/* ** ** Copyright 2007, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "AudioFlinger" //#define LOG_NDEBUG 0 #include "Configuration.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AudioMixer.h" #include "AudioFlinger.h" #include "ServiceUtilities.h" #include #include #include #include #include #include #include #include #include #include #include // ---------------------------------------------------------------------------- // Note: the following macro is used for extremely verbose logging message. In // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to // 0; but one side effect of this is to turn all LOGV's as well. Some messages // are so verbose that we want to suppress them even when we have ALOG_ASSERT // turned on. Do not uncomment the #def below unless you really know what you // are doing and want to see all of the extremely verbose messages. //#define VERY_VERY_VERBOSE_LOGGING #ifdef VERY_VERY_VERBOSE_LOGGING #define ALOGVV ALOGV #else #define ALOGVV(a...) do { } while(0) #endif namespace android { static const char kDeadlockedString[] = "AudioFlinger may be deadlocked\n"; static const char kHardwareLockedString[] = "Hardware lock is taken\n"; nsecs_t AudioFlinger::mStandbyTimeInNsecs = kDefaultStandbyTimeInNsecs; uint32_t AudioFlinger::mScreenState; #ifdef TEE_SINK bool AudioFlinger::mTeeSinkInputEnabled = false; bool AudioFlinger::mTeeSinkOutputEnabled = false; bool AudioFlinger::mTeeSinkTrackEnabled = false; size_t AudioFlinger::mTeeSinkInputFrames = kTeeSinkInputFramesDefault; size_t AudioFlinger::mTeeSinkOutputFrames = kTeeSinkOutputFramesDefault; size_t AudioFlinger::mTeeSinkTrackFrames = kTeeSinkTrackFramesDefault; #endif // ---------------------------------------------------------------------------- static int load_audio_interface(const char *if_name, audio_hw_device_t **dev) { const hw_module_t *mod; int rc; rc = hw_get_module_by_class(AUDIO_HARDWARE_MODULE_ID, if_name, &mod); ALOGE_IF(rc, "%s couldn't load audio hw module %s.%s (%s)", __func__, AUDIO_HARDWARE_MODULE_ID, if_name, strerror(-rc)); if (rc) { goto out; } rc = audio_hw_device_open(mod, dev); ALOGE_IF(rc, "%s couldn't open audio hw device in %s.%s (%s)", __func__, AUDIO_HARDWARE_MODULE_ID, if_name, strerror(-rc)); if (rc) { goto out; } if ((*dev)->common.version != AUDIO_DEVICE_API_VERSION_CURRENT) { ALOGE("%s wrong audio hw device version %04x", __func__, (*dev)->common.version); rc = BAD_VALUE; goto out; } return 0; out: *dev = NULL; return rc; } // ---------------------------------------------------------------------------- AudioFlinger::AudioFlinger() : BnAudioFlinger(), mPrimaryHardwareDev(NULL), mHardwareStatus(AUDIO_HW_IDLE), mMasterVolume(1.0f), mMasterMute(false), mNextUniqueId(1), mMode(AUDIO_MODE_INVALID), mBtNrecIsOff(false) { getpid_cached = getpid(); char value[PROPERTY_VALUE_MAX]; bool doLog = (property_get("ro.test_harness", value, "0") > 0) && (atoi(value) == 1); if (doLog) { mLogMemoryDealer = new MemoryDealer(kLogMemorySize, "LogWriters"); } #ifdef TEE_SINK (void) property_get("ro.debuggable", value, "0"); int debuggable = atoi(value); int teeEnabled = 0; if (debuggable) { (void) property_get("af.tee", value, "0"); teeEnabled = atoi(value); } if (teeEnabled & 1) mTeeSinkInputEnabled = true; if (teeEnabled & 2) mTeeSinkOutputEnabled = true; if (teeEnabled & 4) mTeeSinkTrackEnabled = true; #endif } void AudioFlinger::onFirstRef() { int rc = 0; Mutex::Autolock _l(mLock); /* TODO: move all this work into an Init() function */ char val_str[PROPERTY_VALUE_MAX] = { 0 }; if (property_get("ro.audio.flinger_standbytime_ms", val_str, NULL) >= 0) { uint32_t int_val; if (1 == sscanf(val_str, "%u", &int_val)) { mStandbyTimeInNsecs = milliseconds(int_val); ALOGI("Using %u mSec as standby time.", int_val); } else { mStandbyTimeInNsecs = kDefaultStandbyTimeInNsecs; ALOGI("Using default %u mSec as standby time.", (uint32_t)(mStandbyTimeInNsecs / 1000000)); } } mMode = AUDIO_MODE_NORMAL; } AudioFlinger::~AudioFlinger() { while (!mRecordThreads.isEmpty()) { // closeInput_nonvirtual() will remove specified entry from mRecordThreads closeInput_nonvirtual(mRecordThreads.keyAt(0)); } while (!mPlaybackThreads.isEmpty()) { // closeOutput_nonvirtual() will remove specified entry from mPlaybackThreads closeOutput_nonvirtual(mPlaybackThreads.keyAt(0)); } for (size_t i = 0; i < mAudioHwDevs.size(); i++) { // no mHardwareLock needed, as there are no other references to this audio_hw_device_close(mAudioHwDevs.valueAt(i)->hwDevice()); delete mAudioHwDevs.valueAt(i); } } static const char * const audio_interfaces[] = { AUDIO_HARDWARE_MODULE_ID_PRIMARY, AUDIO_HARDWARE_MODULE_ID_A2DP, AUDIO_HARDWARE_MODULE_ID_USB, }; #define ARRAY_SIZE(x) (sizeof((x))/sizeof(((x)[0]))) AudioFlinger::AudioHwDevice* AudioFlinger::findSuitableHwDev_l( audio_module_handle_t module, audio_devices_t devices) { // if module is 0, the request comes from an old policy manager and we should load // well known modules if (module == 0) { ALOGW("findSuitableHwDev_l() loading well know audio hw modules"); for (size_t i = 0; i < ARRAY_SIZE(audio_interfaces); i++) { loadHwModule_l(audio_interfaces[i]); } // then try to find a module supporting the requested device. for (size_t i = 0; i < mAudioHwDevs.size(); i++) { AudioHwDevice *audioHwDevice = mAudioHwDevs.valueAt(i); audio_hw_device_t *dev = audioHwDevice->hwDevice(); if ((dev->get_supported_devices != NULL) && (dev->get_supported_devices(dev) & devices) == devices) return audioHwDevice; } } else { // check a match for the requested module handle AudioHwDevice *audioHwDevice = mAudioHwDevs.valueFor(module); if (audioHwDevice != NULL) { return audioHwDevice; } } return NULL; } void AudioFlinger::dumpClients(int fd, const Vector& args) { const size_t SIZE = 256; char buffer[SIZE]; String8 result; result.append("Clients:\n"); for (size_t i = 0; i < mClients.size(); ++i) { sp client = mClients.valueAt(i).promote(); if (client != 0) { snprintf(buffer, SIZE, " pid: %d\n", client->pid()); result.append(buffer); } } result.append("Global session refs:\n"); result.append(" session pid count\n"); for (size_t i = 0; i < mAudioSessionRefs.size(); i++) { AudioSessionRef *r = mAudioSessionRefs[i]; snprintf(buffer, SIZE, " %7d %3d %3d\n", r->mSessionid, r->mPid, r->mCnt); result.append(buffer); } write(fd, result.string(), result.size()); } void AudioFlinger::dumpInternals(int fd, const Vector& args) { const size_t SIZE = 256; char buffer[SIZE]; String8 result; hardware_call_state hardwareStatus = mHardwareStatus; snprintf(buffer, SIZE, "Hardware status: %d\n" "Standby Time mSec: %u\n", hardwareStatus, (uint32_t)(mStandbyTimeInNsecs / 1000000)); result.append(buffer); write(fd, result.string(), result.size()); } void AudioFlinger::dumpPermissionDenial(int fd, const Vector& args) { const size_t SIZE = 256; char buffer[SIZE]; String8 result; snprintf(buffer, SIZE, "Permission Denial: " "can't dump AudioFlinger from pid=%d, uid=%d\n", IPCThreadState::self()->getCallingPid(), IPCThreadState::self()->getCallingUid()); result.append(buffer); write(fd, result.string(), result.size()); } bool AudioFlinger::dumpTryLock(Mutex& mutex) { bool locked = false; for (int i = 0; i < kDumpLockRetries; ++i) { if (mutex.tryLock() == NO_ERROR) { locked = true; break; } usleep(kDumpLockSleepUs); } return locked; } status_t AudioFlinger::dump(int fd, const Vector& args) { if (!dumpAllowed()) { dumpPermissionDenial(fd, args); } else { // get state of hardware lock bool hardwareLocked = dumpTryLock(mHardwareLock); if (!hardwareLocked) { String8 result(kHardwareLockedString); write(fd, result.string(), result.size()); } else { mHardwareLock.unlock(); } bool locked = dumpTryLock(mLock); // failed to lock - AudioFlinger is probably deadlocked if (!locked) { String8 result(kDeadlockedString); write(fd, result.string(), result.size()); } dumpClients(fd, args); dumpInternals(fd, args); // dump playback threads for (size_t i = 0; i < mPlaybackThreads.size(); i++) { mPlaybackThreads.valueAt(i)->dump(fd, args); } // dump record threads for (size_t i = 0; i < mRecordThreads.size(); i++) { mRecordThreads.valueAt(i)->dump(fd, args); } // dump all hardware devs for (size_t i = 0; i < mAudioHwDevs.size(); i++) { audio_hw_device_t *dev = mAudioHwDevs.valueAt(i)->hwDevice(); dev->dump(dev, fd); } #ifdef TEE_SINK // dump the serially shared record tee sink if (mRecordTeeSource != 0) { dumpTee(fd, mRecordTeeSource); } #endif if (locked) { mLock.unlock(); } // append a copy of media.log here by forwarding fd to it, but don't attempt // to lookup the service if it's not running, as it will block for a second if (mLogMemoryDealer != 0) { sp binder = defaultServiceManager()->getService(String16("media.log")); if (binder != 0) { fdprintf(fd, "\nmedia.log:\n"); Vector args; binder->dump(fd, args); } } } return NO_ERROR; } sp AudioFlinger::registerPid_l(pid_t pid) { // If pid is already in the mClients wp<> map, then use that entry // (for which promote() is always != 0), otherwise create a new entry and Client. sp client = mClients.valueFor(pid).promote(); if (client == 0) { client = new Client(this, pid); mClients.add(pid, client); } return client; } sp AudioFlinger::newWriter_l(size_t size, const char *name) { if (mLogMemoryDealer == 0) { return new NBLog::Writer(); } sp shared = mLogMemoryDealer->allocate(NBLog::Timeline::sharedSize(size)); sp writer = new NBLog::Writer(size, shared); sp binder = defaultServiceManager()->getService(String16("media.log")); if (binder != 0) { interface_cast(binder)->registerWriter(shared, size, name); } return writer; } void AudioFlinger::unregisterWriter(const sp& writer) { if (writer == 0) { return; } sp iMemory(writer->getIMemory()); if (iMemory == 0) { return; } sp binder = defaultServiceManager()->getService(String16("media.log")); if (binder != 0) { interface_cast(binder)->unregisterWriter(iMemory); // Now the media.log remote reference to IMemory is gone. // When our last local reference to IMemory also drops to zero, // the IMemory destructor will deallocate the region from mMemoryDealer. } } // IAudioFlinger interface sp AudioFlinger::createTrack( audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, IAudioFlinger::track_flags_t *flags, const sp& sharedBuffer, audio_io_handle_t output, pid_t tid, int *sessionId, status_t *status) { sp track; sp trackHandle; sp client; status_t lStatus; int lSessionId; // client AudioTrack::set already implements AUDIO_STREAM_DEFAULT => AUDIO_STREAM_MUSIC, // but if someone uses binder directly they could bypass that and cause us to crash if (uint32_t(streamType) >= AUDIO_STREAM_CNT) { ALOGE("createTrack() invalid stream type %d", streamType); lStatus = BAD_VALUE; goto Exit; } // client is responsible for conversion of 8-bit PCM to 16-bit PCM, // and we don't yet support 8.24 or 32-bit PCM if (audio_is_linear_pcm(format) && format != AUDIO_FORMAT_PCM_16_BIT) { ALOGE("createTrack() invalid format %d", format); lStatus = BAD_VALUE; goto Exit; } { Mutex::Autolock _l(mLock); PlaybackThread *thread = checkPlaybackThread_l(output); PlaybackThread *effectThread = NULL; if (thread == NULL) { ALOGE("no playback thread found for output handle %d", output); lStatus = BAD_VALUE; goto Exit; } pid_t pid = IPCThreadState::self()->getCallingPid(); client = registerPid_l(pid); ALOGV("createTrack() sessionId: %d", (sessionId == NULL) ? -2 : *sessionId); if (sessionId != NULL && *sessionId != AUDIO_SESSION_OUTPUT_MIX) { // check if an effect chain with the same session ID is present on another // output thread and move it here. for (size_t i = 0; i < mPlaybackThreads.size(); i++) { sp t = mPlaybackThreads.valueAt(i); if (mPlaybackThreads.keyAt(i) != output) { uint32_t sessions = t->hasAudioSession(*sessionId); if (sessions & PlaybackThread::EFFECT_SESSION) { effectThread = t.get(); break; } } } lSessionId = *sessionId; } else { // if no audio session id is provided, create one here lSessionId = nextUniqueId(); if (sessionId != NULL) { *sessionId = lSessionId; } } ALOGV("createTrack() lSessionId: %d", lSessionId); track = thread->createTrack_l(client, streamType, sampleRate, format, channelMask, frameCount, sharedBuffer, lSessionId, flags, tid, &lStatus); // move effect chain to this output thread if an effect on same session was waiting // for a track to be created if (lStatus == NO_ERROR && effectThread != NULL) { Mutex::Autolock _dl(thread->mLock); Mutex::Autolock _sl(effectThread->mLock); moveEffectChain_l(lSessionId, effectThread, thread, true); } // Look for sync events awaiting for a session to be used. for (int i = 0; i < (int)mPendingSyncEvents.size(); i++) { if (mPendingSyncEvents[i]->triggerSession() == lSessionId) { if (thread->isValidSyncEvent(mPendingSyncEvents[i])) { if (lStatus == NO_ERROR) { (void) track->setSyncEvent(mPendingSyncEvents[i]); } else { mPendingSyncEvents[i]->cancel(); } mPendingSyncEvents.removeAt(i); i--; } } } } if (lStatus == NO_ERROR) { trackHandle = new TrackHandle(track); } else { // remove local strong reference to Client before deleting the Track so that the Client // destructor is called by the TrackBase destructor with mLock held client.clear(); track.clear(); } Exit: if (status != NULL) { *status = lStatus; } return trackHandle; } uint32_t AudioFlinger::sampleRate(audio_io_handle_t output) const { Mutex::Autolock _l(mLock); PlaybackThread *thread = checkPlaybackThread_l(output); if (thread == NULL) { ALOGW("sampleRate() unknown thread %d", output); return 0; } return thread->sampleRate(); } int AudioFlinger::channelCount(audio_io_handle_t output) const { Mutex::Autolock _l(mLock); PlaybackThread *thread = checkPlaybackThread_l(output); if (thread == NULL) { ALOGW("channelCount() unknown thread %d", output); return 0; } return thread->channelCount(); } audio_format_t AudioFlinger::format(audio_io_handle_t output) const { Mutex::Autolock _l(mLock); PlaybackThread *thread = checkPlaybackThread_l(output); if (thread == NULL) { ALOGW("format() unknown thread %d", output); return AUDIO_FORMAT_INVALID; } return thread->format(); } size_t AudioFlinger::frameCount(audio_io_handle_t output) const { Mutex::Autolock _l(mLock); PlaybackThread *thread = checkPlaybackThread_l(output); if (thread == NULL) { ALOGW("frameCount() unknown thread %d", output); return 0; } // FIXME currently returns the normal mixer's frame count to avoid confusing legacy callers; // should examine all callers and fix them to handle smaller counts return thread->frameCount(); } uint32_t AudioFlinger::latency(audio_io_handle_t output) const { Mutex::Autolock _l(mLock); PlaybackThread *thread = checkPlaybackThread_l(output); if (thread == NULL) { ALOGW("latency(): no playback thread found for output handle %d", output); return 0; } return thread->latency(); } status_t AudioFlinger::setMasterVolume(float value) { status_t ret = initCheck(); if (ret != NO_ERROR) { return ret; } // check calling permissions if (!settingsAllowed()) { return PERMISSION_DENIED; } Mutex::Autolock _l(mLock); mMasterVolume = value; // Set master volume in the HALs which support it. for (size_t i = 0; i < mAudioHwDevs.size(); i++) { AutoMutex lock(mHardwareLock); AudioHwDevice *dev = mAudioHwDevs.valueAt(i); mHardwareStatus = AUDIO_HW_SET_MASTER_VOLUME; if (dev->canSetMasterVolume()) { dev->hwDevice()->set_master_volume(dev->hwDevice(), value); } mHardwareStatus = AUDIO_HW_IDLE; } // Now set the master volume in each playback thread. Playback threads // assigned to HALs which do not have master volume support will apply // master volume during the mix operation. Threads with HALs which do // support master volume will simply ignore the setting. for (size_t i = 0; i < mPlaybackThreads.size(); i++) mPlaybackThreads.valueAt(i)->setMasterVolume(value); return NO_ERROR; } status_t AudioFlinger::setMode(audio_mode_t mode) { status_t ret = initCheck(); if (ret != NO_ERROR) { return ret; } // check calling permissions if (!settingsAllowed()) { return PERMISSION_DENIED; } if (uint32_t(mode) >= AUDIO_MODE_CNT) { ALOGW("Illegal value: setMode(%d)", mode); return BAD_VALUE; } { // scope for the lock AutoMutex lock(mHardwareLock); audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice(); mHardwareStatus = AUDIO_HW_SET_MODE; ret = dev->set_mode(dev, mode); mHardwareStatus = AUDIO_HW_IDLE; } if (NO_ERROR == ret) { Mutex::Autolock _l(mLock); mMode = mode; for (size_t i = 0; i < mPlaybackThreads.size(); i++) mPlaybackThreads.valueAt(i)->setMode(mode); } return ret; } status_t AudioFlinger::setMicMute(bool state) { status_t ret = initCheck(); if (ret != NO_ERROR) { return ret; } // check calling permissions if (!settingsAllowed()) { return PERMISSION_DENIED; } AutoMutex lock(mHardwareLock); audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice(); mHardwareStatus = AUDIO_HW_SET_MIC_MUTE; ret = dev->set_mic_mute(dev, state); mHardwareStatus = AUDIO_HW_IDLE; return ret; } bool AudioFlinger::getMicMute() const { status_t ret = initCheck(); if (ret != NO_ERROR) { return false; } bool state = AUDIO_MODE_INVALID; AutoMutex lock(mHardwareLock); audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice(); mHardwareStatus = AUDIO_HW_GET_MIC_MUTE; dev->get_mic_mute(dev, &state); mHardwareStatus = AUDIO_HW_IDLE; return state; } status_t AudioFlinger::setMasterMute(bool muted) { status_t ret = initCheck(); if (ret != NO_ERROR) { return ret; } // check calling permissions if (!settingsAllowed()) { return PERMISSION_DENIED; } Mutex::Autolock _l(mLock); mMasterMute = muted; // Set master mute in the HALs which support it. for (size_t i = 0; i < mAudioHwDevs.size(); i++) { AutoMutex lock(mHardwareLock); AudioHwDevice *dev = mAudioHwDevs.valueAt(i); mHardwareStatus = AUDIO_HW_SET_MASTER_MUTE; if (dev->canSetMasterMute()) { dev->hwDevice()->set_master_mute(dev->hwDevice(), muted); } mHardwareStatus = AUDIO_HW_IDLE; } // Now set the master mute in each playback thread. Playback threads // assigned to HALs which do not have master mute support will apply master // mute during the mix operation. Threads with HALs which do support master // mute will simply ignore the setting. for (size_t i = 0; i < mPlaybackThreads.size(); i++) mPlaybackThreads.valueAt(i)->setMasterMute(muted); return NO_ERROR; } float AudioFlinger::masterVolume() const { Mutex::Autolock _l(mLock); return masterVolume_l(); } bool AudioFlinger::masterMute() const { Mutex::Autolock _l(mLock); return masterMute_l(); } float AudioFlinger::masterVolume_l() const { return mMasterVolume; } bool AudioFlinger::masterMute_l() const { return mMasterMute; } status_t AudioFlinger::setStreamVolume(audio_stream_type_t stream, float value, audio_io_handle_t output) { // check calling permissions if (!settingsAllowed()) { return PERMISSION_DENIED; } if (uint32_t(stream) >= AUDIO_STREAM_CNT) { ALOGE("setStreamVolume() invalid stream %d", stream); return BAD_VALUE; } AutoMutex lock(mLock); PlaybackThread *thread = NULL; if (output) { thread = checkPlaybackThread_l(output); if (thread == NULL) { return BAD_VALUE; } } mStreamTypes[stream].volume = value; if (thread == NULL) { for (size_t i = 0; i < mPlaybackThreads.size(); i++) { mPlaybackThreads.valueAt(i)->setStreamVolume(stream, value); } } else { thread->setStreamVolume(stream, value); } return NO_ERROR; } status_t AudioFlinger::setStreamMute(audio_stream_type_t stream, bool muted) { // check calling permissions if (!settingsAllowed()) { return PERMISSION_DENIED; } if (uint32_t(stream) >= AUDIO_STREAM_CNT || uint32_t(stream) == AUDIO_STREAM_ENFORCED_AUDIBLE) { ALOGE("setStreamMute() invalid stream %d", stream); return BAD_VALUE; } AutoMutex lock(mLock); mStreamTypes[stream].mute = muted; for (uint32_t i = 0; i < mPlaybackThreads.size(); i++) mPlaybackThreads.valueAt(i)->setStreamMute(stream, muted); return NO_ERROR; } float AudioFlinger::streamVolume(audio_stream_type_t stream, audio_io_handle_t output) const { if (uint32_t(stream) >= AUDIO_STREAM_CNT) { return 0.0f; } AutoMutex lock(mLock); float volume; if (output) { PlaybackThread *thread = checkPlaybackThread_l(output); if (thread == NULL) { return 0.0f; } volume = thread->streamVolume(stream); } else { volume = streamVolume_l(stream); } return volume; } bool AudioFlinger::streamMute(audio_stream_type_t stream) const { if (uint32_t(stream) >= AUDIO_STREAM_CNT) { return true; } AutoMutex lock(mLock); return streamMute_l(stream); } status_t AudioFlinger::setParameters(audio_io_handle_t ioHandle, const String8& keyValuePairs) { ALOGV("setParameters(): io %d, keyvalue %s, calling pid %d", ioHandle, keyValuePairs.string(), IPCThreadState::self()->getCallingPid()); // check calling permissions if (!settingsAllowed()) { return PERMISSION_DENIED; } // ioHandle == 0 means the parameters are global to the audio hardware interface if (ioHandle == 0) { Mutex::Autolock _l(mLock); status_t final_result = NO_ERROR; { AutoMutex lock(mHardwareLock); mHardwareStatus = AUDIO_HW_SET_PARAMETER; for (size_t i = 0; i < mAudioHwDevs.size(); i++) { audio_hw_device_t *dev = mAudioHwDevs.valueAt(i)->hwDevice(); status_t result = dev->set_parameters(dev, keyValuePairs.string()); final_result = result ?: final_result; } mHardwareStatus = AUDIO_HW_IDLE; } // disable AEC and NS if the device is a BT SCO headset supporting those pre processings AudioParameter param = AudioParameter(keyValuePairs); String8 value; if (param.get(String8(AUDIO_PARAMETER_KEY_BT_NREC), value) == NO_ERROR) { bool btNrecIsOff = (value == AUDIO_PARAMETER_VALUE_OFF); if (mBtNrecIsOff != btNrecIsOff) { for (size_t i = 0; i < mRecordThreads.size(); i++) { sp thread = mRecordThreads.valueAt(i); audio_devices_t device = thread->inDevice(); bool suspend = audio_is_bluetooth_sco_device(device) && btNrecIsOff; // collect all of the thread's session IDs KeyedVector ids = thread->sessionIds(); // suspend effects associated with those session IDs for (size_t j = 0; j < ids.size(); ++j) { int sessionId = ids.keyAt(j); thread->setEffectSuspended(FX_IID_AEC, suspend, sessionId); thread->setEffectSuspended(FX_IID_NS, suspend, sessionId); } } mBtNrecIsOff = btNrecIsOff; } } String8 screenState; if (param.get(String8(AudioParameter::keyScreenState), screenState) == NO_ERROR) { bool isOff = screenState == "off"; if (isOff != (AudioFlinger::mScreenState & 1)) { AudioFlinger::mScreenState = ((AudioFlinger::mScreenState & ~1) + 2) | isOff; } } return final_result; } // hold a strong ref on thread in case closeOutput() or closeInput() is called // and the thread is exited once the lock is released sp thread; { Mutex::Autolock _l(mLock); thread = checkPlaybackThread_l(ioHandle); if (thread == 0) { thread = checkRecordThread_l(ioHandle); } else if (thread == primaryPlaybackThread_l()) { // indicate output device change to all input threads for pre processing AudioParameter param = AudioParameter(keyValuePairs); int value; if ((param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) && (value != 0)) { for (size_t i = 0; i < mRecordThreads.size(); i++) { mRecordThreads.valueAt(i)->setParameters(keyValuePairs); } } } } if (thread != 0) { return thread->setParameters(keyValuePairs); } return BAD_VALUE; } String8 AudioFlinger::getParameters(audio_io_handle_t ioHandle, const String8& keys) const { ALOGVV("getParameters() io %d, keys %s, calling pid %d", ioHandle, keys.string(), IPCThreadState::self()->getCallingPid()); Mutex::Autolock _l(mLock); if (ioHandle == 0) { String8 out_s8; for (size_t i = 0; i < mAudioHwDevs.size(); i++) { char *s; { AutoMutex lock(mHardwareLock); mHardwareStatus = AUDIO_HW_GET_PARAMETER; audio_hw_device_t *dev = mAudioHwDevs.valueAt(i)->hwDevice(); s = dev->get_parameters(dev, keys.string()); mHardwareStatus = AUDIO_HW_IDLE; } out_s8 += String8(s ? s : ""); free(s); } return out_s8; } PlaybackThread *playbackThread = checkPlaybackThread_l(ioHandle); if (playbackThread != NULL) { return playbackThread->getParameters(keys); } RecordThread *recordThread = checkRecordThread_l(ioHandle); if (recordThread != NULL) { return recordThread->getParameters(keys); } return String8(""); } size_t AudioFlinger::getInputBufferSize(uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask) const { status_t ret = initCheck(); if (ret != NO_ERROR) { return 0; } AutoMutex lock(mHardwareLock); mHardwareStatus = AUDIO_HW_GET_INPUT_BUFFER_SIZE; struct audio_config config; memset(&config, 0, sizeof(config)); config.sample_rate = sampleRate; config.channel_mask = channelMask; config.format = format; audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice(); size_t size = dev->get_input_buffer_size(dev, &config); mHardwareStatus = AUDIO_HW_IDLE; return size; } unsigned int AudioFlinger::getInputFramesLost(audio_io_handle_t ioHandle) const { Mutex::Autolock _l(mLock); RecordThread *recordThread = checkRecordThread_l(ioHandle); if (recordThread != NULL) { return recordThread->getInputFramesLost(); } return 0; } status_t AudioFlinger::setVoiceVolume(float value) { status_t ret = initCheck(); if (ret != NO_ERROR) { return ret; } // check calling permissions if (!settingsAllowed()) { return PERMISSION_DENIED; } AutoMutex lock(mHardwareLock); audio_hw_device_t *dev = mPrimaryHardwareDev->hwDevice(); mHardwareStatus = AUDIO_HW_SET_VOICE_VOLUME; ret = dev->set_voice_volume(dev, value); mHardwareStatus = AUDIO_HW_IDLE; return ret; } status_t AudioFlinger::getRenderPosition(size_t *halFrames, size_t *dspFrames, audio_io_handle_t output) const { status_t status; Mutex::Autolock _l(mLock); PlaybackThread *playbackThread = checkPlaybackThread_l(output); if (playbackThread != NULL) { return playbackThread->getRenderPosition(halFrames, dspFrames); } return BAD_VALUE; } void AudioFlinger::registerClient(const sp& client) { Mutex::Autolock _l(mLock); pid_t pid = IPCThreadState::self()->getCallingPid(); if (mNotificationClients.indexOfKey(pid) < 0) { sp notificationClient = new NotificationClient(this, client, pid); ALOGV("registerClient() client %p, pid %d", notificationClient.get(), pid); mNotificationClients.add(pid, notificationClient); sp binder = client->asBinder(); binder->linkToDeath(notificationClient); // the config change is always sent from playback or record threads to avoid deadlock // with AudioSystem::gLock for (size_t i = 0; i < mPlaybackThreads.size(); i++) { mPlaybackThreads.valueAt(i)->sendIoConfigEvent(AudioSystem::OUTPUT_OPENED); } for (size_t i = 0; i < mRecordThreads.size(); i++) { mRecordThreads.valueAt(i)->sendIoConfigEvent(AudioSystem::INPUT_OPENED); } } } void AudioFlinger::removeNotificationClient(pid_t pid) { Mutex::Autolock _l(mLock); mNotificationClients.removeItem(pid); ALOGV("%d died, releasing its sessions", pid); size_t num = mAudioSessionRefs.size(); bool removed = false; for (size_t i = 0; i< num; ) { AudioSessionRef *ref = mAudioSessionRefs.itemAt(i); ALOGV(" pid %d @ %d", ref->mPid, i); if (ref->mPid == pid) { ALOGV(" removing entry for pid %d session %d", pid, ref->mSessionid); mAudioSessionRefs.removeAt(i); delete ref; removed = true; num--; } else { i++; } } if (removed) { purgeStaleEffects_l(); } } // audioConfigChanged_l() must be called with AudioFlinger::mLock held void AudioFlinger::audioConfigChanged_l(int event, audio_io_handle_t ioHandle, const void *param2) { size_t size = mNotificationClients.size(); for (size_t i = 0; i < size; i++) { mNotificationClients.valueAt(i)->audioFlingerClient()->ioConfigChanged(event, ioHandle, param2); } } // removeClient_l() must be called with AudioFlinger::mLock held void AudioFlinger::removeClient_l(pid_t pid) { ALOGV("removeClient_l() pid %d, calling pid %d", pid, IPCThreadState::self()->getCallingPid()); mClients.removeItem(pid); } // getEffectThread_l() must be called with AudioFlinger::mLock held sp AudioFlinger::getEffectThread_l(int sessionId, int EffectId) { sp thread; for (size_t i = 0; i < mPlaybackThreads.size(); i++) { if (mPlaybackThreads.valueAt(i)->getEffect(sessionId, EffectId) != 0) { ALOG_ASSERT(thread == 0); thread = mPlaybackThreads.valueAt(i); } } return thread; } // ---------------------------------------------------------------------------- AudioFlinger::Client::Client(const sp& audioFlinger, pid_t pid) : RefBase(), mAudioFlinger(audioFlinger), // FIXME should be a "k" constant not hard-coded, in .h or ro. property, see 4 lines below mMemoryDealer(new MemoryDealer(1024*1024, "AudioFlinger::Client")), mPid(pid), mTimedTrackCount(0) { // 1 MB of address space is good for 32 tracks, 8 buffers each, 4 KB/buffer } // Client destructor must be called with AudioFlinger::mLock held AudioFlinger::Client::~Client() { mAudioFlinger->removeClient_l(mPid); } sp AudioFlinger::Client::heap() const { return mMemoryDealer; } // Reserve one of the limited slots for a timed audio track associated // with this client bool AudioFlinger::Client::reserveTimedTrack() { const int kMaxTimedTracksPerClient = 4; Mutex::Autolock _l(mTimedTrackLock); if (mTimedTrackCount >= kMaxTimedTracksPerClient) { ALOGW("can not create timed track - pid %d has exceeded the limit", mPid); return false; } mTimedTrackCount++; return true; } // Release a slot for a timed audio track void AudioFlinger::Client::releaseTimedTrack() { Mutex::Autolock _l(mTimedTrackLock); mTimedTrackCount--; } // ---------------------------------------------------------------------------- AudioFlinger::NotificationClient::NotificationClient(const sp& audioFlinger, const sp& client, pid_t pid) : mAudioFlinger(audioFlinger), mPid(pid), mAudioFlingerClient(client) { } AudioFlinger::NotificationClient::~NotificationClient() { } void AudioFlinger::NotificationClient::binderDied(const wp& who) { sp keep(this); mAudioFlinger->removeNotificationClient(mPid); } // ---------------------------------------------------------------------------- sp AudioFlinger::openRecord( audio_io_handle_t input, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, IAudioFlinger::track_flags_t flags, pid_t tid, int *sessionId, status_t *status) { sp recordTrack; sp recordHandle; sp client; status_t lStatus; RecordThread *thread; size_t inFrameCount; int lSessionId; // check calling permissions if (!recordingAllowed()) { lStatus = PERMISSION_DENIED; goto Exit; } // add client to list { // scope for mLock Mutex::Autolock _l(mLock); thread = checkRecordThread_l(input); if (thread == NULL) { lStatus = BAD_VALUE; goto Exit; } pid_t pid = IPCThreadState::self()->getCallingPid(); client = registerPid_l(pid); // If no audio session id is provided, create one here if (sessionId != NULL && *sessionId != AUDIO_SESSION_OUTPUT_MIX) { lSessionId = *sessionId; } else { lSessionId = nextUniqueId(); if (sessionId != NULL) { *sessionId = lSessionId; } } // create new record track. // The record track uses one track in mHardwareMixerThread by convention. recordTrack = thread->createRecordTrack_l(client, sampleRate, format, channelMask, frameCount, lSessionId, flags, tid, &lStatus); } if (lStatus != NO_ERROR) { // remove local strong reference to Client before deleting the RecordTrack so that the // Client destructor is called by the TrackBase destructor with mLock held client.clear(); recordTrack.clear(); goto Exit; } // return to handle to client recordHandle = new RecordHandle(recordTrack); lStatus = NO_ERROR; Exit: if (status) { *status = lStatus; } return recordHandle; } // ---------------------------------------------------------------------------- audio_module_handle_t AudioFlinger::loadHwModule(const char *name) { if (!settingsAllowed()) { return 0; } Mutex::Autolock _l(mLock); return loadHwModule_l(name); } // loadHwModule_l() must be called with AudioFlinger::mLock held audio_module_handle_t AudioFlinger::loadHwModule_l(const char *name) { for (size_t i = 0; i < mAudioHwDevs.size(); i++) { if (strncmp(mAudioHwDevs.valueAt(i)->moduleName(), name, strlen(name)) == 0) { ALOGW("loadHwModule() module %s already loaded", name); return mAudioHwDevs.keyAt(i); } } audio_hw_device_t *dev; int rc = load_audio_interface(name, &dev); if (rc) { ALOGI("loadHwModule() error %d loading module %s ", rc, name); return 0; } mHardwareStatus = AUDIO_HW_INIT; rc = dev->init_check(dev); mHardwareStatus = AUDIO_HW_IDLE; if (rc) { ALOGI("loadHwModule() init check error %d for module %s ", rc, name); return 0; } // Check and cache this HAL's level of support for master mute and master // volume. If this is the first HAL opened, and it supports the get // methods, use the initial values provided by the HAL as the current // master mute and volume settings. AudioHwDevice::Flags flags = static_cast(0); { // scope for auto-lock pattern AutoMutex lock(mHardwareLock); if (0 == mAudioHwDevs.size()) { mHardwareStatus = AUDIO_HW_GET_MASTER_VOLUME; if (NULL != dev->get_master_volume) { float mv; if (OK == dev->get_master_volume(dev, &mv)) { mMasterVolume = mv; } } mHardwareStatus = AUDIO_HW_GET_MASTER_MUTE; if (NULL != dev->get_master_mute) { bool mm; if (OK == dev->get_master_mute(dev, &mm)) { mMasterMute = mm; } } } mHardwareStatus = AUDIO_HW_SET_MASTER_VOLUME; if ((NULL != dev->set_master_volume) && (OK == dev->set_master_volume(dev, mMasterVolume))) { flags = static_cast(flags | AudioHwDevice::AHWD_CAN_SET_MASTER_VOLUME); } mHardwareStatus = AUDIO_HW_SET_MASTER_MUTE; if ((NULL != dev->set_master_mute) && (OK == dev->set_master_mute(dev, mMasterMute))) { flags = static_cast(flags | AudioHwDevice::AHWD_CAN_SET_MASTER_MUTE); } mHardwareStatus = AUDIO_HW_IDLE; } audio_module_handle_t handle = nextUniqueId(); mAudioHwDevs.add(handle, new AudioHwDevice(name, dev, flags)); ALOGI("loadHwModule() Loaded %s audio interface from %s (%s) handle %d", name, dev->common.module->name, dev->common.module->id, handle); return handle; } // ---------------------------------------------------------------------------- uint32_t AudioFlinger::getPrimaryOutputSamplingRate() { Mutex::Autolock _l(mLock); PlaybackThread *thread = primaryPlaybackThread_l(); return thread != NULL ? thread->sampleRate() : 0; } size_t AudioFlinger::getPrimaryOutputFrameCount() { Mutex::Autolock _l(mLock); PlaybackThread *thread = primaryPlaybackThread_l(); return thread != NULL ? thread->frameCountHAL() : 0; } // ---------------------------------------------------------------------------- audio_io_handle_t AudioFlinger::openOutput(audio_module_handle_t module, audio_devices_t *pDevices, uint32_t *pSamplingRate, audio_format_t *pFormat, audio_channel_mask_t *pChannelMask, uint32_t *pLatencyMs, audio_output_flags_t flags, const audio_offload_info_t *offloadInfo) { status_t status; PlaybackThread *thread = NULL; struct audio_config config; config.sample_rate = (pSamplingRate != NULL) ? *pSamplingRate : 0; config.channel_mask = (pChannelMask != NULL) ? *pChannelMask : 0; config.format = (pFormat != NULL) ? *pFormat : AUDIO_FORMAT_DEFAULT; if (offloadInfo) { config.offload_info = *offloadInfo; } audio_stream_out_t *outStream = NULL; AudioHwDevice *outHwDev; ALOGV("openOutput(), module %d Device %x, SamplingRate %d, Format %d, Channels %x, flags %x", module, (pDevices != NULL) ? *pDevices : 0, config.sample_rate, config.format, config.channel_mask, flags); if (pDevices == NULL || *pDevices == 0) { return 0; } Mutex::Autolock _l(mLock); outHwDev = findSuitableHwDev_l(module, *pDevices); if (outHwDev == NULL) return 0; audio_hw_device_t *hwDevHal = outHwDev->hwDevice(); audio_io_handle_t id = nextUniqueId(); mHardwareStatus = AUDIO_HW_OUTPUT_OPEN; status = hwDevHal->open_output_stream(hwDevHal, id, *pDevices, (audio_output_flags_t)flags, &config, &outStream); mHardwareStatus = AUDIO_HW_IDLE; ALOGV("openOutput() openOutputStream returned output %p, SamplingRate %d, Format %d, " "Channels %x, status %d", outStream, config.sample_rate, config.format, config.channel_mask, status); if (status == NO_ERROR && outStream != NULL) { AudioStreamOut *output = new AudioStreamOut(outHwDev, outStream); if ((flags & AUDIO_OUTPUT_FLAG_DIRECT) || (config.format != AUDIO_FORMAT_PCM_16_BIT) || (config.channel_mask != AUDIO_CHANNEL_OUT_STEREO)) { thread = new DirectOutputThread(this, output, id, *pDevices); ALOGV("openOutput() created direct output: ID %d thread %p", id, thread); } else { thread = new MixerThread(this, output, id, *pDevices); ALOGV("openOutput() created mixer output: ID %d thread %p", id, thread); } mPlaybackThreads.add(id, thread); if (pSamplingRate != NULL) { *pSamplingRate = config.sample_rate; } if (pFormat != NULL) { *pFormat = config.format; } if (pChannelMask != NULL) { *pChannelMask = config.channel_mask; } if (pLatencyMs != NULL) { *pLatencyMs = thread->latency(); } // notify client processes of the new output creation thread->audioConfigChanged_l(AudioSystem::OUTPUT_OPENED); // the first primary output opened designates the primary hw device if ((mPrimaryHardwareDev == NULL) && (flags & AUDIO_OUTPUT_FLAG_PRIMARY)) { ALOGI("Using module %d has the primary audio interface", module); mPrimaryHardwareDev = outHwDev; AutoMutex lock(mHardwareLock); mHardwareStatus = AUDIO_HW_SET_MODE; hwDevHal->set_mode(hwDevHal, mMode); mHardwareStatus = AUDIO_HW_IDLE; } return id; } return 0; } audio_io_handle_t AudioFlinger::openDuplicateOutput(audio_io_handle_t output1, audio_io_handle_t output2) { Mutex::Autolock _l(mLock); MixerThread *thread1 = checkMixerThread_l(output1); MixerThread *thread2 = checkMixerThread_l(output2); if (thread1 == NULL || thread2 == NULL) { ALOGW("openDuplicateOutput() wrong output mixer type for output %d or %d", output1, output2); return 0; } audio_io_handle_t id = nextUniqueId(); DuplicatingThread *thread = new DuplicatingThread(this, thread1, id); thread->addOutputTrack(thread2); mPlaybackThreads.add(id, thread); // notify client processes of the new output creation thread->audioConfigChanged_l(AudioSystem::OUTPUT_OPENED); return id; } status_t AudioFlinger::closeOutput(audio_io_handle_t output) { return closeOutput_nonvirtual(output); } status_t AudioFlinger::closeOutput_nonvirtual(audio_io_handle_t output) { // keep strong reference on the playback thread so that // it is not destroyed while exit() is executed sp thread; { Mutex::Autolock _l(mLock); thread = checkPlaybackThread_l(output); if (thread == NULL) { return BAD_VALUE; } ALOGV("closeOutput() %d", output); if (thread->type() == ThreadBase::MIXER) { for (size_t i = 0; i < mPlaybackThreads.size(); i++) { if (mPlaybackThreads.valueAt(i)->type() == ThreadBase::DUPLICATING) { DuplicatingThread *dupThread = (DuplicatingThread *)mPlaybackThreads.valueAt(i).get(); dupThread->removeOutputTrack((MixerThread *)thread.get()); } } } audioConfigChanged_l(AudioSystem::OUTPUT_CLOSED, output, NULL); mPlaybackThreads.removeItem(output); } thread->exit(); // The thread entity (active unit of execution) is no longer running here, // but the ThreadBase container still exists. if (thread->type() != ThreadBase::DUPLICATING) { AudioStreamOut *out = thread->clearOutput(); ALOG_ASSERT(out != NULL, "out shouldn't be NULL"); // from now on thread->mOutput is NULL out->hwDev()->close_output_stream(out->hwDev(), out->stream); delete out; } return NO_ERROR; } status_t AudioFlinger::suspendOutput(audio_io_handle_t output) { Mutex::Autolock _l(mLock); PlaybackThread *thread = checkPlaybackThread_l(output); if (thread == NULL) { return BAD_VALUE; } ALOGV("suspendOutput() %d", output); thread->suspend(); return NO_ERROR; } status_t AudioFlinger::restoreOutput(audio_io_handle_t output) { Mutex::Autolock _l(mLock); PlaybackThread *thread = checkPlaybackThread_l(output); if (thread == NULL) { return BAD_VALUE; } ALOGV("restoreOutput() %d", output); thread->restore(); return NO_ERROR; } audio_io_handle_t AudioFlinger::openInput(audio_module_handle_t module, audio_devices_t *pDevices, uint32_t *pSamplingRate, audio_format_t *pFormat, audio_channel_mask_t *pChannelMask) { status_t status; RecordThread *thread = NULL; struct audio_config config; config.sample_rate = (pSamplingRate != NULL) ? *pSamplingRate : 0; config.channel_mask = (pChannelMask != NULL) ? *pChannelMask : 0; config.format = (pFormat != NULL) ? *pFormat : AUDIO_FORMAT_DEFAULT; uint32_t reqSamplingRate = config.sample_rate; audio_format_t reqFormat = config.format; audio_channel_mask_t reqChannels = config.channel_mask; audio_stream_in_t *inStream = NULL; AudioHwDevice *inHwDev; if (pDevices == NULL || *pDevices == 0) { return 0; } Mutex::Autolock _l(mLock); inHwDev = findSuitableHwDev_l(module, *pDevices); if (inHwDev == NULL) return 0; audio_hw_device_t *inHwHal = inHwDev->hwDevice(); audio_io_handle_t id = nextUniqueId(); status = inHwHal->open_input_stream(inHwHal, id, *pDevices, &config, &inStream); ALOGV("openInput() openInputStream returned input %p, SamplingRate %d, Format %d, Channels %x, " "status %d", inStream, config.sample_rate, config.format, config.channel_mask, status); // If the input could not be opened with the requested parameters and we can handle the // conversion internally, try to open again with the proposed parameters. The AudioFlinger can // resample the input and do mono to stereo or stereo to mono conversions on 16 bit PCM inputs. if (status == BAD_VALUE && reqFormat == config.format && config.format == AUDIO_FORMAT_PCM_16_BIT && (config.sample_rate <= 2 * reqSamplingRate) && (popcount(config.channel_mask) <= FCC_2) && (popcount(reqChannels) <= FCC_2)) { ALOGV("openInput() reopening with proposed sampling rate and channel mask"); inStream = NULL; status = inHwHal->open_input_stream(inHwHal, id, *pDevices, &config, &inStream); } if (status == NO_ERROR && inStream != NULL) { #ifdef TEE_SINK // Try to re-use most recently used Pipe to archive a copy of input for dumpsys, // or (re-)create if current Pipe is idle and does not match the new format sp teeSink; enum { TEE_SINK_NO, // don't copy input TEE_SINK_NEW, // copy input using a new pipe TEE_SINK_OLD, // copy input using an existing pipe } kind; NBAIO_Format format = Format_from_SR_C(inStream->common.get_sample_rate(&inStream->common), popcount(inStream->common.get_channels(&inStream->common))); if (!mTeeSinkInputEnabled) { kind = TEE_SINK_NO; } else if (format == Format_Invalid) { kind = TEE_SINK_NO; } else if (mRecordTeeSink == 0) { kind = TEE_SINK_NEW; } else if (mRecordTeeSink->getStrongCount() != 1) { kind = TEE_SINK_NO; } else if (format == mRecordTeeSink->format()) { kind = TEE_SINK_OLD; } else { kind = TEE_SINK_NEW; } switch (kind) { case TEE_SINK_NEW: { Pipe *pipe = new Pipe(mTeeSinkInputFrames, format); size_t numCounterOffers = 0; const NBAIO_Format offers[1] = {format}; ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); PipeReader *pipeReader = new PipeReader(*pipe); numCounterOffers = 0; index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); mRecordTeeSink = pipe; mRecordTeeSource = pipeReader; teeSink = pipe; } break; case TEE_SINK_OLD: teeSink = mRecordTeeSink; break; case TEE_SINK_NO: default: break; } #endif AudioStreamIn *input = new AudioStreamIn(inHwDev, inStream); // Start record thread // RecorThread require both input and output device indication to forward to audio // pre processing modules thread = new RecordThread(this, input, reqSamplingRate, reqChannels, id, primaryOutputDevice_l(), *pDevices #ifdef TEE_SINK , teeSink #endif ); mRecordThreads.add(id, thread); ALOGV("openInput() created record thread: ID %d thread %p", id, thread); if (pSamplingRate != NULL) { *pSamplingRate = reqSamplingRate; } if (pFormat != NULL) { *pFormat = config.format; } if (pChannelMask != NULL) { *pChannelMask = reqChannels; } // notify client processes of the new input creation thread->audioConfigChanged_l(AudioSystem::INPUT_OPENED); return id; } return 0; } status_t AudioFlinger::closeInput(audio_io_handle_t input) { return closeInput_nonvirtual(input); } status_t AudioFlinger::closeInput_nonvirtual(audio_io_handle_t input) { // keep strong reference on the record thread so that // it is not destroyed while exit() is executed sp thread; { Mutex::Autolock _l(mLock); thread = checkRecordThread_l(input); if (thread == 0) { return BAD_VALUE; } ALOGV("closeInput() %d", input); audioConfigChanged_l(AudioSystem::INPUT_CLOSED, input, NULL); mRecordThreads.removeItem(input); } thread->exit(); // The thread entity (active unit of execution) is no longer running here, // but the ThreadBase container still exists. AudioStreamIn *in = thread->clearInput(); ALOG_ASSERT(in != NULL, "in shouldn't be NULL"); // from now on thread->mInput is NULL in->hwDev()->close_input_stream(in->hwDev(), in->stream); delete in; return NO_ERROR; } status_t AudioFlinger::setStreamOutput(audio_stream_type_t stream, audio_io_handle_t output) { Mutex::Autolock _l(mLock); ALOGV("setStreamOutput() stream %d to output %d", stream, output); for (size_t i = 0; i < mPlaybackThreads.size(); i++) { PlaybackThread *thread = mPlaybackThreads.valueAt(i).get(); thread->invalidateTracks(stream); } return NO_ERROR; } int AudioFlinger::newAudioSessionId() { return nextUniqueId(); } void AudioFlinger::acquireAudioSessionId(int audioSession) { Mutex::Autolock _l(mLock); pid_t caller = IPCThreadState::self()->getCallingPid(); ALOGV("acquiring %d from %d", audioSession, caller); size_t num = mAudioSessionRefs.size(); for (size_t i = 0; i< num; i++) { AudioSessionRef *ref = mAudioSessionRefs.editItemAt(i); if (ref->mSessionid == audioSession && ref->mPid == caller) { ref->mCnt++; ALOGV(" incremented refcount to %d", ref->mCnt); return; } } mAudioSessionRefs.push(new AudioSessionRef(audioSession, caller)); ALOGV(" added new entry for %d", audioSession); } void AudioFlinger::releaseAudioSessionId(int audioSession) { Mutex::Autolock _l(mLock); pid_t caller = IPCThreadState::self()->getCallingPid(); ALOGV("releasing %d from %d", audioSession, caller); size_t num = mAudioSessionRefs.size(); for (size_t i = 0; i< num; i++) { AudioSessionRef *ref = mAudioSessionRefs.itemAt(i); if (ref->mSessionid == audioSession && ref->mPid == caller) { ref->mCnt--; ALOGV(" decremented refcount to %d", ref->mCnt); if (ref->mCnt == 0) { mAudioSessionRefs.removeAt(i); delete ref; purgeStaleEffects_l(); } return; } } ALOGW("session id %d not found for pid %d", audioSession, caller); } void AudioFlinger::purgeStaleEffects_l() { ALOGV("purging stale effects"); Vector< sp > chains; for (size_t i = 0; i < mPlaybackThreads.size(); i++) { sp t = mPlaybackThreads.valueAt(i); for (size_t j = 0; j < t->mEffectChains.size(); j++) { sp ec = t->mEffectChains[j]; if (ec->sessionId() > AUDIO_SESSION_OUTPUT_MIX) { chains.push(ec); } } } for (size_t i = 0; i < mRecordThreads.size(); i++) { sp t = mRecordThreads.valueAt(i); for (size_t j = 0; j < t->mEffectChains.size(); j++) { sp ec = t->mEffectChains[j]; chains.push(ec); } } for (size_t i = 0; i < chains.size(); i++) { sp ec = chains[i]; int sessionid = ec->sessionId(); sp t = ec->mThread.promote(); if (t == 0) { continue; } size_t numsessionrefs = mAudioSessionRefs.size(); bool found = false; for (size_t k = 0; k < numsessionrefs; k++) { AudioSessionRef *ref = mAudioSessionRefs.itemAt(k); if (ref->mSessionid == sessionid) { ALOGV(" session %d still exists for %d with %d refs", sessionid, ref->mPid, ref->mCnt); found = true; break; } } if (!found) { Mutex::Autolock _l (t->mLock); // remove all effects from the chain while (ec->mEffects.size()) { sp effect = ec->mEffects[0]; effect->unPin(); t->removeEffect_l(effect); if (effect->purgeHandles()) { t->checkSuspendOnEffectEnabled_l(effect, false, effect->sessionId()); } AudioSystem::unregisterEffect(effect->id()); } } } return; } // checkPlaybackThread_l() must be called with AudioFlinger::mLock held AudioFlinger::PlaybackThread *AudioFlinger::checkPlaybackThread_l(audio_io_handle_t output) const { return mPlaybackThreads.valueFor(output).get(); } // checkMixerThread_l() must be called with AudioFlinger::mLock held AudioFlinger::MixerThread *AudioFlinger::checkMixerThread_l(audio_io_handle_t output) const { PlaybackThread *thread = checkPlaybackThread_l(output); return thread != NULL && thread->type() != ThreadBase::DIRECT ? (MixerThread *) thread : NULL; } // checkRecordThread_l() must be called with AudioFlinger::mLock held AudioFlinger::RecordThread *AudioFlinger::checkRecordThread_l(audio_io_handle_t input) const { return mRecordThreads.valueFor(input).get(); } uint32_t AudioFlinger::nextUniqueId() { return android_atomic_inc(&mNextUniqueId); } AudioFlinger::PlaybackThread *AudioFlinger::primaryPlaybackThread_l() const { for (size_t i = 0; i < mPlaybackThreads.size(); i++) { PlaybackThread *thread = mPlaybackThreads.valueAt(i).get(); AudioStreamOut *output = thread->getOutput(); if (output != NULL && output->audioHwDev == mPrimaryHardwareDev) { return thread; } } return NULL; } audio_devices_t AudioFlinger::primaryOutputDevice_l() const { PlaybackThread *thread = primaryPlaybackThread_l(); if (thread == NULL) { return 0; } return thread->outDevice(); } sp AudioFlinger::createSyncEvent(AudioSystem::sync_event_t type, int triggerSession, int listenerSession, sync_event_callback_t callBack, void *cookie) { Mutex::Autolock _l(mLock); sp event = new SyncEvent(type, triggerSession, listenerSession, callBack, cookie); status_t playStatus = NAME_NOT_FOUND; status_t recStatus = NAME_NOT_FOUND; for (size_t i = 0; i < mPlaybackThreads.size(); i++) { playStatus = mPlaybackThreads.valueAt(i)->setSyncEvent(event); if (playStatus == NO_ERROR) { return event; } } for (size_t i = 0; i < mRecordThreads.size(); i++) { recStatus = mRecordThreads.valueAt(i)->setSyncEvent(event); if (recStatus == NO_ERROR) { return event; } } if (playStatus == NAME_NOT_FOUND || recStatus == NAME_NOT_FOUND) { mPendingSyncEvents.add(event); } else { ALOGV("createSyncEvent() invalid event %d", event->type()); event.clear(); } return event; } // ---------------------------------------------------------------------------- // Effect management // ---------------------------------------------------------------------------- status_t AudioFlinger::queryNumberEffects(uint32_t *numEffects) const { Mutex::Autolock _l(mLock); return EffectQueryNumberEffects(numEffects); } status_t AudioFlinger::queryEffect(uint32_t index, effect_descriptor_t *descriptor) const { Mutex::Autolock _l(mLock); return EffectQueryEffect(index, descriptor); } status_t AudioFlinger::getEffectDescriptor(const effect_uuid_t *pUuid, effect_descriptor_t *descriptor) const { Mutex::Autolock _l(mLock); return EffectGetDescriptor(pUuid, descriptor); } sp AudioFlinger::createEffect( effect_descriptor_t *pDesc, const sp& effectClient, int32_t priority, audio_io_handle_t io, int sessionId, status_t *status, int *id, int *enabled) { status_t lStatus = NO_ERROR; sp handle; effect_descriptor_t desc; pid_t pid = IPCThreadState::self()->getCallingPid(); ALOGV("createEffect pid %d, effectClient %p, priority %d, sessionId %d, io %d", pid, effectClient.get(), priority, sessionId, io); if (pDesc == NULL) { lStatus = BAD_VALUE; goto Exit; } // check audio settings permission for global effects if (sessionId == AUDIO_SESSION_OUTPUT_MIX && !settingsAllowed()) { lStatus = PERMISSION_DENIED; goto Exit; } // Session AUDIO_SESSION_OUTPUT_STAGE is reserved for output stage effects // that can only be created by audio policy manager (running in same process) if (sessionId == AUDIO_SESSION_OUTPUT_STAGE && getpid_cached != pid) { lStatus = PERMISSION_DENIED; goto Exit; } if (io == 0) { if (sessionId == AUDIO_SESSION_OUTPUT_STAGE) { // output must be specified by AudioPolicyManager when using session // AUDIO_SESSION_OUTPUT_STAGE lStatus = BAD_VALUE; goto Exit; } else if (sessionId == AUDIO_SESSION_OUTPUT_MIX) { // if the output returned by getOutputForEffect() is removed before we lock the // mutex below, the call to checkPlaybackThread_l(io) below will detect it // and we will exit safely io = AudioSystem::getOutputForEffect(&desc); } } { Mutex::Autolock _l(mLock); if (!EffectIsNullUuid(&pDesc->uuid)) { // if uuid is specified, request effect descriptor lStatus = EffectGetDescriptor(&pDesc->uuid, &desc); if (lStatus < 0) { ALOGW("createEffect() error %d from EffectGetDescriptor", lStatus); goto Exit; } } else { // if uuid is not specified, look for an available implementation // of the required type in effect factory if (EffectIsNullUuid(&pDesc->type)) { ALOGW("createEffect() no effect type"); lStatus = BAD_VALUE; goto Exit; } uint32_t numEffects = 0; effect_descriptor_t d; d.flags = 0; // prevent compiler warning bool found = false; lStatus = EffectQueryNumberEffects(&numEffects); if (lStatus < 0) { ALOGW("createEffect() error %d from EffectQueryNumberEffects", lStatus); goto Exit; } for (uint32_t i = 0; i < numEffects; i++) { lStatus = EffectQueryEffect(i, &desc); if (lStatus < 0) { ALOGW("createEffect() error %d from EffectQueryEffect", lStatus); continue; } if (memcmp(&desc.type, &pDesc->type, sizeof(effect_uuid_t)) == 0) { // If matching type found save effect descriptor. If the session is // 0 and the effect is not auxiliary, continue enumeration in case // an auxiliary version of this effect type is available found = true; d = desc; if (sessionId != AUDIO_SESSION_OUTPUT_MIX || (desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) { break; } } } if (!found) { lStatus = BAD_VALUE; ALOGW("createEffect() effect not found"); goto Exit; } // For same effect type, chose auxiliary version over insert version if // connect to output mix (Compliance to OpenSL ES) if (sessionId == AUDIO_SESSION_OUTPUT_MIX && (d.flags & EFFECT_FLAG_TYPE_MASK) != EFFECT_FLAG_TYPE_AUXILIARY) { desc = d; } } // Do not allow auxiliary effects on a session different from 0 (output mix) if (sessionId != AUDIO_SESSION_OUTPUT_MIX && (desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) { lStatus = INVALID_OPERATION; goto Exit; } // check recording permission for visualizer if ((memcmp(&desc.type, SL_IID_VISUALIZATION, sizeof(effect_uuid_t)) == 0) && !recordingAllowed()) { lStatus = PERMISSION_DENIED; goto Exit; } // return effect descriptor *pDesc = desc; // If output is not specified try to find a matching audio session ID in one of the // output threads. // If output is 0 here, sessionId is neither SESSION_OUTPUT_STAGE nor SESSION_OUTPUT_MIX // because of code checking output when entering the function. // Note: io is never 0 when creating an effect on an input if (io == 0) { // look for the thread where the specified audio session is present for (size_t i = 0; i < mPlaybackThreads.size(); i++) { if (mPlaybackThreads.valueAt(i)->hasAudioSession(sessionId) != 0) { io = mPlaybackThreads.keyAt(i); break; } } if (io == 0) { for (size_t i = 0; i < mRecordThreads.size(); i++) { if (mRecordThreads.valueAt(i)->hasAudioSession(sessionId) != 0) { io = mRecordThreads.keyAt(i); break; } } } // If no output thread contains the requested session ID, default to // first output. The effect chain will be moved to the correct output // thread when a track with the same session ID is created if (io == 0 && mPlaybackThreads.size()) { io = mPlaybackThreads.keyAt(0); } ALOGV("createEffect() got io %d for effect %s", io, desc.name); } ThreadBase *thread = checkRecordThread_l(io); if (thread == NULL) { thread = checkPlaybackThread_l(io); if (thread == NULL) { ALOGE("createEffect() unknown output thread"); lStatus = BAD_VALUE; goto Exit; } } sp client = registerPid_l(pid); // create effect on selected output thread handle = thread->createEffect_l(client, effectClient, priority, sessionId, &desc, enabled, &lStatus); if (handle != 0 && id != NULL) { *id = handle->id(); } } Exit: if (status != NULL) { *status = lStatus; } return handle; } status_t AudioFlinger::moveEffects(int sessionId, audio_io_handle_t srcOutput, audio_io_handle_t dstOutput) { ALOGV("moveEffects() session %d, srcOutput %d, dstOutput %d", sessionId, srcOutput, dstOutput); Mutex::Autolock _l(mLock); if (srcOutput == dstOutput) { ALOGW("moveEffects() same dst and src outputs %d", dstOutput); return NO_ERROR; } PlaybackThread *srcThread = checkPlaybackThread_l(srcOutput); if (srcThread == NULL) { ALOGW("moveEffects() bad srcOutput %d", srcOutput); return BAD_VALUE; } PlaybackThread *dstThread = checkPlaybackThread_l(dstOutput); if (dstThread == NULL) { ALOGW("moveEffects() bad dstOutput %d", dstOutput); return BAD_VALUE; } Mutex::Autolock _dl(dstThread->mLock); Mutex::Autolock _sl(srcThread->mLock); moveEffectChain_l(sessionId, srcThread, dstThread, false); return NO_ERROR; } // moveEffectChain_l must be called with both srcThread and dstThread mLocks held status_t AudioFlinger::moveEffectChain_l(int sessionId, AudioFlinger::PlaybackThread *srcThread, AudioFlinger::PlaybackThread *dstThread, bool reRegister) { ALOGV("moveEffectChain_l() session %d from thread %p to thread %p", sessionId, srcThread, dstThread); sp chain = srcThread->getEffectChain_l(sessionId); if (chain == 0) { ALOGW("moveEffectChain_l() effect chain for session %d not on source thread %p", sessionId, srcThread); return INVALID_OPERATION; } // remove chain first. This is useful only if reconfiguring effect chain on same output thread, // so that a new chain is created with correct parameters when first effect is added. This is // otherwise unnecessary as removeEffect_l() will remove the chain when last effect is // removed. srcThread->removeEffectChain_l(chain); // transfer all effects one by one so that new effect chain is created on new thread with // correct buffer sizes and audio parameters and effect engines reconfigured accordingly audio_io_handle_t dstOutput = dstThread->id(); sp dstChain; uint32_t strategy = 0; // prevent compiler warning sp effect = chain->getEffectFromId_l(0); while (effect != 0) { srcThread->removeEffect_l(effect); dstThread->addEffect_l(effect); // removeEffect_l() has stopped the effect if it was active so it must be restarted if (effect->state() == EffectModule::ACTIVE || effect->state() == EffectModule::STOPPING) { effect->start(); } // if the move request is not received from audio policy manager, the effect must be // re-registered with the new strategy and output if (dstChain == 0) { dstChain = effect->chain().promote(); if (dstChain == 0) { ALOGW("moveEffectChain_l() cannot get chain from effect %p", effect.get()); srcThread->addEffect_l(effect); return NO_INIT; } strategy = dstChain->strategy(); } if (reRegister) { AudioSystem::unregisterEffect(effect->id()); AudioSystem::registerEffect(&effect->desc(), dstOutput, strategy, sessionId, effect->id()); } effect = chain->getEffectFromId_l(0); } return NO_ERROR; } struct Entry { #define MAX_NAME 32 // %Y%m%d%H%M%S_%d.wav char mName[MAX_NAME]; }; int comparEntry(const void *p1, const void *p2) { return strcmp(((const Entry *) p1)->mName, ((const Entry *) p2)->mName); } #ifdef TEE_SINK void AudioFlinger::dumpTee(int fd, const sp& source, audio_io_handle_t id) { NBAIO_Source *teeSource = source.get(); if (teeSource != NULL) { // .wav rotation // There is a benign race condition if 2 threads call this simultaneously. // They would both traverse the directory, but the result would simply be // failures at unlink() which are ignored. It's also unlikely since // normally dumpsys is only done by bugreport or from the command line. char teePath[32+256]; strcpy(teePath, "/data/misc/media"); size_t teePathLen = strlen(teePath); DIR *dir = opendir(teePath); teePath[teePathLen++] = '/'; if (dir != NULL) { #define MAX_SORT 20 // number of entries to sort #define MAX_KEEP 10 // number of entries to keep struct Entry entries[MAX_SORT]; size_t entryCount = 0; while (entryCount < MAX_SORT) { struct dirent de; struct dirent *result = NULL; int rc = readdir_r(dir, &de, &result); if (rc != 0) { ALOGW("readdir_r failed %d", rc); break; } if (result == NULL) { break; } if (result != &de) { ALOGW("readdir_r returned unexpected result %p != %p", result, &de); break; } // ignore non .wav file entries size_t nameLen = strlen(de.d_name); if (nameLen <= 4 || nameLen >= MAX_NAME || strcmp(&de.d_name[nameLen - 4], ".wav")) { continue; } strcpy(entries[entryCount++].mName, de.d_name); } (void) closedir(dir); if (entryCount > MAX_KEEP) { qsort(entries, entryCount, sizeof(Entry), comparEntry); for (size_t i = 0; i < entryCount - MAX_KEEP; ++i) { strcpy(&teePath[teePathLen], entries[i].mName); (void) unlink(teePath); } } } else { if (fd >= 0) { fdprintf(fd, "unable to rotate tees in %s: %s\n", teePath, strerror(errno)); } } char teeTime[16]; struct timeval tv; gettimeofday(&tv, NULL); struct tm tm; localtime_r(&tv.tv_sec, &tm); strftime(teeTime, sizeof(teeTime), "%Y%m%d%H%M%S", &tm); snprintf(&teePath[teePathLen], sizeof(teePath) - teePathLen, "%s_%d.wav", teeTime, id); // if 2 dumpsys are done within 1 second, and rotation didn't work, then discard 2nd int teeFd = open(teePath, O_WRONLY | O_CREAT | O_EXCL | O_NOFOLLOW, S_IRUSR | S_IWUSR); if (teeFd >= 0) { char wavHeader[44]; memcpy(wavHeader, "RIFF\0\0\0\0WAVEfmt \20\0\0\0\1\0\2\0\104\254\0\0\0\0\0\0\4\0\20\0data\0\0\0\0", sizeof(wavHeader)); NBAIO_Format format = teeSource->format(); unsigned channelCount = Format_channelCount(format); ALOG_ASSERT(channelCount <= FCC_2); uint32_t sampleRate = Format_sampleRate(format); wavHeader[22] = channelCount; // number of channels wavHeader[24] = sampleRate; // sample rate wavHeader[25] = sampleRate >> 8; wavHeader[32] = channelCount * 2; // block alignment write(teeFd, wavHeader, sizeof(wavHeader)); size_t total = 0; bool firstRead = true; for (;;) { #define TEE_SINK_READ 1024 short buffer[TEE_SINK_READ * FCC_2]; size_t count = TEE_SINK_READ; ssize_t actual = teeSource->read(buffer, count, AudioBufferProvider::kInvalidPTS); bool wasFirstRead = firstRead; firstRead = false; if (actual <= 0) { if (actual == (ssize_t) OVERRUN && wasFirstRead) { continue; } break; } ALOG_ASSERT(actual <= (ssize_t)count); write(teeFd, buffer, actual * channelCount * sizeof(short)); total += actual; } lseek(teeFd, (off_t) 4, SEEK_SET); uint32_t temp = 44 + total * channelCount * sizeof(short) - 8; write(teeFd, &temp, sizeof(temp)); lseek(teeFd, (off_t) 40, SEEK_SET); temp = total * channelCount * sizeof(short); write(teeFd, &temp, sizeof(temp)); close(teeFd); if (fd >= 0) { fdprintf(fd, "tee copied to %s\n", teePath); } } else { if (fd >= 0) { fdprintf(fd, "unable to create tee %s: %s\n", teePath, strerror(errno)); } } } } #endif // ---------------------------------------------------------------------------- status_t AudioFlinger::onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { return BnAudioFlinger::onTransact(code, data, reply, flags); } }; // namespace android