);
+ int adiff = absdiff(newSampleRate, filterSampleRate);
+
+ // allow up to 6% relative change increments.
+ // allow up to 12% absolute change increments (from filter design)
+ return pdiff < prevSampleRate>>4 && adiff < filterSampleRate>>3;
+}
+
+template<typename TC, typename TI, typename TO>
+void AudioResamplerDyn<TC, TI, TO>::setSampleRate(int32_t inSampleRate)
+{
+ if (mInSampleRate == inSampleRate) {
+ return;
+ }
+ int32_t oldSampleRate = mInSampleRate;
+ int32_t oldHalfNumCoefs = mConstants.mHalfNumCoefs;
+ uint32_t oldPhaseWrapLimit = mConstants.mL << mConstants.mShift;
+ bool useS32 = false;
+
+ mInSampleRate = inSampleRate;
+
+ // TODO: Add precalculated Equiripple filters
+
+ if (mFilterQuality != getQuality() ||
+ !isClose(inSampleRate, oldSampleRate, mFilterSampleRate, mSampleRate)) {
+ mFilterSampleRate = inSampleRate;
+ mFilterQuality = getQuality();
+
+ // Begin Kaiser Filter computation
+ //
+ // The quantization floor for S16 is about 96db - 10*log_10(#length) + 3dB.
+ // Keep the stop band attenuation no greater than 84-85dB for 32 length S16 filters
+ //
+ // For s32 we keep the stop band attenuation at the same as 16b resolution, about
+ // 96-98dB
+ //
+
+ double stopBandAtten;
+ double tbwCheat = 1.; // how much we "cheat" into aliasing
+ int halfLength;
+ if (mFilterQuality == DYN_HIGH_QUALITY) {
+ // 32b coefficients, 64 length
+ useS32 = true;
+ stopBandAtten = 98.;
+ if (inSampleRate >= mSampleRate * 4) {
+ halfLength = 48;
+ } else if (inSampleRate >= mSampleRate * 2) {
+ halfLength = 40;
+ } else {
+ halfLength = 32;
+ }
+ } else if (mFilterQuality == DYN_LOW_QUALITY) {
+ // 16b coefficients, 16-32 length
+ useS32 = false;
+ stopBandAtten = 80.;
+ if (inSampleRate >= mSampleRate * 4) {
+ halfLength = 24;
+ } else if (inSampleRate >= mSampleRate * 2) {
+ halfLength = 16;
+ } else {
+ halfLength = 8;
+ }
+ if (inSampleRate <= mSampleRate) {
+ tbwCheat = 1.05;
+ } else {
+ tbwCheat = 1.03;
+ }
+ } else { // DYN_MED_QUALITY
+ // 16b coefficients, 32-64 length
+ // note: > 64 length filters with 16b coefs can have quantization noise problems
+ useS32 = false;
+ stopBandAtten = 84.;
+ if (inSampleRate >= mSampleRate * 4) {
+ halfLength = 32;
+ } else if (inSampleRate >= mSampleRate * 2) {
+ halfLength = 24;
+ } else {
+ halfLength = 16;
+ }
+ if (inSampleRate <= mSampleRate) {
+ tbwCheat = 1.03;
+ } else {
+ tbwCheat = 1.01;
+ }
+ }
+
+ // determine the number of polyphases in the filterbank.
+ // for 16b, it is desirable to have 2^(16/2) = 256 phases.
+ // https://ccrma.stanford.edu/~jos/resample/Relation_Interpolation_Error_Quantization.html
+ //
+ // We are a bit more lax on this.
+
+ int phases = mSampleRate / gcd(mSampleRate, inSampleRate);
+
+ // TODO: Once dynamic sample rate change is an option, the code below
+ // should be modified to execute only when dynamic sample rate change is enabled.
+ //
+ // as above, #phases less than 63 is too few phases for accurate linear interpolation.
+ // we increase the phases to compensate, but more phases means more memory per
+ // filter and more time to compute the filter.
+ //
+ // if we know that the filter will be used for dynamic sample rate changes,
+ // that would allow us skip this part for fixed sample rate resamplers.
+ //
+ while (phases<63) {
+ phases *= 2; // this code only needed to support dynamic rate changes
+ }
+
+ if (phases>=256) { // too many phases, always interpolate
+ phases = 127;
+ }
+
+ // create the filter
+ mConstants.set(phases, halfLength, inSampleRate, mSampleRate);
+ createKaiserFir(mConstants, stopBandAtten,
+ inSampleRate, mSampleRate, tbwCheat);
+ } // End Kaiser filter
+
+ // update phase and state based on the new filter.
+ const Constants& c(mConstants);
+ mInBuffer.resize(mChannelCount, c.mHalfNumCoefs);
+ const uint32_t phaseWrapLimit = c.mL << c.mShift;
+ // try to preserve as much of the phase fraction as possible for on-the-fly changes
+ mPhaseFraction = static_cast<unsigned long long>(mPhaseFraction)
+ * phaseWrapLimit / oldPhaseWrapLimit;
+ mPhaseFraction %= phaseWrapLimit; // should not do anything, but just in case.
+ mPhaseIncrement = static_cast<uint32_t>(static_cast<double>(phaseWrapLimit)
+ * inSampleRate / mSampleRate);
+
+ // determine which resampler to use
+ // check if locked phase (works only if mPhaseIncrement has no "fractional phase bits")
+ int locked = (mPhaseIncrement << (sizeof(mPhaseIncrement)*8 - c.mShift)) == 0;
+ int stride = (c.mHalfNumCoefs&7)==0 ? 16 : (c.mHalfNumCoefs&3)==0 ? 8 : 2;
+ if (locked) {
+ mPhaseFraction = mPhaseFraction >> c.mShift << c.mShift; // remove fractional phase
+ }
+
+ setResampler(RESAMPLETYPE(mChannelCount, locked, stride));
+#ifdef DEBUG_RESAMPLER
+ printf("channels:%d %s stride:%d %s coef:%d shift:%d\n",
+ mChannelCount, locked ? "locked" : "interpolated",
+ stride, useS32 ? "S32" : "S16", 2*c.mHalfNumCoefs, c.mShift);
+#endif
+}
+
+template<typename TC, typename TI, typename TO>
+void AudioResamplerDyn<TC, TI, TO>::resample(int32_t* out, size_t outFrameCount,
+ AudioBufferProvider* provider)
+{
+ (this->*mResampleFunc)(reinterpret_cast<TO*>(out), outFrameCount, provider);
+}
+
+template<typename TC, typename TI, typename TO>
+void AudioResamplerDyn<TC, TI, TO>::setResampler(unsigned resampleType)
+{
+ // stride 16 (falls back to stride 2 for machines that do not support NEON)
+ switch (resampleType) {
+ case RESAMPLETYPE(1, true, 16):
+ mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, true, 16>;
+ return;
+ case RESAMPLETYPE(2, true, 16):
+ mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, true, 16>;
+ return;
+ case RESAMPLETYPE(1, false, 16):
+ mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<1, false, 16>;
+ return;
+ case RESAMPLETYPE(2, false, 16):
+ mResampleFunc = &AudioResamplerDyn<TC, TI, TO>::resample<2, false, 16>;
+ return;
+ default:
+ LOG_ALWAYS_FATAL("Invalid resampler type: %u", resampleType);
+ mResampleFunc = NULL;
+ return;
+ }
+}
+
+template<typename TC, typename TI, typename TO>
+template<int CHANNELS, bool LOCKED, int STRIDE>
+void AudioResamplerDyn<TC, TI, TO>::resample(TO* out, size_t outFrameCount,
+ AudioBufferProvider* provider)
+{
+ const Constants& c(mConstants);
+ const TC* const coefs = mConstants.mFirCoefs;
+ TI* impulse = mInBuffer.getImpulse();
+ size_t inputIndex = mInputIndex;
+ uint32_t phaseFraction = mPhaseFraction;
+ const uint32_t phaseIncrement = mPhaseIncrement;
+ size_t outputIndex = 0;
+ size_t outputSampleCount = outFrameCount * 2; // stereo output
+ size_t inFrameCount = getInFrameCountRequired(outFrameCount);
+ const uint32_t phaseWrapLimit = c.mL << c.mShift;
+
+ // NOTE: be very careful when modifying the code here. register
+ // pressure is very high and a small change might cause the compiler
+ // to generate far less efficient code.
+ // Always sanity check the result with objdump or test-resample.
+
+ // the following logic is a bit convoluted to keep the main processing loop
+ // as tight as possible with register allocation.
+ while (outputIndex < outputSampleCount) {
+ // buffer is empty, fetch a new one
+ while (mBuffer.frameCount == 0) {
+ mBuffer.frameCount = inFrameCount;
+ provider->getNextBuffer(&mBuffer,
+ calculateOutputPTS(outputIndex / 2));
+ if (mBuffer.raw == NULL) {
+ goto resample_exit;
+ }
+ if (phaseFraction >= phaseWrapLimit) { // read in data
+ mInBuffer.template readAdvance<CHANNELS>(
+ impulse, c.mHalfNumCoefs,
+ reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
+ phaseFraction -= phaseWrapLimit;
+ while (phaseFraction >= phaseWrapLimit) {
+ inputIndex++;
+ if (inputIndex >= mBuffer.frameCount) {
+ inputIndex -= mBuffer.frameCount;
+ provider->releaseBuffer(&mBuffer);
+ break;
+ }
+ mInBuffer.template readAdvance<CHANNELS>(
+ impulse, c.mHalfNumCoefs,
+ reinterpret_cast<TI*>(mBuffer.raw), inputIndex);
+ phaseFraction -= phaseWrapLimit;
+ }
+ }
+ }
+ const TI* const in = reinterpret_cast<const TI*>(mBuffer.raw);
+ const size_t frameCount = mBuffer.frameCount;
+ const int coefShift = c.mShift;
+ const int halfNumCoefs = c.mHalfNumCoefs;
+ const TO* const volumeSimd = mVolumeSimd;
+
+ // reread the last input in.
+ mInBuffer.template readAgain<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
+
+ // main processing loop
+ while (CC_LIKELY(outputIndex < outputSampleCount)) {
+ // caution: fir() is inlined and may be large.
+ // output will be loaded with the appropriate values
+ //
+ // from the input samples in impulse[-halfNumCoefs+1]... impulse[halfNumCoefs]
+ // from the polyphase filter of (phaseFraction / phaseWrapLimit) in coefs.
+ //
+ fir<CHANNELS, LOCKED, STRIDE>(
+ &out[outputIndex],
+ phaseFraction, phaseWrapLimit,
+ coefShift, halfNumCoefs, coefs,
+ impulse, volumeSimd);
+ outputIndex += 2;
+
+ phaseFraction += phaseIncrement;
+ while (phaseFraction >= phaseWrapLimit) {
+ inputIndex++;
+ if (inputIndex >= frameCount) {
+ goto done; // need a new buffer
+ }
+ mInBuffer.template readAdvance<CHANNELS>(impulse, halfNumCoefs, in, inputIndex);
+ phaseFraction -= phaseWrapLimit;
+ }
+ }
+done:
+ // often arrives here when input buffer runs out
+ if (inputIndex >= frameCount) {
+ inputIndex -= frameCount;
+ provider->releaseBuffer(&mBuffer);
+ // mBuffer.frameCount MUST be zero here.
+ }
+ }
+
+resample_exit:
+ mInBuffer.setImpulse(impulse);
+ mInputIndex = inputIndex;
+ mPhaseFraction = phaseFraction;
+}
+
+/* instantiate templates used by AudioResampler::create */
+template class AudioResamplerDyn<float, float, float>;
+template class AudioResamplerDyn<int16_t, int16_t, int32_t>;
+template class AudioResamplerDyn<int32_t, int16_t, int32_t>;
+
+// ----------------------------------------------------------------------------
+}; // namespace android