/* ** Copyright 2003-2010, VisualOn, Inc. ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ /*********************************************************************** * File: wb_vad.c * * * * Description: Voice Activity Detection * * * ************************************************************************/ #include #include #include "cnst.h" #include "wb_vad.h" #include "typedef.h" #include "basic_op.h" #include "math_op.h" #include "wb_vad_c.h" #include "mem_align.h" /****************************************************************************** * Calculate Log2 and scale the signal: * * ilog2(Word32 in) = -1024*log10(in * 2^-31)/log10(2), where in = [1, 2^31-1] * * input output * 32768 16384 * 1 31744 * * When input is in the range of [1,2^16], max error is 0.0380%. *********************************************************************************/ static Word16 ilog2( /* return: output value of the log2 */ Word16 mant /* i: value to be converted */ ) { Word16 ex, ex2, res; Word32 i, l_temp; if (mant <= 0) { mant = 1; } ex = norm_s(mant); mant = mant << ex; for (i = 0; i < 3; i++) mant = vo_mult(mant, mant); l_temp = vo_L_mult(mant, mant); ex2 = norm_l(l_temp); mant = extract_h(l_temp << ex2); res = (ex + 16) << 10; res = add1(res, (ex2 << 6)); res = vo_sub(add1(res, 127), (mant >> 8)); return (res); } /****************************************************************************** * * Function : filter5 * Purpose : Fifth-order half-band lowpass/highpass filter pair with * decimation. * *******************************************************************************/ static void filter5( Word16 * in0, /* i/o : input values; output low-pass part */ Word16 * in1, /* i/o : input values; output high-pass part */ Word16 data[] /* i/o : filter memory */ ) { Word16 temp0, temp1, temp2; temp0 = vo_sub(*in0, vo_mult(COEFF5_1, data[0])); temp1 = add1(data[0], vo_mult(COEFF5_1, temp0)); data[0] = temp0; temp0 = vo_sub(*in1, vo_mult(COEFF5_2, data[1])); temp2 = add1(data[1], vo_mult(COEFF5_2, temp0)); data[1] = temp0; *in0 = extract_h((vo_L_add(temp1, temp2) << 15)); *in1 = extract_h((vo_L_sub(temp1, temp2) << 15)); } /****************************************************************************** * * Function : filter3 * Purpose : Third-order half-band lowpass/highpass filter pair with * decimation. * *******************************************************************************/ static void filter3( Word16 * in0, /* i/o : input values; output low-pass part */ Word16 * in1, /* i/o : input values; output high-pass part */ Word16 * data /* i/o : filter memory */ ) { Word16 temp1, temp2; temp1 = vo_sub(*in1, vo_mult(COEFF3, *data)); temp2 = add1(*data, vo_mult(COEFF3, temp1)); *data = temp1; *in1 = extract_h((vo_L_sub(*in0, temp2) << 15)); *in0 = extract_h((vo_L_add(*in0, temp2) << 15)); } /****************************************************************************** * * Function : level_calculation * Purpose : Calculate signal level in a sub-band. Level is calculated * by summing absolute values of the input data. * * Signal level calculated from of the end of the frame * (data[count1 - count2]) is stored to (*sub_level) * and added to the level of the next frame. * ******************************************************************************/ static Word16 level_calculation( /* return: signal level */ Word16 data[], /* i : signal buffer */ Word16 * sub_level, /* i : level calculated at the end of the previous frame*/ /* o : level of signal calculated from the last */ /* (count2 - count1) samples */ Word16 count1, /* i : number of samples to be counted */ Word16 count2, /* i : number of samples to be counted */ Word16 ind_m, /* i : step size for the index of the data buffer */ Word16 ind_a, /* i : starting index of the data buffer */ Word16 scale /* i : scaling for the level calculation */ ) { Word32 i, l_temp1, l_temp2; Word16 level; l_temp1 = 0L; for (i = count1; i < count2; i++) { l_temp1 += (abs_s(data[ind_m * i + ind_a])<<1); } l_temp2 = vo_L_add(l_temp1, L_shl(*sub_level, 16 - scale)); *sub_level = extract_h(L_shl(l_temp1, scale)); for (i = 0; i < count1; i++) { l_temp2 += (abs_s(data[ind_m * i + ind_a])<<1); } level = extract_h(L_shl2(l_temp2, scale)); return level; } /****************************************************************************** * * Function : filter_bank * Purpose : Divide input signal into bands and calculate level of * the signal in each band * *******************************************************************************/ static void filter_bank( VadVars * st, /* i/o : State struct */ Word16 in[], /* i : input frame */ Word16 level[] /* o : signal levels at each band */ ) { Word32 i; Word16 tmp_buf[FRAME_LEN]; /* shift input 1 bit down for safe scaling */ for (i = 0; i < FRAME_LEN; i++) { tmp_buf[i] = in[i] >> 1; } /* run the filter bank */ for (i = 0; i < 128; i++) { filter5(&tmp_buf[2 * i], &tmp_buf[2 * i + 1], st->a_data5[0]); } for (i = 0; i < 64; i++) { filter5(&tmp_buf[4 * i], &tmp_buf[4 * i + 2], st->a_data5[1]); filter5(&tmp_buf[4 * i + 1], &tmp_buf[4 * i + 3], st->a_data5[2]); } for (i = 0; i < 32; i++) { filter5(&tmp_buf[8 * i], &tmp_buf[8 * i + 4], st->a_data5[3]); filter5(&tmp_buf[8 * i + 2], &tmp_buf[8 * i + 6], st->a_data5[4]); filter3(&tmp_buf[8 * i + 3], &tmp_buf[8 * i + 7], &st->a_data3[0]); } for (i = 0; i < 16; i++) { filter3(&tmp_buf[16 * i + 0], &tmp_buf[16 * i + 8], &st->a_data3[1]); filter3(&tmp_buf[16 * i + 4], &tmp_buf[16 * i + 12], &st->a_data3[2]); filter3(&tmp_buf[16 * i + 6], &tmp_buf[16 * i + 14], &st->a_data3[3]); } for (i = 0; i < 8; i++) { filter3(&tmp_buf[32 * i + 0], &tmp_buf[32 * i + 16], &st->a_data3[4]); filter3(&tmp_buf[32 * i + 8], &tmp_buf[32 * i + 24], &st->a_data3[5]); } /* calculate levels in each frequency band */ /* 4800 - 6400 Hz */ level[11] = level_calculation(tmp_buf, &st->sub_level[11], 16, 64, 4, 1, 14); /* 4000 - 4800 Hz */ level[10] = level_calculation(tmp_buf, &st->sub_level[10], 8, 32, 8, 7, 15); /* 3200 - 4000 Hz */ level[9] = level_calculation(tmp_buf, &st->sub_level[9],8, 32, 8, 3, 15); /* 2400 - 3200 Hz */ level[8] = level_calculation(tmp_buf, &st->sub_level[8],8, 32, 8, 2, 15); /* 2000 - 2400 Hz */ level[7] = level_calculation(tmp_buf, &st->sub_level[7],4, 16, 16, 14, 16); /* 1600 - 2000 Hz */ level[6] = level_calculation(tmp_buf, &st->sub_level[6],4, 16, 16, 6, 16); /* 1200 - 1600 Hz */ level[5] = level_calculation(tmp_buf, &st->sub_level[5],4, 16, 16, 4, 16); /* 800 - 1200 Hz */ level[4] = level_calculation(tmp_buf, &st->sub_level[4],4, 16, 16, 12, 16); /* 600 - 800 Hz */ level[3] = level_calculation(tmp_buf, &st->sub_level[3],2, 8, 32, 8, 17); /* 400 - 600 Hz */ level[2] = level_calculation(tmp_buf, &st->sub_level[2],2, 8, 32, 24, 17); /* 200 - 400 Hz */ level[1] = level_calculation(tmp_buf, &st->sub_level[1],2, 8, 32, 16, 17); /* 0 - 200 Hz */ level[0] = level_calculation(tmp_buf, &st->sub_level[0],2, 8, 32, 0, 17); } /****************************************************************************** * * Function : update_cntrl * Purpose : Control update of the background noise estimate. * *******************************************************************************/ static void update_cntrl( VadVars * st, /* i/o : State structure */ Word16 level[] /* i : sub-band levels of the input frame */ ) { Word32 i; Word16 num, temp, stat_rat, exp, denom; Word16 alpha; /* if a tone has been detected for a while, initialize stat_count */ if (sub((Word16) (st->tone_flag & 0x7c00), 0x7c00) == 0) { st->stat_count = STAT_COUNT; } else { /* if 8 last vad-decisions have been "0", reinitialize stat_count */ if ((st->vadreg & 0x7f80) == 0) { st->stat_count = STAT_COUNT; } else { stat_rat = 0; for (i = 0; i < COMPLEN; i++) { if(level[i] > st->ave_level[i]) { num = level[i]; denom = st->ave_level[i]; } else { num = st->ave_level[i]; denom = level[i]; } /* Limit nimimum value of num and denom to STAT_THR_LEVEL */ if(num < STAT_THR_LEVEL) { num = STAT_THR_LEVEL; } if(denom < STAT_THR_LEVEL) { denom = STAT_THR_LEVEL; } exp = norm_s(denom); denom = denom << exp; /* stat_rat = num/denom * 64 */ temp = div_s(num >> 1, denom); stat_rat = add1(stat_rat, shr(temp, (8 - exp))); } /* compare stat_rat with a threshold and update stat_count */ if(stat_rat > STAT_THR) { st->stat_count = STAT_COUNT; } else { if ((st->vadreg & 0x4000) != 0) { if (st->stat_count != 0) { st->stat_count = st->stat_count - 1; } } } } } /* Update average amplitude estimate for stationarity estimation */ alpha = ALPHA4; if(st->stat_count == STAT_COUNT) { alpha = 32767; } else if ((st->vadreg & 0x4000) == 0) { alpha = ALPHA5; } for (i = 0; i < COMPLEN; i++) { st->ave_level[i] = add1(st->ave_level[i], vo_mult_r(alpha, vo_sub(level[i], st->ave_level[i]))); } } /****************************************************************************** * * Function : hangover_addition * Purpose : Add hangover after speech bursts * *******************************************************************************/ static Word16 hangover_addition( /* return: VAD_flag indicating final VAD decision */ VadVars * st, /* i/o : State structure */ Word16 low_power, /* i : flag power of the input frame */ Word16 hang_len, /* i : hangover length */ Word16 burst_len /* i : minimum burst length for hangover addition */ ) { /* if the input power (pow_sum) is lower than a threshold, clear counters and set VAD_flag to "0" */ if (low_power != 0) { st->burst_count = 0; st->hang_count = 0; return 0; } /* update the counters (hang_count, burst_count) */ if ((st->vadreg & 0x4000) != 0) { st->burst_count = st->burst_count + 1; if(st->burst_count >= burst_len) { st->hang_count = hang_len; } return 1; } else { st->burst_count = 0; if (st->hang_count > 0) { st->hang_count = st->hang_count - 1; return 1; } } return 0; } /****************************************************************************** * * Function : noise_estimate_update * Purpose : Update of background noise estimate * *******************************************************************************/ static void noise_estimate_update( VadVars * st, /* i/o : State structure */ Word16 level[] /* i : sub-band levels of the input frame */ ) { Word32 i; Word16 alpha_up, alpha_down, bckr_add = 2; /* Control update of bckr_est[] */ update_cntrl(st, level); /* Choose update speed */ if ((0x7800 & st->vadreg) == 0) { alpha_up = ALPHA_UP1; alpha_down = ALPHA_DOWN1; } else { if (st->stat_count == 0) { alpha_up = ALPHA_UP2; alpha_down = ALPHA_DOWN2; } else { alpha_up = 0; alpha_down = ALPHA3; bckr_add = 0; } } /* Update noise estimate (bckr_est) */ for (i = 0; i < COMPLEN; i++) { Word16 temp; temp = (st->old_level[i] - st->bckr_est[i]); if (temp < 0) { /* update downwards */ st->bckr_est[i] = add1(-2, add(st->bckr_est[i],vo_mult_r(alpha_down, temp))); /* limit minimum value of the noise estimate to NOISE_MIN */ if(st->bckr_est[i] < NOISE_MIN) { st->bckr_est[i] = NOISE_MIN; } } else { /* update upwards */ st->bckr_est[i] = add1(bckr_add, add1(st->bckr_est[i],vo_mult_r(alpha_up, temp))); /* limit maximum value of the noise estimate to NOISE_MAX */ if(st->bckr_est[i] > NOISE_MAX) { st->bckr_est[i] = NOISE_MAX; } } } /* Update signal levels of the previous frame (old_level) */ for (i = 0; i < COMPLEN; i++) { st->old_level[i] = level[i]; } } /****************************************************************************** * * Function : vad_decision * Purpose : Calculates VAD_flag * *******************************************************************************/ static Word16 vad_decision( /* return value : VAD_flag */ VadVars * st, /* i/o : State structure */ Word16 level[COMPLEN], /* i : sub-band levels of the input frame */ Word32 pow_sum /* i : power of the input frame */ ) { Word32 i; Word32 L_snr_sum; Word32 L_temp; Word16 vad_thr, temp, noise_level; Word16 low_power_flag; Word16 hang_len, burst_len; Word16 ilog2_speech_level, ilog2_noise_level; Word16 temp2; /* Calculate squared sum of the input levels (level) divided by the background noise components * (bckr_est). */ L_snr_sum = 0; for (i = 0; i < COMPLEN; i++) { Word16 exp; exp = norm_s(st->bckr_est[i]); temp = (st->bckr_est[i] << exp); temp = div_s((level[i] >> 1), temp); temp = shl(temp, (exp - (UNIRSHFT - 1))); L_snr_sum = L_mac(L_snr_sum, temp, temp); } /* Calculate average level of estimated background noise */ L_temp = 0; for (i = 1; i < COMPLEN; i++) /* ignore lowest band */ { L_temp = vo_L_add(L_temp, st->bckr_est[i]); } noise_level = extract_h((L_temp << 12)); /* if SNR is lower than a threshold (MIN_SPEECH_SNR), and increase speech_level */ temp = vo_mult(noise_level, MIN_SPEECH_SNR) << 3; if(st->speech_level < temp) { st->speech_level = temp; } ilog2_noise_level = ilog2(noise_level); /* If SNR is very poor, speech_level is probably corrupted by noise level. This is correctred by * subtracting MIN_SPEECH_SNR*noise_level from speech level */ ilog2_speech_level = ilog2(st->speech_level - temp); temp = add1(vo_mult(NO_SLOPE, (ilog2_noise_level - NO_P1)), THR_HIGH); temp2 = add1(SP_CH_MIN, vo_mult(SP_SLOPE, (ilog2_speech_level - SP_P1))); if (temp2 < SP_CH_MIN) { temp2 = SP_CH_MIN; } if (temp2 > SP_CH_MAX) { temp2 = SP_CH_MAX; } vad_thr = temp + temp2; if(vad_thr < THR_MIN) { vad_thr = THR_MIN; } /* Shift VAD decision register */ st->vadreg = (st->vadreg >> 1); /* Make intermediate VAD decision */ if(L_snr_sum > vo_L_mult(vad_thr, (512 * COMPLEN))) { st->vadreg = (Word16) (st->vadreg | 0x4000); } /* check if the input power (pow_sum) is lower than a threshold" */ if(pow_sum < VAD_POW_LOW) { low_power_flag = 1; } else { low_power_flag = 0; } /* Update background noise estimates */ noise_estimate_update(st, level); /* Calculate values for hang_len and burst_len based on vad_thr */ hang_len = add1(vo_mult(HANG_SLOPE, (vad_thr - HANG_P1)), HANG_HIGH); if(hang_len < HANG_LOW) { hang_len = HANG_LOW; } burst_len = add1(vo_mult(BURST_SLOPE, (vad_thr - BURST_P1)), BURST_HIGH); return (hangover_addition(st, low_power_flag, hang_len, burst_len)); } /****************************************************************************** * * Function : Estimate_Speech() * Purpose : Estimate speech level * * Maximum signal level is searched and stored to the variable sp_max. * The speech frames must locate within SP_EST_COUNT number of frames. * Thus, noisy frames having occasional VAD = "1" decisions will not * affect to the estimated speech_level. * *******************************************************************************/ static void Estimate_Speech( VadVars * st, /* i/o : State structure */ Word16 in_level /* level of the input frame */ ) { Word16 alpha; /* if the required activity count cannot be achieved, reset counters */ if((st->sp_est_cnt - st->sp_max_cnt) > (SP_EST_COUNT - SP_ACTIVITY_COUNT)) { st->sp_est_cnt = 0; st->sp_max = 0; st->sp_max_cnt = 0; } st->sp_est_cnt += 1; if (((st->vadreg & 0x4000)||(in_level > st->speech_level)) && (in_level > MIN_SPEECH_LEVEL1)) { /* update sp_max */ if(in_level > st->sp_max) { st->sp_max = in_level; } st->sp_max_cnt += 1; if(st->sp_max_cnt >= SP_ACTIVITY_COUNT) { Word16 tmp; /* update speech estimate */ tmp = (st->sp_max >> 1); /* scale to get "average" speech level */ /* select update speed */ if(tmp > st->speech_level) { alpha = ALPHA_SP_UP; } else { alpha = ALPHA_SP_DOWN; } if(tmp > MIN_SPEECH_LEVEL2) { st->speech_level = add1(st->speech_level, vo_mult_r(alpha, vo_sub(tmp, st->speech_level))); } /* clear all counters used for speech estimation */ st->sp_max = 0; st->sp_max_cnt = 0; st->sp_est_cnt = 0; } } } /****************************************************************************** * * Function: wb_vad_init * Purpose: Allocates state memory and initializes state memory * *******************************************************************************/ Word16 wb_vad_init( /* return: non-zero with error, zero for ok. */ VadVars ** state, /* i/o : State structure */ VO_MEM_OPERATOR *pMemOP ) { VadVars *s; if (state == (VadVars **) NULL) { fprintf(stderr, "vad_init: invalid parameter\n"); return -1; } *state = NULL; /* allocate memory */ if ((s = (VadVars *) mem_malloc(pMemOP, sizeof(VadVars), 32, VO_INDEX_ENC_AMRWB)) == NULL) { fprintf(stderr, "vad_init: can not malloc state structure\n"); return -1; } wb_vad_reset(s); *state = s; return 0; } /****************************************************************************** * * Function: wb_vad_reset * Purpose: Initializes state memory * *******************************************************************************/ Word16 wb_vad_reset( /* return: non-zero with error, zero for ok. */ VadVars * state /* i/o : State structure */ ) { Word32 i, j; if (state == (VadVars *) NULL) { fprintf(stderr, "vad_reset: invalid parameter\n"); return -1; } state->tone_flag = 0; state->vadreg = 0; state->hang_count = 0; state->burst_count = 0; state->hang_count = 0; /* initialize memory used by the filter bank */ for (i = 0; i < F_5TH_CNT; i++) { for (j = 0; j < 2; j++) { state->a_data5[i][j] = 0; } } for (i = 0; i < F_3TH_CNT; i++) { state->a_data3[i] = 0; } /* initialize the rest of the memory */ for (i = 0; i < COMPLEN; i++) { state->bckr_est[i] = NOISE_INIT; state->old_level[i] = NOISE_INIT; state->ave_level[i] = NOISE_INIT; state->sub_level[i] = 0; } state->sp_est_cnt = 0; state->sp_max = 0; state->sp_max_cnt = 0; state->speech_level = SPEECH_LEVEL_INIT; state->prev_pow_sum = 0; return 0; } /****************************************************************************** * * Function: wb_vad_exit * Purpose: The memory used for state memory is freed * *******************************************************************************/ void wb_vad_exit( VadVars ** state, /* i/o : State structure */ VO_MEM_OPERATOR *pMemOP ) { if (state == NULL || *state == NULL) return; /* deallocate memory */ mem_free(pMemOP, *state, VO_INDEX_ENC_AMRWB); *state = NULL; return; } /****************************************************************************** * * Function : wb_vad_tone_detection * Purpose : Search maximum pitch gain from a frame. Set tone flag if * pitch gain is high. This is used to detect * signaling tones and other signals with high pitch gain. * *******************************************************************************/ void wb_vad_tone_detection( VadVars * st, /* i/o : State struct */ Word16 p_gain /* pitch gain */ ) { /* update tone flag */ st->tone_flag = (st->tone_flag >> 1); /* if (pitch_gain > TONE_THR) set tone flag */ if (p_gain > TONE_THR) { st->tone_flag = (Word16) (st->tone_flag | 0x4000); } } /****************************************************************************** * * Function : wb_vad * Purpose : Main program for Voice Activity Detection (VAD) for AMR * *******************************************************************************/ Word16 wb_vad( /* Return value : VAD Decision, 1 = speech, 0 = noise */ VadVars * st, /* i/o : State structure */ Word16 in_buf[] /* i : samples of the input frame */ ) { Word16 level[COMPLEN]; Word32 i; Word16 VAD_flag, temp; Word32 L_temp, pow_sum; /* Calculate power of the input frame. */ L_temp = 0L; for (i = 0; i < FRAME_LEN; i++) { L_temp = L_mac(L_temp, in_buf[i], in_buf[i]); } /* pow_sum = power of current frame and previous frame */ pow_sum = L_add(L_temp, st->prev_pow_sum); /* save power of current frame for next call */ st->prev_pow_sum = L_temp; /* If input power is very low, clear tone flag */ if (pow_sum < POW_TONE_THR) { st->tone_flag = (Word16) (st->tone_flag & 0x1fff); } /* Run the filter bank and calculate signal levels at each band */ filter_bank(st, in_buf, level); /* compute VAD decision */ VAD_flag = vad_decision(st, level, pow_sum); /* Calculate input level */ L_temp = 0; for (i = 1; i < COMPLEN; i++) /* ignore lowest band */ { L_temp = vo_L_add(L_temp, level[i]); } temp = extract_h(L_temp << 12); Estimate_Speech(st, temp); /* Estimate speech level */ return (VAD_flag); }