summaryrefslogtreecommitdiffstats
path: root/services/audioflinger/AudioResamplerFirProcess.h
diff options
context:
space:
mode:
Diffstat (limited to 'services/audioflinger/AudioResamplerFirProcess.h')
-rw-r--r--services/audioflinger/AudioResamplerFirProcess.h401
1 files changed, 401 insertions, 0 deletions
diff --git a/services/audioflinger/AudioResamplerFirProcess.h b/services/audioflinger/AudioResamplerFirProcess.h
new file mode 100644
index 0000000..efc8055
--- /dev/null
+++ b/services/audioflinger/AudioResamplerFirProcess.h
@@ -0,0 +1,401 @@
+/*
+ * Copyright (C) 2013 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
+#define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H
+
+namespace android {
+
+// depends on AudioResamplerFirOps.h
+
+/* variant for input type TI = int16_t input samples */
+template<typename TC>
+static inline
+void mac(int32_t& l, int32_t& r, TC coef, const int16_t* samples)
+{
+ uint32_t rl = *reinterpret_cast<const uint32_t*>(samples);
+ l = mulAddRL(1, rl, coef, l);
+ r = mulAddRL(0, rl, coef, r);
+}
+
+template<typename TC>
+static inline
+void mac(int32_t& l, TC coef, const int16_t* samples)
+{
+ l = mulAdd(samples[0], coef, l);
+}
+
+/* variant for input type TI = float input samples */
+template<typename TC>
+static inline
+void mac(float& l, float& r, TC coef, const float* samples)
+{
+ l += *samples++ * coef;
+ r += *samples * coef;
+}
+
+template<typename TC>
+static inline
+void mac(float& l, TC coef, const float* samples)
+{
+ l += *samples * coef;
+}
+
+/* variant for output type TO = int32_t output samples */
+static inline
+int32_t volumeAdjust(int32_t value, int32_t volume)
+{
+ return 2 * mulRL(0, value, volume); // Note: only use top 16b
+}
+
+/* variant for output type TO = float output samples */
+static inline
+float volumeAdjust(float value, float volume)
+{
+ return value * volume;
+}
+
+/*
+ * Helper template functions for loop unrolling accumulator operations.
+ *
+ * Unrolling the loops achieves about 2x gain.
+ * Using a recursive template rather than an array of TO[] for the accumulator
+ * values is an additional 10-20% gain.
+ */
+
+template<int CHANNELS, typename TO>
+class Accumulator : public Accumulator<CHANNELS-1, TO> // recursive
+{
+public:
+ inline void clear() {
+ value = 0;
+ Accumulator<CHANNELS-1, TO>::clear();
+ }
+ template<typename TC, typename TI>
+ inline void acc(TC coef, const TI*& data) {
+ mac(value, coef, data++);
+ Accumulator<CHANNELS-1, TO>::acc(coef, data);
+ }
+ inline void volume(TO*& out, TO gain) {
+ *out++ = volumeAdjust(value, gain);
+ Accumulator<CHANNELS-1, TO>::volume(out, gain);
+ }
+
+ TO value; // one per recursive inherited base class
+};
+
+template<typename TO>
+class Accumulator<0, TO> {
+public:
+ inline void clear() {
+ }
+ template<typename TC, typename TI>
+ inline void acc(TC coef __unused, const TI*& data __unused) {
+ }
+ inline void volume(TO*& out __unused, TO gain __unused) {
+ }
+};
+
+template<typename TC, typename TINTERP>
+inline
+TC interpolate(TC coef_0, TC coef_1, TINTERP lerp)
+{
+ return lerp * (coef_1 - coef_0) + coef_0;
+}
+
+template<>
+inline
+int16_t interpolate<int16_t, uint32_t>(int16_t coef_0, int16_t coef_1, uint32_t lerp)
+{ // in some CPU architectures 16b x 16b multiplies are faster.
+ return (static_cast<int16_t>(lerp) * static_cast<int16_t>(coef_1 - coef_0) >> 15) + coef_0;
+}
+
+template<>
+inline
+int32_t interpolate<int32_t, uint32_t>(int32_t coef_0, int32_t coef_1, uint32_t lerp)
+{
+ return (lerp * static_cast<int64_t>(coef_1 - coef_0) >> 31) + coef_0;
+}
+
+/* class scope for passing in functions into templates */
+struct InterpCompute {
+ template<typename TC, typename TINTERP>
+ static inline
+ TC interpolatep(TC coef_0, TC coef_1, TINTERP lerp) {
+ return interpolate(coef_0, coef_1, lerp);
+ }
+
+ template<typename TC, typename TINTERP>
+ static inline
+ TC interpolaten(TC coef_0, TC coef_1, TINTERP lerp) {
+ return interpolate(coef_0, coef_1, lerp);
+ }
+};
+
+struct InterpNull {
+ template<typename TC, typename TINTERP>
+ static inline
+ TC interpolatep(TC coef_0, TC coef_1 __unused, TINTERP lerp __unused) {
+ return coef_0;
+ }
+
+ template<typename TC, typename TINTERP>
+ static inline
+ TC interpolaten(TC coef_0 __unused, TC coef_1, TINTERP lerp __unused) {
+ return coef_1;
+ }
+};
+
+/*
+ * Calculates a single output frame (two samples).
+ *
+ * The Process*() functions compute both the positive half FIR dot product and
+ * the negative half FIR dot product, accumulates, and then applies the volume.
+ *
+ * Use fir() to compute the proper coefficient pointers for a polyphase
+ * filter bank.
+ *
+ * ProcessBase() is the fundamental processing template function.
+ *
+ * ProcessL() calls ProcessBase() with TFUNC = InterpNull, for fixed/locked phase.
+ * Process() calls ProcessBase() with TFUNC = InterpCompute, for interpolated phase.
+ */
+
+template <int CHANNELS, int STRIDE, typename TFUNC, typename TC, typename TI, typename TO, typename TINTERP>
+static inline
+void ProcessBase(TO* const out,
+ size_t count,
+ const TC* coefsP,
+ const TC* coefsN,
+ const TI* sP,
+ const TI* sN,
+ TINTERP lerpP,
+ const TO* const volumeLR)
+{
+ COMPILE_TIME_ASSERT_FUNCTION_SCOPE(CHANNELS > 0)
+
+ if (CHANNELS > 2) {
+ // TO accum[CHANNELS];
+ Accumulator<CHANNELS, TO> accum;
+
+ // for (int j = 0; j < CHANNELS; ++j) accum[j] = 0;
+ accum.clear();
+ for (size_t i = 0; i < count; ++i) {
+ TC c = TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP);
+
+ // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sP + j);
+ const TI *tmp_data = sP; // tmp_ptr seems to work better
+ accum.acc(c, tmp_data);
+
+ coefsP++;
+ sP -= CHANNELS;
+ c = TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP);
+
+ // for (int j = 0; j < CHANNELS; ++j) mac(accum[j], c, sN + j);
+ tmp_data = sN; // tmp_ptr seems faster than directly using sN
+ accum.acc(c, tmp_data);
+
+ coefsN++;
+ sN += CHANNELS;
+ }
+ // for (int j = 0; j < CHANNELS; ++j) out[j] += volumeAdjust(accum[j], volumeLR[0]);
+ TO *tmp_out = out; // may remove if const out definition changes.
+ accum.volume(tmp_out, volumeLR[0]);
+ } else if (CHANNELS == 2) {
+ TO l = 0;
+ TO r = 0;
+ for (size_t i = 0; i < count; ++i) {
+ mac(l, r, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP);
+ coefsP++;
+ sP -= CHANNELS;
+ mac(l, r, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN);
+ coefsN++;
+ sN += CHANNELS;
+ }
+ out[0] += volumeAdjust(l, volumeLR[0]);
+ out[1] += volumeAdjust(r, volumeLR[1]);
+ } else { /* CHANNELS == 1 */
+ TO l = 0;
+ for (size_t i = 0; i < count; ++i) {
+ mac(l, TFUNC::interpolatep(coefsP[0], coefsP[count], lerpP), sP);
+ coefsP++;
+ sP -= CHANNELS;
+ mac(l, TFUNC::interpolaten(coefsN[count], coefsN[0], lerpP), sN);
+ coefsN++;
+ sN += CHANNELS;
+ }
+ out[0] += volumeAdjust(l, volumeLR[0]);
+ out[1] += volumeAdjust(l, volumeLR[1]);
+ }
+}
+
+template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO>
+static inline
+void ProcessL(TO* const out,
+ int count,
+ const TC* coefsP,
+ const TC* coefsN,
+ const TI* sP,
+ const TI* sN,
+ const TO* const volumeLR)
+{
+ ProcessBase<CHANNELS, STRIDE, InterpNull>(out, count, coefsP, coefsN, sP, sN, 0, volumeLR);
+}
+
+template <int CHANNELS, int STRIDE, typename TC, typename TI, typename TO, typename TINTERP>
+static inline
+void Process(TO* const out,
+ int count,
+ const TC* coefsP,
+ const TC* coefsN,
+ const TC* coefsP1 __unused,
+ const TC* coefsN1 __unused,
+ const TI* sP,
+ const TI* sN,
+ TINTERP lerpP,
+ const TO* const volumeLR)
+{
+ ProcessBase<CHANNELS, STRIDE, InterpCompute>(out, count, coefsP, coefsN, sP, sN, lerpP, volumeLR);
+}
+
+/*
+ * Calculates a single output frame (two samples) from input sample pointer.
+ *
+ * This sets up the params for the accelerated Process() and ProcessL()
+ * functions to do the appropriate dot products.
+ *
+ * @param out should point to the output buffer with space for at least one output frame.
+ *
+ * @param phase is the fractional distance between input frames for interpolation:
+ * phase >= 0 && phase < phaseWrapLimit. It can be thought of as a rational fraction
+ * of phase/phaseWrapLimit.
+ *
+ * @param phaseWrapLimit is #polyphases<<coefShift, where #polyphases is the number of polyphases
+ * in the polyphase filter. Likewise, #polyphases can be obtained as (phaseWrapLimit>>coefShift).
+ *
+ * @param coefShift gives the bit alignment of the polyphase index in the phase parameter.
+ *
+ * @param halfNumCoefs is the half the number of coefficients per polyphase filter. Since the
+ * overall filterbank is odd-length symmetric, only halfNumCoefs need be stored.
+ *
+ * @param coefs is the polyphase filter bank, starting at from polyphase index 0, and ranging to
+ * and including the #polyphases. Each polyphase of the filter has half-length halfNumCoefs
+ * (due to symmetry). The total size of the filter bank in coefficients is
+ * (#polyphases+1)*halfNumCoefs.
+ *
+ * The filter bank coefs should be aligned to a minimum of 16 bytes (preferrably to cache line).
+ *
+ * The coefs should be attenuated (to compensate for passband ripple)
+ * if storing back into the native format.
+ *
+ * @param samples are unaligned input samples. The position is in the "middle" of the
+ * sample array with respect to the FIR filter:
+ * the negative half of the filter is dot product from samples+1 to samples+halfNumCoefs;
+ * the positive half of the filter is dot product from samples to samples-halfNumCoefs+1.
+ *
+ * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel,
+ * expressed as a S32 integer. A negative value inverts the channel 180 degrees.
+ * The pointer volumeLR should be aligned to a minimum of 8 bytes.
+ * A typical value for volume is 0x1000 to align to a unity gain output of 20.12.
+ *
+ * In between calls to filterCoefficient, the phase is incremented by phaseIncrement, where
+ * phaseIncrement is calculated as inputSampling * phaseWrapLimit / outputSampling.
+ *
+ * The filter polyphase index is given by indexP = phase >> coefShift. Due to
+ * odd length symmetric filter, the polyphase index of the negative half depends on
+ * whether interpolation is used.
+ *
+ * The fractional siting between the polyphase indices is given by the bits below coefShift:
+ *
+ * lerpP = phase << 32 - coefShift >> 1; // for 32 bit unsigned phase multiply
+ * lerpP = phase << 32 - coefShift >> 17; // for 16 bit unsigned phase multiply
+ *
+ * For integer types, this is expressed as:
+ *
+ * lerpP = phase << sizeof(phase)*8 - coefShift
+ * >> (sizeof(phase)-sizeof(*coefs))*8 + 1;
+ *
+ * For floating point, lerpP is the fractional phase scaled to [0.0, 1.0):
+ *
+ * lerpP = (phase << 32 - coefShift) / (1 << 32); // floating point equivalent
+ */
+
+template<int CHANNELS, bool LOCKED, int STRIDE, typename TC, typename TI, typename TO>
+static inline
+void fir(TO* const out,
+ const uint32_t phase, const uint32_t phaseWrapLimit,
+ const int coefShift, const int halfNumCoefs, const TC* const coefs,
+ const TI* const samples, const TO* const volumeLR)
+{
+ // NOTE: be very careful when modifying the code here. register
+ // pressure is very high and a small change might cause the compiler
+ // to generate far less efficient code.
+ // Always sanity check the result with objdump or test-resample.
+
+ if (LOCKED) {
+ // locked polyphase (no interpolation)
+ // Compute the polyphase filter index on the positive and negative side.
+ uint32_t indexP = phase >> coefShift;
+ uint32_t indexN = (phaseWrapLimit - phase) >> coefShift;
+ const TC* coefsP = coefs + indexP*halfNumCoefs;
+ const TC* coefsN = coefs + indexN*halfNumCoefs;
+ const TI* sP = samples;
+ const TI* sN = samples + CHANNELS;
+
+ // dot product filter.
+ ProcessL<CHANNELS, STRIDE>(out,
+ halfNumCoefs, coefsP, coefsN, sP, sN, volumeLR);
+ } else {
+ // interpolated polyphase
+ // Compute the polyphase filter index on the positive and negative side.
+ uint32_t indexP = phase >> coefShift;
+ uint32_t indexN = (phaseWrapLimit - phase - 1) >> coefShift; // one's complement.
+ const TC* coefsP = coefs + indexP*halfNumCoefs;
+ const TC* coefsN = coefs + indexN*halfNumCoefs;
+ const TC* coefsP1 = coefsP + halfNumCoefs;
+ const TC* coefsN1 = coefsN + halfNumCoefs;
+ const TI* sP = samples;
+ const TI* sN = samples + CHANNELS;
+
+ // Interpolation fraction lerpP derived by shifting all the way up and down
+ // to clear the appropriate bits and align to the appropriate level
+ // for the integer multiply. The constants should resolve in compile time.
+ //
+ // The interpolated filter coefficient is derived as follows for the pos/neg half:
+ //
+ // interpolated[P] = index[P]*lerpP + index[P+1]*(1-lerpP)
+ // interpolated[N] = index[N+1]*lerpP + index[N]*(1-lerpP)
+
+ // on-the-fly interpolated dot product filter
+ if (is_same<TC, float>::value || is_same<TC, double>::value) {
+ static const TC scale = 1. / (65536. * 65536.); // scale phase bits to [0.0, 1.0)
+ TC lerpP = TC(phase << (sizeof(phase)*8 - coefShift)) * scale;
+
+ Process<CHANNELS, STRIDE>(out,
+ halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
+ } else {
+ uint32_t lerpP = phase << (sizeof(phase)*8 - coefShift)
+ >> ((sizeof(phase)-sizeof(*coefs))*8 + 1);
+
+ Process<CHANNELS, STRIDE>(out,
+ halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR);
+ }
+ }
+}
+
+}; // namespace android
+
+#endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H*/