/* ** ** Copyright 2010, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "Visualizer" #include #include #include #include #include #include #include #include namespace android { // --------------------------------------------------------------------------- Visualizer::Visualizer (int32_t priority, effect_callback_t cbf, void* user, int sessionId) : AudioEffect(SL_IID_VISUALIZATION, NULL, priority, cbf, user, sessionId), mCaptureRate(CAPTURE_RATE_DEF), mCaptureSize(CAPTURE_SIZE_DEF), mSampleRate(44100000), mScalingMode(VISUALIZER_SCALING_MODE_NORMALIZED), mMeasurementMode(MEASUREMENT_MODE_NONE), mCaptureCallBack(NULL), mCaptureCbkUser(NULL) { initCaptureSize(); } Visualizer::~Visualizer() { } status_t Visualizer::setEnabled(bool enabled) { Mutex::Autolock _l(mCaptureLock); sp t = mCaptureThread; if (t != 0) { if (enabled) { if (t->exitPending()) { if (t->requestExitAndWait() == WOULD_BLOCK) { ALOGE("Visualizer::enable() called from thread"); return INVALID_OPERATION; } } } t->mLock.lock(); } status_t status = AudioEffect::setEnabled(enabled); if (status == NO_ERROR) { if (t != 0) { if (enabled) { t->run("Visualizer"); } else { t->requestExit(); } } } if (t != 0) { t->mLock.unlock(); } return status; } status_t Visualizer::setCaptureCallBack(capture_cbk_t cbk, void* user, uint32_t flags, uint32_t rate) { if (rate > CAPTURE_RATE_MAX) { return BAD_VALUE; } Mutex::Autolock _l(mCaptureLock); if (mEnabled) { return INVALID_OPERATION; } sp t = mCaptureThread; if (t != 0) { t->mLock.lock(); } mCaptureThread.clear(); mCaptureCallBack = cbk; mCaptureCbkUser = user; mCaptureFlags = flags; mCaptureRate = rate; if (t != 0) { t->mLock.unlock(); } if (cbk != NULL) { mCaptureThread = new CaptureThread(*this, rate, ((flags & CAPTURE_CALL_JAVA) != 0)); } ALOGV("setCaptureCallBack() rate: %d thread %p flags 0x%08x", rate, mCaptureThread.get(), mCaptureFlags); return NO_ERROR; } status_t Visualizer::setCaptureSize(uint32_t size) { if (size > VISUALIZER_CAPTURE_SIZE_MAX || size < VISUALIZER_CAPTURE_SIZE_MIN || popcount(size) != 1) { return BAD_VALUE; } Mutex::Autolock _l(mCaptureLock); if (mEnabled) { return INVALID_OPERATION; } uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + 2]; effect_param_t *p = (effect_param_t *)buf32; p->psize = sizeof(uint32_t); p->vsize = sizeof(uint32_t); *(int32_t *)p->data = VISUALIZER_PARAM_CAPTURE_SIZE; *((int32_t *)p->data + 1)= size; status_t status = setParameter(p); ALOGV("setCaptureSize size %d status %d p->status %d", size, status, p->status); if (status == NO_ERROR) { status = p->status; if (status == NO_ERROR) { mCaptureSize = size; } } return status; } status_t Visualizer::setScalingMode(uint32_t mode) { if ((mode != VISUALIZER_SCALING_MODE_NORMALIZED) && (mode != VISUALIZER_SCALING_MODE_AS_PLAYED)) { return BAD_VALUE; } Mutex::Autolock _l(mCaptureLock); uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + 2]; effect_param_t *p = (effect_param_t *)buf32; p->psize = sizeof(uint32_t); p->vsize = sizeof(uint32_t); *(int32_t *)p->data = VISUALIZER_PARAM_SCALING_MODE; *((int32_t *)p->data + 1)= mode; status_t status = setParameter(p); ALOGV("setScalingMode mode %d status %d p->status %d", mode, status, p->status); if (status == NO_ERROR) { status = p->status; if (status == NO_ERROR) { mScalingMode = mode; } } return status; } status_t Visualizer::setMeasurementMode(uint32_t mode) { if ((mode != MEASUREMENT_MODE_NONE) //Note: needs to be handled as a mask when more measurement modes are added && ((mode & MEASUREMENT_MODE_PEAK_RMS) != mode)) { return BAD_VALUE; } Mutex::Autolock _l(mCaptureLock); uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + 2]; effect_param_t *p = (effect_param_t *)buf32; p->psize = sizeof(uint32_t); p->vsize = sizeof(uint32_t); *(int32_t *)p->data = VISUALIZER_PARAM_MEASUREMENT_MODE; *((int32_t *)p->data + 1)= mode; status_t status = setParameter(p); ALOGV("setMeasurementMode mode %d status %d p->status %d", mode, status, p->status); if (status == NO_ERROR) { status = p->status; if (status == NO_ERROR) { mMeasurementMode = mode; } } return status; } status_t Visualizer::getIntMeasurements(uint32_t type, uint32_t number, int32_t *measurements) { if (mMeasurementMode == MEASUREMENT_MODE_NONE) { ALOGE("Cannot retrieve int measurements, no measurement mode set"); return INVALID_OPERATION; } if (!(mMeasurementMode & type)) { // measurement type has not been set on this Visualizer ALOGE("Cannot retrieve int measurements, requested measurement mode 0x%x not set(0x%x)", type, mMeasurementMode); return INVALID_OPERATION; } // only peak+RMS measurement supported if ((type != MEASUREMENT_MODE_PEAK_RMS) // for peak+RMS measurement, the results are 2 int32_t values || (number != 2)) { ALOGE("Cannot retrieve int measurements, MEASUREMENT_MODE_PEAK_RMS returns 2 ints, not %d", number); return BAD_VALUE; } status_t status = NO_ERROR; if (mEnabled) { uint32_t replySize = number * sizeof(int32_t); status = command(VISUALIZER_CMD_MEASURE, sizeof(uint32_t) /*cmdSize*/, &type /*cmdData*/, &replySize, measurements); ALOGV("getMeasurements() command returned %d", status); if ((status == NO_ERROR) && (replySize == 0)) { status = NOT_ENOUGH_DATA; } } else { ALOGV("getMeasurements() disabled"); return INVALID_OPERATION; } return status; } status_t Visualizer::getWaveForm(uint8_t *waveform) { if (waveform == NULL) { return BAD_VALUE; } if (mCaptureSize == 0) { return NO_INIT; } status_t status = NO_ERROR; if (mEnabled) { uint32_t replySize = mCaptureSize; status = command(VISUALIZER_CMD_CAPTURE, 0, NULL, &replySize, waveform); ALOGV("getWaveForm() command returned %d", status); if ((status == NO_ERROR) && (replySize == 0)) { status = NOT_ENOUGH_DATA; } } else { ALOGV("getWaveForm() disabled"); memset(waveform, 0x80, mCaptureSize); } return status; } status_t Visualizer::getFft(uint8_t *fft) { if (fft == NULL) { return BAD_VALUE; } if (mCaptureSize == 0) { return NO_INIT; } status_t status = NO_ERROR; if (mEnabled) { uint8_t buf[mCaptureSize]; status = getWaveForm(buf); if (status == NO_ERROR) { status = doFft(fft, buf); } } else { memset(fft, 0, mCaptureSize); } return status; } status_t Visualizer::doFft(uint8_t *fft, uint8_t *waveform) { int32_t workspace[mCaptureSize >> 1]; int32_t nonzero = 0; for (uint32_t i = 0; i < mCaptureSize; i += 2) { workspace[i >> 1] = ((waveform[i] ^ 0x80) << 24) | ((waveform[i + 1] ^ 0x80) << 8); nonzero |= workspace[i >> 1]; } if (nonzero) { fixed_fft_real(mCaptureSize >> 1, workspace); } for (uint32_t i = 0; i < mCaptureSize; i += 2) { short tmp = workspace[i >> 1] >> 21; while (tmp > 127 || tmp < -128) tmp >>= 1; fft[i] = tmp; tmp = workspace[i >> 1]; tmp >>= 5; while (tmp > 127 || tmp < -128) tmp >>= 1; fft[i + 1] = tmp; } return NO_ERROR; } void Visualizer::periodicCapture() { Mutex::Autolock _l(mCaptureLock); ALOGV("periodicCapture() %p mCaptureCallBack %p mCaptureFlags 0x%08x", this, mCaptureCallBack, mCaptureFlags); if (mCaptureCallBack != NULL && (mCaptureFlags & (CAPTURE_WAVEFORM|CAPTURE_FFT)) && mCaptureSize != 0) { uint8_t waveform[mCaptureSize]; status_t status = getWaveForm(waveform); if (status != NO_ERROR) { return; } uint8_t fft[mCaptureSize]; if (mCaptureFlags & CAPTURE_FFT) { status = doFft(fft, waveform); } if (status != NO_ERROR) { return; } uint8_t *wavePtr = NULL; uint8_t *fftPtr = NULL; uint32_t waveSize = 0; uint32_t fftSize = 0; if (mCaptureFlags & CAPTURE_WAVEFORM) { wavePtr = waveform; waveSize = mCaptureSize; } if (mCaptureFlags & CAPTURE_FFT) { fftPtr = fft; fftSize = mCaptureSize; } mCaptureCallBack(mCaptureCbkUser, waveSize, wavePtr, fftSize, fftPtr, mSampleRate); } } uint32_t Visualizer::initCaptureSize() { uint32_t buf32[sizeof(effect_param_t) / sizeof(uint32_t) + 2]; effect_param_t *p = (effect_param_t *)buf32; p->psize = sizeof(uint32_t); p->vsize = sizeof(uint32_t); *(int32_t *)p->data = VISUALIZER_PARAM_CAPTURE_SIZE; status_t status = getParameter(p); if (status == NO_ERROR) { status = p->status; } uint32_t size = 0; if (status == NO_ERROR) { size = *((int32_t *)p->data + 1); } mCaptureSize = size; ALOGV("initCaptureSize size %d status %d", mCaptureSize, status); return size; } void Visualizer::controlStatusChanged(bool controlGranted) { if (controlGranted) { // this Visualizer instance regained control of the effect, reset the scaling mode // and capture size as has been cached through it. ALOGV("controlStatusChanged(true) causes effect parameter reset:"); ALOGV(" scaling mode reset to %d", mScalingMode); setScalingMode(mScalingMode); ALOGV(" capture size reset to %d", mCaptureSize); setCaptureSize(mCaptureSize); } AudioEffect::controlStatusChanged(controlGranted); } //------------------------------------------------------------------------- Visualizer::CaptureThread::CaptureThread(Visualizer& receiver, uint32_t captureRate, bool bCanCallJava) : Thread(bCanCallJava), mReceiver(receiver) { mSleepTimeUs = 1000000000 / captureRate; ALOGV("CaptureThread cstor %p captureRate %d mSleepTimeUs %d", this, captureRate, mSleepTimeUs); } bool Visualizer::CaptureThread::threadLoop() { ALOGV("CaptureThread %p enter", this); while (!exitPending()) { usleep(mSleepTimeUs); mReceiver.periodicCapture(); } ALOGV("CaptureThread %p exiting", this); return false; } }; // namespace android