/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "SampleTable" //#define LOG_NDEBUG 0 #include #include "include/SampleTable.h" #include "include/SampleIterator.h" #include #include #include #include namespace android { // static const uint32_t SampleTable::kChunkOffsetType32 = FOURCC('s', 't', 'c', 'o'); // static const uint32_t SampleTable::kChunkOffsetType64 = FOURCC('c', 'o', '6', '4'); // static const uint32_t SampleTable::kSampleSizeType32 = FOURCC('s', 't', 's', 'z'); // static const uint32_t SampleTable::kSampleSizeTypeCompact = FOURCC('s', 't', 'z', '2'); //////////////////////////////////////////////////////////////////////////////// SampleTable::SampleTable(const sp &source) : mDataSource(source), mChunkOffsetOffset(-1), mChunkOffsetType(0), mNumChunkOffsets(0), mSampleToChunkOffset(-1), mNumSampleToChunkOffsets(0), mSampleSizeOffset(-1), mSampleSizeFieldSize(0), mDefaultSampleSize(0), mNumSampleSizes(0), mTimeToSampleCount(0), mTimeToSample(NULL), mSyncSampleOffset(-1), mNumSyncSamples(0), mSyncSamples(NULL), mLastSyncSampleIndex(0), mSampleToChunkEntries(NULL) { mSampleIterator = new SampleIterator(this); } SampleTable::~SampleTable() { delete[] mSampleToChunkEntries; mSampleToChunkEntries = NULL; delete[] mSyncSamples; mSyncSamples = NULL; delete[] mTimeToSample; mTimeToSample = NULL; delete mSampleIterator; mSampleIterator = NULL; } status_t SampleTable::setChunkOffsetParams( uint32_t type, off64_t data_offset, size_t data_size) { if (mChunkOffsetOffset >= 0) { return ERROR_MALFORMED; } CHECK(type == kChunkOffsetType32 || type == kChunkOffsetType64); mChunkOffsetOffset = data_offset; mChunkOffsetType = type; if (data_size < 8) { return ERROR_MALFORMED; } uint8_t header[8]; if (mDataSource->readAt( data_offset, header, sizeof(header)) < (ssize_t)sizeof(header)) { return ERROR_IO; } if (U32_AT(header) != 0) { // Expected version = 0, flags = 0. return ERROR_MALFORMED; } mNumChunkOffsets = U32_AT(&header[4]); if (mChunkOffsetType == kChunkOffsetType32) { if (data_size < 8 + mNumChunkOffsets * 4) { return ERROR_MALFORMED; } } else { if (data_size < 8 + mNumChunkOffsets * 8) { return ERROR_MALFORMED; } } return OK; } status_t SampleTable::setSampleToChunkParams( off64_t data_offset, size_t data_size) { if (mSampleToChunkOffset >= 0) { return ERROR_MALFORMED; } mSampleToChunkOffset = data_offset; if (data_size < 8) { return ERROR_MALFORMED; } uint8_t header[8]; if (mDataSource->readAt( data_offset, header, sizeof(header)) < (ssize_t)sizeof(header)) { return ERROR_IO; } if (U32_AT(header) != 0) { // Expected version = 0, flags = 0. return ERROR_MALFORMED; } mNumSampleToChunkOffsets = U32_AT(&header[4]); if (data_size < 8 + mNumSampleToChunkOffsets * 12) { return ERROR_MALFORMED; } mSampleToChunkEntries = new SampleToChunkEntry[mNumSampleToChunkOffsets]; for (uint32_t i = 0; i < mNumSampleToChunkOffsets; ++i) { uint8_t buffer[12]; if (mDataSource->readAt( mSampleToChunkOffset + 8 + i * 12, buffer, sizeof(buffer)) != (ssize_t)sizeof(buffer)) { return ERROR_IO; } CHECK(U32_AT(buffer) >= 1); // chunk index is 1 based in the spec. // We want the chunk index to be 0-based. mSampleToChunkEntries[i].startChunk = U32_AT(buffer) - 1; mSampleToChunkEntries[i].samplesPerChunk = U32_AT(&buffer[4]); mSampleToChunkEntries[i].chunkDesc = U32_AT(&buffer[8]); } return OK; } status_t SampleTable::setSampleSizeParams( uint32_t type, off64_t data_offset, size_t data_size) { if (mSampleSizeOffset >= 0) { return ERROR_MALFORMED; } CHECK(type == kSampleSizeType32 || type == kSampleSizeTypeCompact); mSampleSizeOffset = data_offset; if (data_size < 12) { return ERROR_MALFORMED; } uint8_t header[12]; if (mDataSource->readAt( data_offset, header, sizeof(header)) < (ssize_t)sizeof(header)) { return ERROR_IO; } if (U32_AT(header) != 0) { // Expected version = 0, flags = 0. return ERROR_MALFORMED; } mDefaultSampleSize = U32_AT(&header[4]); mNumSampleSizes = U32_AT(&header[8]); if (type == kSampleSizeType32) { mSampleSizeFieldSize = 32; if (mDefaultSampleSize != 0) { return OK; } if (data_size < 12 + mNumSampleSizes * 4) { return ERROR_MALFORMED; } } else { if ((mDefaultSampleSize & 0xffffff00) != 0) { // The high 24 bits are reserved and must be 0. return ERROR_MALFORMED; } mSampleSizeFieldSize = mDefaultSampleSize & 0xf; mDefaultSampleSize = 0; if (mSampleSizeFieldSize != 4 && mSampleSizeFieldSize != 8 && mSampleSizeFieldSize != 16) { return ERROR_MALFORMED; } if (data_size < 12 + (mNumSampleSizes * mSampleSizeFieldSize + 4) / 8) { return ERROR_MALFORMED; } } return OK; } status_t SampleTable::setTimeToSampleParams( off64_t data_offset, size_t data_size) { if (mTimeToSample != NULL || data_size < 8) { return ERROR_MALFORMED; } uint8_t header[8]; if (mDataSource->readAt( data_offset, header, sizeof(header)) < (ssize_t)sizeof(header)) { return ERROR_IO; } if (U32_AT(header) != 0) { // Expected version = 0, flags = 0. return ERROR_MALFORMED; } mTimeToSampleCount = U32_AT(&header[4]); mTimeToSample = new uint32_t[mTimeToSampleCount * 2]; size_t size = sizeof(uint32_t) * mTimeToSampleCount * 2; if (mDataSource->readAt( data_offset + 8, mTimeToSample, size) < (ssize_t)size) { return ERROR_IO; } for (uint32_t i = 0; i < mTimeToSampleCount * 2; ++i) { mTimeToSample[i] = ntohl(mTimeToSample[i]); } return OK; } status_t SampleTable::setSyncSampleParams(off64_t data_offset, size_t data_size) { if (mSyncSampleOffset >= 0 || data_size < 8) { return ERROR_MALFORMED; } mSyncSampleOffset = data_offset; uint8_t header[8]; if (mDataSource->readAt( data_offset, header, sizeof(header)) < (ssize_t)sizeof(header)) { return ERROR_IO; } if (U32_AT(header) != 0) { // Expected version = 0, flags = 0. return ERROR_MALFORMED; } mNumSyncSamples = U32_AT(&header[4]); if (mNumSyncSamples < 2) { LOGV("Table of sync samples is empty or has only a single entry!"); } mSyncSamples = new uint32_t[mNumSyncSamples]; size_t size = mNumSyncSamples * sizeof(uint32_t); if (mDataSource->readAt(mSyncSampleOffset + 8, mSyncSamples, size) != (ssize_t)size) { return ERROR_IO; } for (size_t i = 0; i < mNumSyncSamples; ++i) { mSyncSamples[i] = ntohl(mSyncSamples[i]) - 1; } return OK; } uint32_t SampleTable::countChunkOffsets() const { return mNumChunkOffsets; } uint32_t SampleTable::countSamples() const { return mNumSampleSizes; } status_t SampleTable::getMaxSampleSize(size_t *max_size) { Mutex::Autolock autoLock(mLock); *max_size = 0; for (uint32_t i = 0; i < mNumSampleSizes; ++i) { size_t sample_size; status_t err = getSampleSize_l(i, &sample_size); if (err != OK) { return err; } if (sample_size > *max_size) { *max_size = sample_size; } } return OK; } uint32_t abs_difference(uint32_t time1, uint32_t time2) { return time1 > time2 ? time1 - time2 : time2 - time1; } status_t SampleTable::findSampleAtTime( uint32_t req_time, uint32_t *sample_index, uint32_t flags) { *sample_index = 0; Mutex::Autolock autoLock(mLock); uint32_t cur_sample = 0; uint32_t time = 0; for (uint32_t i = 0; i < mTimeToSampleCount; ++i) { uint32_t n = mTimeToSample[2 * i]; uint32_t delta = mTimeToSample[2 * i + 1]; if (req_time < time + n * delta) { int j = (req_time - time) / delta; uint32_t time1 = time + j * delta; uint32_t time2 = time1 + delta; uint32_t sampleTime; if (i+1 == mTimeToSampleCount || (abs_difference(req_time, time1) < abs_difference(req_time, time2))) { *sample_index = cur_sample + j; sampleTime = time1; } else { *sample_index = cur_sample + j + 1; sampleTime = time2; } switch (flags) { case kFlagBefore: { if (sampleTime > req_time && *sample_index > 0) { --*sample_index; } break; } case kFlagAfter: { if (sampleTime < req_time && *sample_index + 1 < mNumSampleSizes) { ++*sample_index; } break; } default: break; } return OK; } time += delta * n; cur_sample += n; } return ERROR_OUT_OF_RANGE; } status_t SampleTable::findSyncSampleNear( uint32_t start_sample_index, uint32_t *sample_index, uint32_t flags) { Mutex::Autolock autoLock(mLock); *sample_index = 0; if (mSyncSampleOffset < 0) { // All samples are sync-samples. *sample_index = start_sample_index; return OK; } if (mNumSyncSamples == 0) { *sample_index = 0; return OK; } uint32_t left = 0; while (left < mNumSyncSamples) { uint32_t x = mSyncSamples[left]; if (x >= start_sample_index) { break; } ++left; } if (left > 0) { --left; } uint32_t x; if (mDataSource->readAt( mSyncSampleOffset + 8 + left * 4, &x, 4) != 4) { return ERROR_IO; } x = ntohl(x); --x; if (left + 1 < mNumSyncSamples) { uint32_t y = mSyncSamples[left + 1]; // our sample lies between sync samples x and y. status_t err = mSampleIterator->seekTo(start_sample_index); if (err != OK) { return err; } uint32_t sample_time = mSampleIterator->getSampleTime(); err = mSampleIterator->seekTo(x); if (err != OK) { return err; } uint32_t x_time = mSampleIterator->getSampleTime(); err = mSampleIterator->seekTo(y); if (err != OK) { return err; } uint32_t y_time = mSampleIterator->getSampleTime(); if (abs_difference(x_time, sample_time) > abs_difference(y_time, sample_time)) { // Pick the sync sample closest (timewise) to the start-sample. x = y; ++left; } } switch (flags) { case kFlagBefore: { if (x > start_sample_index) { CHECK(left > 0); if (mDataSource->readAt( mSyncSampleOffset + 8 + (left - 1) * 4, &x, 4) != 4) { return ERROR_IO; } x = ntohl(x); --x; CHECK(x <= start_sample_index); } break; } case kFlagAfter: { if (x < start_sample_index) { if (left + 1 >= mNumSyncSamples) { return ERROR_OUT_OF_RANGE; } x = mSyncSamples[left + 1]; CHECK(x >= start_sample_index); } break; } default: break; } *sample_index = x; return OK; } status_t SampleTable::findThumbnailSample(uint32_t *sample_index) { Mutex::Autolock autoLock(mLock); if (mSyncSampleOffset < 0) { // All samples are sync-samples. *sample_index = 0; return OK; } uint32_t bestSampleIndex = 0; size_t maxSampleSize = 0; static const size_t kMaxNumSyncSamplesToScan = 20; // Consider the first kMaxNumSyncSamplesToScan sync samples and // pick the one with the largest (compressed) size as the thumbnail. size_t numSamplesToScan = mNumSyncSamples; if (numSamplesToScan > kMaxNumSyncSamplesToScan) { numSamplesToScan = kMaxNumSyncSamplesToScan; } for (size_t i = 0; i < numSamplesToScan; ++i) { uint32_t x = mSyncSamples[i]; // Now x is a sample index. size_t sampleSize; status_t err = getSampleSize_l(x, &sampleSize); if (err != OK) { return err; } if (i == 0 || sampleSize > maxSampleSize) { bestSampleIndex = x; maxSampleSize = sampleSize; } } *sample_index = bestSampleIndex; return OK; } status_t SampleTable::getSampleSize_l( uint32_t sampleIndex, size_t *sampleSize) { return mSampleIterator->getSampleSizeDirect( sampleIndex, sampleSize); } status_t SampleTable::getMetaDataForSample( uint32_t sampleIndex, off64_t *offset, size_t *size, uint32_t *decodingTime, bool *isSyncSample) { Mutex::Autolock autoLock(mLock); status_t err; if ((err = mSampleIterator->seekTo(sampleIndex)) != OK) { return err; } if (offset) { *offset = mSampleIterator->getSampleOffset(); } if (size) { *size = mSampleIterator->getSampleSize(); } if (decodingTime) { *decodingTime = mSampleIterator->getSampleTime(); } if (isSyncSample) { *isSyncSample = false; if (mSyncSampleOffset < 0) { // Every sample is a sync sample. *isSyncSample = true; } else { size_t i = (mLastSyncSampleIndex < mNumSyncSamples) && (mSyncSamples[mLastSyncSampleIndex] <= sampleIndex) ? mLastSyncSampleIndex : 0; while (i < mNumSyncSamples && mSyncSamples[i] < sampleIndex) { ++i; } if (i < mNumSyncSamples && mSyncSamples[i] == sampleIndex) { *isSyncSample = true; } mLastSyncSampleIndex = i; } } return OK; } } // namespace android