/* /android/src/frameworks/base/media/libeffects/AudioFormatAdapter.h ** ** Copyright 2009, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #ifndef AUDIOFORMATADAPTER_H_ #define AUDIOFORMATADAPTER_H_ #include #define min(x,y) (((x) < (y)) ? (x) : (y)) namespace android { // An adapter for an audio processor working on audio_sample_t samples with a // buffer override behavior to arbitrary sample formats and buffer behaviors. // The adapter may work on any processing class which has a processing function // with the following signature: // void process(const audio_sample_t * pIn, // audio_sample_t * pOut, // int frameCount); // It is assumed that the underlying processor works in S7.24 format and an // overwrite behavior. // // Usage is simple: just work with the processor normally, but instead of // calling its process() function directly, work with the process() function of // the adapter. // The adapter supports re-configuration to a different format on the fly. // // T The processor class. // bufSize The maximum number of samples (single channel) to process on a // single call to the underlying processor. Setting this to a small // number will save a little memory, but will cost function call // overhead, resulting from multiple calls to the underlying process() // per a single call to this class's process(). template class AudioFormatAdapter { public: // Configure the adapter. // processor The underlying audio processor. // nChannels Number of input and output channels. The adapter does not do // channel conversion - this parameter must be in sync with the // actual processor. // pcmFormat The desired input/output sample format. // behavior The desired behavior (overwrite or accumulate). void configure(T & processor, int nChannels, uint8_t pcmFormat, uint32_t behavior) { mpProcessor = &processor; mNumChannels = nChannels; mPcmFormat = pcmFormat; mBehavior = behavior; mMaxSamplesPerCall = bufSize / nChannels; } // Process a block of samples. // pIn A buffer of samples with the format specified on // configure(). // pOut A buffer of samples with the format specified on // configure(). May be the same as pIn. // numSamples The number of multi-channel samples to process. void process(const void * pIn, void * pOut, uint32_t numSamples) { while (numSamples > 0) { uint32_t numSamplesIter = min(numSamples, mMaxSamplesPerCall); uint32_t nSamplesChannels = numSamplesIter * mNumChannels; // This branch of "if" is untested if (mPcmFormat == AUDIO_FORMAT_PCM_8_24_BIT) { if (mBehavior == EFFECT_BUFFER_ACCESS_WRITE) { mpProcessor->process( reinterpret_cast (pIn), reinterpret_cast (pOut), numSamplesIter); } else if (mBehavior == EFFECT_BUFFER_ACCESS_ACCUMULATE) { mpProcessor->process( reinterpret_cast (pIn), mBuffer, numSamplesIter); MixOutput(pOut, numSamplesIter); } else { assert(false); } pIn = reinterpret_cast (pIn) + nSamplesChannels; pOut = reinterpret_cast (pOut) + nSamplesChannels; } else { ConvertInput(pIn, nSamplesChannels); mpProcessor->process(mBuffer, mBuffer, numSamplesIter); ConvertOutput(pOut, nSamplesChannels); } numSamples -= numSamplesIter; } } private: // The underlying processor. T * mpProcessor; // The number of input/output channels. int mNumChannels; // The desired PCM format. uint8_t mPcmFormat; // The desired buffer behavior. uint32_t mBehavior; // An intermediate buffer for processing. audio_sample_t mBuffer[bufSize]; // The buffer size, divided by the number of channels - represents the // maximum number of multi-channel samples that can be stored in the // intermediate buffer. size_t mMaxSamplesPerCall; // Converts a buffer of input samples to audio_sample_t format. // Output is written to the intermediate buffer. // pIn The input buffer with the format designated in configure(). // When function exist will point to the next unread input // sample. // numSamples The number of single-channel samples to process. void ConvertInput(const void *& pIn, uint32_t numSamples) { if (mPcmFormat == AUDIO_FORMAT_PCM_16_BIT) { const int16_t * pIn16 = reinterpret_cast(pIn); audio_sample_t * pOut = mBuffer; while (numSamples-- > 0) { *(pOut++) = s15_to_audio_sample_t(*(pIn16++)); } pIn = pIn16; } else { assert(false); } } // Converts audio_sample_t samples from the intermediate buffer to the // output buffer, converting to the desired format and buffer behavior. // pOut The buffer to write the output to. // When function exist will point to the next output sample. // numSamples The number of single-channel samples to process. void ConvertOutput(void *& pOut, uint32_t numSamples) { if (mPcmFormat == AUDIO_FORMAT_PCM_16_BIT) { const audio_sample_t * pIn = mBuffer; int16_t * pOut16 = reinterpret_cast(pOut); if (mBehavior == EFFECT_BUFFER_ACCESS_WRITE) { while (numSamples-- > 0) { *(pOut16++) = audio_sample_t_to_s15_clip(*(pIn++)); } } else if (mBehavior == EFFECT_BUFFER_ACCESS_ACCUMULATE) { while (numSamples-- > 0) { *(pOut16++) += audio_sample_t_to_s15_clip(*(pIn++)); } } else { assert(false); } pOut = pOut16; } else { assert(false); } } // Accumulate data from the intermediate buffer to the output. Output is // assumed to be of audio_sample_t type. // pOut The buffer to mix the output to. // When function exist will point to the next output sample. // numSamples The number of single-channel samples to process. void MixOutput(void *& pOut, uint32_t numSamples) { const audio_sample_t * pIn = mBuffer; audio_sample_t * pOut24 = reinterpret_cast(pOut); numSamples *= mNumChannels; while (numSamples-- > 0) { *(pOut24++) += *(pIn++); } pOut = pOut24; } }; } #endif // AUDIOFORMATADAPTER_H_