/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ //#define LOG_NDEBUG 0 #define LOG_TAG "AudioSource" #include #include #include #include #include #include #include #include #include #include namespace android { static void AudioRecordCallbackFunction(int event, void *user, void *info) { AudioSource *source = (AudioSource *) user; switch (event) { case AudioRecord::EVENT_MORE_DATA: { source->dataCallback(*((AudioRecord::Buffer *) info)); break; } case AudioRecord::EVENT_OVERRUN: { ALOGW("AudioRecord reported overrun!"); break; } default: // does nothing break; } } AudioSource::AudioSource( audio_source_t inputSource, uint32_t sampleRate, uint32_t channelCount) : mStarted(false), mSampleRate(sampleRate), mPrevSampleTimeUs(0), mNumFramesReceived(0), mNumClientOwnedBuffers(0) { ALOGV("sampleRate: %d, channelCount: %d", sampleRate, channelCount); CHECK(channelCount == 1 || channelCount == 2); size_t minFrameCount; status_t status = AudioRecord::getMinFrameCount(&minFrameCount, sampleRate, AUDIO_FORMAT_PCM_16_BIT, audio_channel_in_mask_from_count(channelCount)); if (status == OK) { // make sure that the AudioRecord callback never returns more than the maximum // buffer size uint32_t frameCount = kMaxBufferSize / sizeof(int16_t) / channelCount; // make sure that the AudioRecord total buffer size is large enough size_t bufCount = 2; while ((bufCount * frameCount) < minFrameCount) { bufCount++; } mRecord = new AudioRecord( inputSource, sampleRate, AUDIO_FORMAT_PCM_16_BIT, audio_channel_in_mask_from_count(channelCount), (size_t) (bufCount * frameCount), AudioRecordCallbackFunction, this, frameCount /*notificationFrames*/); mInitCheck = mRecord->initCheck(); } else { mInitCheck = status; } } AudioSource::~AudioSource() { if (mStarted) { reset(); } } status_t AudioSource::initCheck() const { return mInitCheck; } status_t AudioSource::start(MetaData *params) { Mutex::Autolock autoLock(mLock); if (mStarted) { return UNKNOWN_ERROR; } if (mInitCheck != OK) { return NO_INIT; } mTrackMaxAmplitude = false; mMaxAmplitude = 0; mInitialReadTimeUs = 0; mStartTimeUs = 0; int64_t startTimeUs; if (params && params->findInt64(kKeyTime, &startTimeUs)) { mStartTimeUs = startTimeUs; } status_t err = mRecord->start(); if (err == OK) { mStarted = true; } else { mRecord.clear(); } return err; } void AudioSource::releaseQueuedFrames_l() { ALOGV("releaseQueuedFrames_l"); List::iterator it; while (!mBuffersReceived.empty()) { it = mBuffersReceived.begin(); (*it)->release(); mBuffersReceived.erase(it); } } void AudioSource::waitOutstandingEncodingFrames_l() { ALOGV("waitOutstandingEncodingFrames_l: %lld", mNumClientOwnedBuffers); while (mNumClientOwnedBuffers > 0) { mFrameEncodingCompletionCondition.wait(mLock); } } status_t AudioSource::reset() { Mutex::Autolock autoLock(mLock); if (!mStarted) { return UNKNOWN_ERROR; } if (mInitCheck != OK) { return NO_INIT; } mStarted = false; mRecord->stop(); waitOutstandingEncodingFrames_l(); releaseQueuedFrames_l(); return OK; } sp AudioSource::getFormat() { Mutex::Autolock autoLock(mLock); if (mInitCheck != OK) { return 0; } sp meta = new MetaData; meta->setCString(kKeyMIMEType, MEDIA_MIMETYPE_AUDIO_RAW); meta->setInt32(kKeySampleRate, mSampleRate); meta->setInt32(kKeyChannelCount, mRecord->channelCount()); meta->setInt32(kKeyMaxInputSize, kMaxBufferSize); return meta; } void AudioSource::rampVolume( int32_t startFrame, int32_t rampDurationFrames, uint8_t *data, size_t bytes) { const int32_t kShift = 14; int32_t fixedMultiplier = (startFrame << kShift) / rampDurationFrames; const int32_t nChannels = mRecord->channelCount(); int32_t stopFrame = startFrame + bytes / sizeof(int16_t); int16_t *frame = (int16_t *) data; if (stopFrame > rampDurationFrames) { stopFrame = rampDurationFrames; } while (startFrame < stopFrame) { if (nChannels == 1) { // mono frame[0] = (frame[0] * fixedMultiplier) >> kShift; ++frame; ++startFrame; } else { // stereo frame[0] = (frame[0] * fixedMultiplier) >> kShift; frame[1] = (frame[1] * fixedMultiplier) >> kShift; frame += 2; startFrame += 2; } // Update the multiplier every 4 frames if ((startFrame & 3) == 0) { fixedMultiplier = (startFrame << kShift) / rampDurationFrames; } } } status_t AudioSource::read( MediaBuffer **out, const ReadOptions * /* options */) { Mutex::Autolock autoLock(mLock); *out = NULL; if (mInitCheck != OK) { return NO_INIT; } while (mStarted && mBuffersReceived.empty()) { mFrameAvailableCondition.wait(mLock); } if (!mStarted) { return OK; } MediaBuffer *buffer = *mBuffersReceived.begin(); mBuffersReceived.erase(mBuffersReceived.begin()); ++mNumClientOwnedBuffers; buffer->setObserver(this); buffer->add_ref(); // Mute/suppress the recording sound int64_t timeUs; CHECK(buffer->meta_data()->findInt64(kKeyTime, &timeUs)); int64_t elapsedTimeUs = timeUs - mStartTimeUs; if (elapsedTimeUs < kAutoRampStartUs) { memset((uint8_t *) buffer->data(), 0, buffer->range_length()); } else if (elapsedTimeUs < kAutoRampStartUs + kAutoRampDurationUs) { int32_t autoRampDurationFrames = ((int64_t)kAutoRampDurationUs * mSampleRate + 500000LL) / 1000000LL; //Need type casting int32_t autoRampStartFrames = ((int64_t)kAutoRampStartUs * mSampleRate + 500000LL) / 1000000LL; //Need type casting int32_t nFrames = mNumFramesReceived - autoRampStartFrames; rampVolume(nFrames, autoRampDurationFrames, (uint8_t *) buffer->data(), buffer->range_length()); } // Track the max recording signal amplitude. if (mTrackMaxAmplitude) { trackMaxAmplitude( (int16_t *) buffer->data(), buffer->range_length() >> 1); } *out = buffer; return OK; } void AudioSource::signalBufferReturned(MediaBuffer *buffer) { ALOGV("signalBufferReturned: %p", buffer->data()); Mutex::Autolock autoLock(mLock); --mNumClientOwnedBuffers; buffer->setObserver(0); buffer->release(); mFrameEncodingCompletionCondition.signal(); return; } status_t AudioSource::dataCallback(const AudioRecord::Buffer& audioBuffer) { int64_t timeUs = systemTime() / 1000ll; ALOGV("dataCallbackTimestamp: %lld us", timeUs); Mutex::Autolock autoLock(mLock); if (!mStarted) { ALOGW("Spurious callback from AudioRecord. Drop the audio data."); return OK; } // Drop retrieved and previously lost audio data. if (mNumFramesReceived == 0 && timeUs < mStartTimeUs) { (void) mRecord->getInputFramesLost(); ALOGV("Drop audio data at %lld/%lld us", timeUs, mStartTimeUs); return OK; } if (mNumFramesReceived == 0 && mPrevSampleTimeUs == 0) { mInitialReadTimeUs = timeUs; // Initial delay if (mStartTimeUs > 0) { mStartTimeUs = timeUs - mStartTimeUs; } else { // Assume latency is constant. mStartTimeUs += mRecord->latency() * 1000; } mPrevSampleTimeUs = mStartTimeUs; } size_t numLostBytes = 0; if (mNumFramesReceived > 0) { // Ignore earlier frame lost // getInputFramesLost() returns the number of lost frames. // Convert number of frames lost to number of bytes lost. numLostBytes = mRecord->getInputFramesLost() * mRecord->frameSize(); } CHECK_EQ(numLostBytes & 1, 0u); CHECK_EQ(audioBuffer.size & 1, 0u); if (numLostBytes > 0) { // Loss of audio frames should happen rarely; thus the LOGW should // not cause a logging spam ALOGW("Lost audio record data: %zu bytes", numLostBytes); } while (numLostBytes > 0) { size_t bufferSize = numLostBytes; if (numLostBytes > kMaxBufferSize) { numLostBytes -= kMaxBufferSize; bufferSize = kMaxBufferSize; } else { numLostBytes = 0; } MediaBuffer *lostAudioBuffer = new MediaBuffer(bufferSize); memset(lostAudioBuffer->data(), 0, bufferSize); lostAudioBuffer->set_range(0, bufferSize); queueInputBuffer_l(lostAudioBuffer, timeUs); } if (audioBuffer.size == 0) { ALOGW("Nothing is available from AudioRecord callback buffer"); return OK; } const size_t bufferSize = audioBuffer.size; MediaBuffer *buffer = new MediaBuffer(bufferSize); memcpy((uint8_t *) buffer->data(), audioBuffer.i16, audioBuffer.size); buffer->set_range(0, bufferSize); queueInputBuffer_l(buffer, timeUs); return OK; } void AudioSource::queueInputBuffer_l(MediaBuffer *buffer, int64_t timeUs) { const size_t bufferSize = buffer->range_length(); const size_t frameSize = mRecord->frameSize(); const int64_t timestampUs = mPrevSampleTimeUs + ((1000000LL * (bufferSize / frameSize)) + (mSampleRate >> 1)) / mSampleRate; if (mNumFramesReceived == 0) { buffer->meta_data()->setInt64(kKeyAnchorTime, mStartTimeUs); } buffer->meta_data()->setInt64(kKeyTime, mPrevSampleTimeUs); buffer->meta_data()->setInt64(kKeyDriftTime, timeUs - mInitialReadTimeUs); mPrevSampleTimeUs = timestampUs; mNumFramesReceived += bufferSize / frameSize; mBuffersReceived.push_back(buffer); mFrameAvailableCondition.signal(); } void AudioSource::trackMaxAmplitude(int16_t *data, int nSamples) { for (int i = nSamples; i > 0; --i) { int16_t value = *data++; if (value < 0) { value = -value; } if (mMaxAmplitude < value) { mMaxAmplitude = value; } } } int16_t AudioSource::getMaxAmplitude() { // First call activates the tracking. if (!mTrackMaxAmplitude) { mTrackMaxAmplitude = true; } int16_t value = mMaxAmplitude; mMaxAmplitude = 0; ALOGV("max amplitude since last call: %d", value); return value; } } // namespace android