/* ** ** Copyright 2007, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "AudioMixer" //#define LOG_NDEBUG 0 #include "Configuration.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "AudioMixer.h" namespace android { // ---------------------------------------------------------------------------- AudioMixer::DownmixerBufferProvider::DownmixerBufferProvider() : AudioBufferProvider(), mTrackBufferProvider(NULL), mDownmixHandle(NULL) { } AudioMixer::DownmixerBufferProvider::~DownmixerBufferProvider() { ALOGV("AudioMixer deleting DownmixerBufferProvider (%p)", this); EffectRelease(mDownmixHandle); } status_t AudioMixer::DownmixerBufferProvider::getNextBuffer(AudioBufferProvider::Buffer *pBuffer, int64_t pts) { //ALOGV("DownmixerBufferProvider::getNextBuffer()"); if (mTrackBufferProvider != NULL) { status_t res = mTrackBufferProvider->getNextBuffer(pBuffer, pts); if (res == OK) { mDownmixConfig.inputCfg.buffer.frameCount = pBuffer->frameCount; mDownmixConfig.inputCfg.buffer.raw = pBuffer->raw; mDownmixConfig.outputCfg.buffer.frameCount = pBuffer->frameCount; mDownmixConfig.outputCfg.buffer.raw = mDownmixConfig.inputCfg.buffer.raw; // in-place so overwrite the buffer contents, has been set in prepareTrackForDownmix() //mDownmixConfig.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_WRITE; res = (*mDownmixHandle)->process(mDownmixHandle, &mDownmixConfig.inputCfg.buffer, &mDownmixConfig.outputCfg.buffer); //ALOGV("getNextBuffer is downmixing"); } return res; } else { ALOGE("DownmixerBufferProvider::getNextBuffer() error: NULL track buffer provider"); return NO_INIT; } } void AudioMixer::DownmixerBufferProvider::releaseBuffer(AudioBufferProvider::Buffer *pBuffer) { //ALOGV("DownmixerBufferProvider::releaseBuffer()"); if (mTrackBufferProvider != NULL) { mTrackBufferProvider->releaseBuffer(pBuffer); } else { ALOGE("DownmixerBufferProvider::releaseBuffer() error: NULL track buffer provider"); } } // ---------------------------------------------------------------------------- bool AudioMixer::sIsMultichannelCapable = false; effect_descriptor_t AudioMixer::sDwnmFxDesc; // Ensure mConfiguredNames bitmask is initialized properly on all architectures. // The value of 1 << x is undefined in C when x >= 32. AudioMixer::AudioMixer(size_t frameCount, uint32_t sampleRate, uint32_t maxNumTracks) : mTrackNames(0), mConfiguredNames((maxNumTracks >= 32 ? 0 : 1 << maxNumTracks) - 1), mSampleRate(sampleRate) { // AudioMixer is not yet capable of multi-channel beyond stereo COMPILE_TIME_ASSERT_FUNCTION_SCOPE(2 == MAX_NUM_CHANNELS); ALOG_ASSERT(maxNumTracks <= MAX_NUM_TRACKS, "maxNumTracks %u > MAX_NUM_TRACKS %u", maxNumTracks, MAX_NUM_TRACKS); // AudioMixer is not yet capable of more than 32 active track inputs ALOG_ASSERT(32 >= MAX_NUM_TRACKS, "bad MAX_NUM_TRACKS %d", MAX_NUM_TRACKS); // AudioMixer is not yet capable of multi-channel output beyond stereo ALOG_ASSERT(2 == MAX_NUM_CHANNELS, "bad MAX_NUM_CHANNELS %d", MAX_NUM_CHANNELS); pthread_once(&sOnceControl, &sInitRoutine); mState.enabledTracks= 0; mState.needsChanged = 0; mState.frameCount = frameCount; mState.hook = process__nop; mState.outputTemp = NULL; mState.resampleTemp = NULL; mState.mLog = &mDummyLog; // mState.reserved // FIXME Most of the following initialization is probably redundant since // tracks[i] should only be referenced if (mTrackNames & (1 << i)) != 0 // and mTrackNames is initially 0. However, leave it here until that's verified. track_t* t = mState.tracks; for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) { t->resampler = NULL; t->downmixerBufferProvider = NULL; t++; } } AudioMixer::~AudioMixer() { track_t* t = mState.tracks; for (unsigned i=0 ; i < MAX_NUM_TRACKS ; i++) { delete t->resampler; delete t->downmixerBufferProvider; t++; } delete [] mState.outputTemp; delete [] mState.resampleTemp; } void AudioMixer::setLog(NBLog::Writer *log) { mState.mLog = log; } int AudioMixer::getTrackName(audio_channel_mask_t channelMask, int sessionId) { uint32_t names = (~mTrackNames) & mConfiguredNames; if (names != 0) { int n = __builtin_ctz(names); ALOGV("add track (%d)", n); mTrackNames |= 1 << n; // assume default parameters for the track, except where noted below track_t* t = &mState.tracks[n]; t->needs = 0; t->volume[0] = UNITY_GAIN; t->volume[1] = UNITY_GAIN; // no initialization needed // t->prevVolume[0] // t->prevVolume[1] t->volumeInc[0] = 0; t->volumeInc[1] = 0; t->auxLevel = 0; t->auxInc = 0; // no initialization needed // t->prevAuxLevel // t->frameCount t->channelCount = 2; t->enabled = false; t->format = 16; t->channelMask = AUDIO_CHANNEL_OUT_STEREO; t->sessionId = sessionId; // setBufferProvider(name, AudioBufferProvider *) is required before enable(name) t->bufferProvider = NULL; t->buffer.raw = NULL; // no initialization needed // t->buffer.frameCount t->hook = NULL; t->in = NULL; t->resampler = NULL; t->sampleRate = mSampleRate; // setParameter(name, TRACK, MAIN_BUFFER, mixBuffer) is required before enable(name) t->mainBuffer = NULL; t->auxBuffer = NULL; t->downmixerBufferProvider = NULL; status_t status = initTrackDownmix(&mState.tracks[n], n, channelMask); if (status == OK) { return TRACK0 + n; } ALOGE("AudioMixer::getTrackName(0x%x) failed, error preparing track for downmix", channelMask); } return -1; } void AudioMixer::invalidateState(uint32_t mask) { if (mask != 0) { mState.needsChanged |= mask; mState.hook = process__validate; } } status_t AudioMixer::initTrackDownmix(track_t* pTrack, int trackNum, audio_channel_mask_t mask) { uint32_t channelCount = popcount(mask); ALOG_ASSERT((channelCount <= MAX_NUM_CHANNELS_TO_DOWNMIX) && channelCount); status_t status = OK; if (channelCount > MAX_NUM_CHANNELS) { pTrack->channelMask = mask; pTrack->channelCount = channelCount; ALOGV("initTrackDownmix(track=%d, mask=0x%x) calls prepareTrackForDownmix()", trackNum, mask); status = prepareTrackForDownmix(pTrack, trackNum); } else { unprepareTrackForDownmix(pTrack, trackNum); } return status; } void AudioMixer::unprepareTrackForDownmix(track_t* pTrack, int trackName) { ALOGV("AudioMixer::unprepareTrackForDownmix(%d)", trackName); if (pTrack->downmixerBufferProvider != NULL) { // this track had previously been configured with a downmixer, delete it ALOGV(" deleting old downmixer"); pTrack->bufferProvider = pTrack->downmixerBufferProvider->mTrackBufferProvider; delete pTrack->downmixerBufferProvider; pTrack->downmixerBufferProvider = NULL; } else { ALOGV(" nothing to do, no downmixer to delete"); } } status_t AudioMixer::prepareTrackForDownmix(track_t* pTrack, int trackName) { ALOGV("AudioMixer::prepareTrackForDownmix(%d) with mask 0x%x", trackName, pTrack->channelMask); // discard the previous downmixer if there was one unprepareTrackForDownmix(pTrack, trackName); DownmixerBufferProvider* pDbp = new DownmixerBufferProvider(); int32_t status; if (!sIsMultichannelCapable) { ALOGE("prepareTrackForDownmix(%d) fails: mixer doesn't support multichannel content", trackName); goto noDownmixForActiveTrack; } if (EffectCreate(&sDwnmFxDesc.uuid, pTrack->sessionId /*sessionId*/, -2 /*ioId not relevant here, using random value*/, &pDbp->mDownmixHandle/*pHandle*/) != 0) { ALOGE("prepareTrackForDownmix(%d) fails: error creating downmixer effect", trackName); goto noDownmixForActiveTrack; } // channel input configuration will be overridden per-track pDbp->mDownmixConfig.inputCfg.channels = pTrack->channelMask; pDbp->mDownmixConfig.outputCfg.channels = AUDIO_CHANNEL_OUT_STEREO; pDbp->mDownmixConfig.inputCfg.format = AUDIO_FORMAT_PCM_16_BIT; pDbp->mDownmixConfig.outputCfg.format = AUDIO_FORMAT_PCM_16_BIT; pDbp->mDownmixConfig.inputCfg.samplingRate = pTrack->sampleRate; pDbp->mDownmixConfig.outputCfg.samplingRate = pTrack->sampleRate; pDbp->mDownmixConfig.inputCfg.accessMode = EFFECT_BUFFER_ACCESS_READ; pDbp->mDownmixConfig.outputCfg.accessMode = EFFECT_BUFFER_ACCESS_WRITE; // input and output buffer provider, and frame count will not be used as the downmix effect // process() function is called directly (see DownmixerBufferProvider::getNextBuffer()) pDbp->mDownmixConfig.inputCfg.mask = EFFECT_CONFIG_SMP_RATE | EFFECT_CONFIG_CHANNELS | EFFECT_CONFIG_FORMAT | EFFECT_CONFIG_ACC_MODE; pDbp->mDownmixConfig.outputCfg.mask = pDbp->mDownmixConfig.inputCfg.mask; {// scope for local variables that are not used in goto label "noDownmixForActiveTrack" int cmdStatus; uint32_t replySize = sizeof(int); // Configure and enable downmixer status = (*pDbp->mDownmixHandle)->command(pDbp->mDownmixHandle, EFFECT_CMD_SET_CONFIG /*cmdCode*/, sizeof(effect_config_t) /*cmdSize*/, &pDbp->mDownmixConfig /*pCmdData*/, &replySize /*replySize*/, &cmdStatus /*pReplyData*/); if ((status != 0) || (cmdStatus != 0)) { ALOGE("error %d while configuring downmixer for track %d", status, trackName); goto noDownmixForActiveTrack; } replySize = sizeof(int); status = (*pDbp->mDownmixHandle)->command(pDbp->mDownmixHandle, EFFECT_CMD_ENABLE /*cmdCode*/, 0 /*cmdSize*/, NULL /*pCmdData*/, &replySize /*replySize*/, &cmdStatus /*pReplyData*/); if ((status != 0) || (cmdStatus != 0)) { ALOGE("error %d while enabling downmixer for track %d", status, trackName); goto noDownmixForActiveTrack; } // Set downmix type // parameter size rounded for padding on 32bit boundary const int psizePadded = ((sizeof(downmix_params_t) - 1)/sizeof(int) + 1) * sizeof(int); const int downmixParamSize = sizeof(effect_param_t) + psizePadded + sizeof(downmix_type_t); effect_param_t * const param = (effect_param_t *) malloc(downmixParamSize); param->psize = sizeof(downmix_params_t); const downmix_params_t downmixParam = DOWNMIX_PARAM_TYPE; memcpy(param->data, &downmixParam, param->psize); const downmix_type_t downmixType = DOWNMIX_TYPE_FOLD; param->vsize = sizeof(downmix_type_t); memcpy(param->data + psizePadded, &downmixType, param->vsize); status = (*pDbp->mDownmixHandle)->command(pDbp->mDownmixHandle, EFFECT_CMD_SET_PARAM /* cmdCode */, downmixParamSize/* cmdSize */, param /*pCmndData*/, &replySize /*replySize*/, &cmdStatus /*pReplyData*/); free(param); if ((status != 0) || (cmdStatus != 0)) { ALOGE("error %d while setting downmix type for track %d", status, trackName); goto noDownmixForActiveTrack; } else { ALOGV("downmix type set to %d for track %d", (int) downmixType, trackName); } }// end of scope for local variables that are not used in goto label "noDownmixForActiveTrack" // initialization successful: // - keep track of the real buffer provider in case it was set before pDbp->mTrackBufferProvider = pTrack->bufferProvider; // - we'll use the downmix effect integrated inside this // track's buffer provider, and we'll use it as the track's buffer provider pTrack->downmixerBufferProvider = pDbp; pTrack->bufferProvider = pDbp; return NO_ERROR; noDownmixForActiveTrack: delete pDbp; pTrack->downmixerBufferProvider = NULL; return NO_INIT; } void AudioMixer::deleteTrackName(int name) { ALOGV("AudioMixer::deleteTrackName(%d)", name); name -= TRACK0; ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name); ALOGV("deleteTrackName(%d)", name); track_t& track(mState.tracks[ name ]); if (track.enabled) { track.enabled = false; invalidateState(1< 0, "bad sample rate %d", valueInt); if (track.setResampler(uint32_t(valueInt), mSampleRate)) { ALOGV("setParameter(RESAMPLE, SAMPLE_RATE, %u)", uint32_t(valueInt)); invalidateState(1 << name); } break; case RESET: track.resetResampler(); invalidateState(1 << name); break; case REMOVE: delete track.resampler; track.resampler = NULL; track.sampleRate = mSampleRate; invalidateState(1 << name); break; default: LOG_FATAL("bad param"); } break; case RAMP_VOLUME: case VOLUME: switch (param) { case VOLUME0: case VOLUME1: if (track.volume[param-VOLUME0] != valueInt) { ALOGV("setParameter(VOLUME, VOLUME0/1: %04x)", valueInt); track.prevVolume[param-VOLUME0] = track.volume[param-VOLUME0] << 16; track.volume[param-VOLUME0] = valueInt; if (target == VOLUME) { track.prevVolume[param-VOLUME0] = valueInt << 16; track.volumeInc[param-VOLUME0] = 0; } else { int32_t d = (valueInt<<16) - track.prevVolume[param-VOLUME0]; int32_t volInc = d / int32_t(mState.frameCount); track.volumeInc[param-VOLUME0] = volInc; if (volInc == 0) { track.prevVolume[param-VOLUME0] = valueInt << 16; } } invalidateState(1 << name); } break; case AUXLEVEL: //ALOG_ASSERT(0 <= valueInt && valueInt <= MAX_GAIN_INT, "bad aux level %d", valueInt); if (track.auxLevel != valueInt) { ALOGV("setParameter(VOLUME, AUXLEVEL: %04x)", valueInt); track.prevAuxLevel = track.auxLevel << 16; track.auxLevel = valueInt; if (target == VOLUME) { track.prevAuxLevel = valueInt << 16; track.auxInc = 0; } else { int32_t d = (valueInt<<16) - track.prevAuxLevel; int32_t volInc = d / int32_t(mState.frameCount); track.auxInc = volInc; if (volInc == 0) { track.prevAuxLevel = valueInt << 16; } } invalidateState(1 << name); } break; default: LOG_FATAL("bad param"); } break; default: LOG_FATAL("bad target"); } } bool AudioMixer::track_t::setResampler(uint32_t value, uint32_t devSampleRate) { if (value != devSampleRate || resampler != NULL) { if (sampleRate != value) { sampleRate = value; if (resampler == NULL) { ALOGV("creating resampler from track %d Hz to device %d Hz", value, devSampleRate); AudioResampler::src_quality quality; // force lowest quality level resampler if use case isn't music or video // FIXME this is flawed for dynamic sample rates, as we choose the resampler // quality level based on the initial ratio, but that could change later. // Should have a way to distinguish tracks with static ratios vs. dynamic ratios. if (!((value == 44100 && devSampleRate == 48000) || (value == 48000 && devSampleRate == 44100))) { quality = AudioResampler::LOW_QUALITY; } else { quality = AudioResampler::DEFAULT_QUALITY; } resampler = AudioResampler::create( format, // the resampler sees the number of channels after the downmixer, if any (int) (downmixerBufferProvider != NULL ? MAX_NUM_CHANNELS : channelCount), devSampleRate, quality); resampler->setLocalTimeFreq(sLocalTimeFreq); } return true; } } return false; } inline void AudioMixer::track_t::adjustVolumeRamp(bool aux) { for (uint32_t i=0 ; i0) && (((prevVolume[i]+volumeInc[i])>>16) >= volume[i])) || ((volumeInc[i]<0) && (((prevVolume[i]+volumeInc[i])>>16) <= volume[i]))) { volumeInc[i] = 0; prevVolume[i] = volume[i]<<16; } } if (aux) { if (((auxInc>0) && (((prevAuxLevel+auxInc)>>16) >= auxLevel)) || ((auxInc<0) && (((prevAuxLevel+auxInc)>>16) <= auxLevel))) { auxInc = 0; prevAuxLevel = auxLevel<<16; } } } size_t AudioMixer::getUnreleasedFrames(int name) const { name -= TRACK0; if (uint32_t(name) < MAX_NUM_TRACKS) { return mState.tracks[name].getUnreleasedFrames(); } return 0; } void AudioMixer::setBufferProvider(int name, AudioBufferProvider* bufferProvider) { name -= TRACK0; ALOG_ASSERT(uint32_t(name) < MAX_NUM_TRACKS, "bad track name %d", name); if (mState.tracks[name].downmixerBufferProvider != NULL) { // update required? if (mState.tracks[name].downmixerBufferProvider->mTrackBufferProvider != bufferProvider) { ALOGV("AudioMixer::setBufferProvider(%p) for downmix", bufferProvider); // setting the buffer provider for a track that gets downmixed consists in: // 1/ setting the buffer provider to the "downmix / buffer provider" wrapper // so it's the one that gets called when the buffer provider is needed, mState.tracks[name].bufferProvider = mState.tracks[name].downmixerBufferProvider; // 2/ saving the buffer provider for the track so the wrapper can use it // when it downmixes. mState.tracks[name].downmixerBufferProvider->mTrackBufferProvider = bufferProvider; } } else { mState.tracks[name].bufferProvider = bufferProvider; } } void AudioMixer::process(int64_t pts) { mState.hook(&mState, pts); } void AudioMixer::process__validate(state_t* state, int64_t pts) { ALOGW_IF(!state->needsChanged, "in process__validate() but nothing's invalid"); uint32_t changed = state->needsChanged; state->needsChanged = 0; // clear the validation flag // recompute which tracks are enabled / disabled uint32_t enabled = 0; uint32_t disabled = 0; while (changed) { const int i = 31 - __builtin_clz(changed); const uint32_t mask = 1<tracks[i]; (t.enabled ? enabled : disabled) |= mask; } state->enabledTracks &= ~disabled; state->enabledTracks |= enabled; // compute everything we need... int countActiveTracks = 0; bool all16BitsStereoNoResample = true; bool resampling = false; bool volumeRamp = false; uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<tracks[i]; uint32_t n = 0; // FIXME can overflow (mask is only 3 bits) n |= NEEDS_CHANNEL_1 + t.channelCount - 1; if (t.doesResample()) { n |= NEEDS_RESAMPLE; } if (t.auxLevel != 0 && t.auxBuffer != NULL) { n |= NEEDS_AUX; } if (t.volumeInc[0]|t.volumeInc[1]) { volumeRamp = true; } else if (!t.doesResample() && t.volumeRL == 0) { n |= NEEDS_MUTE; } t.needs = n; if (n & NEEDS_MUTE) { t.hook = track__nop; } else { if (n & NEEDS_AUX) { all16BitsStereoNoResample = false; } if (n & NEEDS_RESAMPLE) { all16BitsStereoNoResample = false; resampling = true; t.hook = track__genericResample; ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2, "Track %d needs downmix + resample", i); } else { if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1){ t.hook = track__16BitsMono; all16BitsStereoNoResample = false; } if ((n & NEEDS_CHANNEL_COUNT__MASK) >= NEEDS_CHANNEL_2){ t.hook = track__16BitsStereo; ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2, "Track %d needs downmix", i); } } } } // select the processing hooks state->hook = process__nop; if (countActiveTracks > 0) { if (resampling) { if (!state->outputTemp) { state->outputTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount]; } if (!state->resampleTemp) { state->resampleTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount]; } state->hook = process__genericResampling; } else { if (state->outputTemp) { delete [] state->outputTemp; state->outputTemp = NULL; } if (state->resampleTemp) { delete [] state->resampleTemp; state->resampleTemp = NULL; } state->hook = process__genericNoResampling; if (all16BitsStereoNoResample && !volumeRamp) { if (countActiveTracks == 1) { state->hook = process__OneTrack16BitsStereoNoResampling; } } } } ALOGV("mixer configuration change: %d activeTracks (%08x) " "all16BitsStereoNoResample=%d, resampling=%d, volumeRamp=%d", countActiveTracks, state->enabledTracks, all16BitsStereoNoResample, resampling, volumeRamp); state->hook(state, pts); // Now that the volume ramp has been done, set optimal state and // track hooks for subsequent mixer process if (countActiveTracks > 0) { bool allMuted = true; uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<tracks[i]; if (!t.doesResample() && t.volumeRL == 0) { t.needs |= NEEDS_MUTE; t.hook = track__nop; } else { allMuted = false; } } if (allMuted) { state->hook = process__nop; } else if (all16BitsStereoNoResample) { if (countActiveTracks == 1) { state->hook = process__OneTrack16BitsStereoNoResampling; } } } } void AudioMixer::track__genericResample(track_t* t, int32_t* out, size_t outFrameCount, int32_t* temp, int32_t* aux) { t->resampler->setSampleRate(t->sampleRate); // ramp gain - resample to temp buffer and scale/mix in 2nd step if (aux != NULL) { // always resample with unity gain when sending to auxiliary buffer to be able // to apply send level after resampling // TODO: modify each resampler to support aux channel? t->resampler->setVolume(UNITY_GAIN, UNITY_GAIN); memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t)); t->resampler->resample(temp, outFrameCount, t->bufferProvider); if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) { volumeRampStereo(t, out, outFrameCount, temp, aux); } else { volumeStereo(t, out, outFrameCount, temp, aux); } } else { if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) { t->resampler->setVolume(UNITY_GAIN, UNITY_GAIN); memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t)); t->resampler->resample(temp, outFrameCount, t->bufferProvider); volumeRampStereo(t, out, outFrameCount, temp, aux); } // constant gain else { t->resampler->setVolume(t->volume[0], t->volume[1]); t->resampler->resample(out, outFrameCount, t->bufferProvider); } } } void AudioMixer::track__nop(track_t* t, int32_t* out, size_t outFrameCount, int32_t* temp, int32_t* aux) { } void AudioMixer::volumeRampStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; //ALOGD("[0] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); // ramp volume if (CC_UNLIKELY(aux != NULL)) { int32_t va = t->prevAuxLevel; const int32_t vaInc = t->auxInc; int32_t l; int32_t r; do { l = (*temp++ >> 12); r = (*temp++ >> 12); *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * r; *aux++ += (va >> 17) * (l + r); vl += vlInc; vr += vrInc; va += vaInc; } while (--frameCount); t->prevAuxLevel = va; } else { do { *out++ += (vl >> 16) * (*temp++ >> 12); *out++ += (vr >> 16) * (*temp++ >> 12); vl += vlInc; vr += vrInc; } while (--frameCount); } t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(aux != NULL); } void AudioMixer::volumeStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux) { const int16_t vl = t->volume[0]; const int16_t vr = t->volume[1]; if (CC_UNLIKELY(aux != NULL)) { const int16_t va = t->auxLevel; do { int16_t l = (int16_t)(*temp++ >> 12); int16_t r = (int16_t)(*temp++ >> 12); out[0] = mulAdd(l, vl, out[0]); int16_t a = (int16_t)(((int32_t)l + r) >> 1); out[1] = mulAdd(r, vr, out[1]); out += 2; aux[0] = mulAdd(a, va, aux[0]); aux++; } while (--frameCount); } else { do { int16_t l = (int16_t)(*temp++ >> 12); int16_t r = (int16_t)(*temp++ >> 12); out[0] = mulAdd(l, vl, out[0]); out[1] = mulAdd(r, vr, out[1]); out += 2; } while (--frameCount); } } void AudioMixer::track__16BitsStereo(track_t* t, int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux) { const int16_t *in = static_cast(t->in); if (CC_UNLIKELY(aux != NULL)) { int32_t l; int32_t r; // ramp gain if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; int32_t va = t->prevAuxLevel; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; const int32_t vaInc = t->auxInc; // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { l = (int32_t)*in++; r = (int32_t)*in++; *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * r; *aux++ += (va >> 17) * (l + r); vl += vlInc; vr += vrInc; va += vaInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->prevAuxLevel = va; t->adjustVolumeRamp(true); } // constant gain else { const uint32_t vrl = t->volumeRL; const int16_t va = (int16_t)t->auxLevel; do { uint32_t rl = *reinterpret_cast(in); int16_t a = (int16_t)(((int32_t)in[0] + in[1]) >> 1); in += 2; out[0] = mulAddRL(1, rl, vrl, out[0]); out[1] = mulAddRL(0, rl, vrl, out[1]); out += 2; aux[0] = mulAdd(a, va, aux[0]); aux++; } while (--frameCount); } } else { // ramp gain if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; // ALOGD("[1] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { *out++ += (vl >> 16) * (int32_t) *in++; *out++ += (vr >> 16) * (int32_t) *in++; vl += vlInc; vr += vrInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(false); } // constant gain else { const uint32_t vrl = t->volumeRL; do { uint32_t rl = *reinterpret_cast(in); in += 2; out[0] = mulAddRL(1, rl, vrl, out[0]); out[1] = mulAddRL(0, rl, vrl, out[1]); out += 2; } while (--frameCount); } } t->in = in; } void AudioMixer::track__16BitsMono(track_t* t, int32_t* out, size_t frameCount, int32_t* temp, int32_t* aux) { const int16_t *in = static_cast(t->in); if (CC_UNLIKELY(aux != NULL)) { // ramp gain if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; int32_t va = t->prevAuxLevel; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; const int32_t vaInc = t->auxInc; // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { int32_t l = *in++; *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * l; *aux++ += (va >> 16) * l; vl += vlInc; vr += vrInc; va += vaInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->prevAuxLevel = va; t->adjustVolumeRamp(true); } // constant gain else { const int16_t vl = t->volume[0]; const int16_t vr = t->volume[1]; const int16_t va = (int16_t)t->auxLevel; do { int16_t l = *in++; out[0] = mulAdd(l, vl, out[0]); out[1] = mulAdd(l, vr, out[1]); out += 2; aux[0] = mulAdd(l, va, aux[0]); aux++; } while (--frameCount); } } else { // ramp gain if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) { int32_t vl = t->prevVolume[0]; int32_t vr = t->prevVolume[1]; const int32_t vlInc = t->volumeInc[0]; const int32_t vrInc = t->volumeInc[1]; // ALOGD("[2] %p: inc=%f, v0=%f, v1=%d, final=%f, count=%d", // t, vlInc/65536.0f, vl/65536.0f, t->volume[0], // (vl + vlInc*frameCount)/65536.0f, frameCount); do { int32_t l = *in++; *out++ += (vl >> 16) * l; *out++ += (vr >> 16) * l; vl += vlInc; vr += vrInc; } while (--frameCount); t->prevVolume[0] = vl; t->prevVolume[1] = vr; t->adjustVolumeRamp(false); } // constant gain else { const int16_t vl = t->volume[0]; const int16_t vr = t->volume[1]; do { int16_t l = *in++; out[0] = mulAdd(l, vl, out[0]); out[1] = mulAdd(l, vr, out[1]); out += 2; } while (--frameCount); } } t->in = in; } // no-op case void AudioMixer::process__nop(state_t* state, int64_t pts) { uint32_t e0 = state->enabledTracks; size_t bufSize = state->frameCount * sizeof(int16_t) * MAX_NUM_CHANNELS; while (e0) { // process by group of tracks with same output buffer to // avoid multiple memset() on same buffer uint32_t e1 = e0, e2 = e0; int i = 31 - __builtin_clz(e1); { track_t& t1 = state->tracks[i]; e2 &= ~(1<tracks[i]; if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) { e1 &= ~(1<tracks[i]; size_t outFrames = state->frameCount; while (outFrames) { t3.buffer.frameCount = outFrames; int64_t outputPTS = calculateOutputPTS( t3, pts, state->frameCount - outFrames); t3.bufferProvider->getNextBuffer(&t3.buffer, outputPTS); if (t3.buffer.raw == NULL) break; outFrames -= t3.buffer.frameCount; t3.bufferProvider->releaseBuffer(&t3.buffer); } } } } } // generic code without resampling void AudioMixer::process__genericNoResampling(state_t* state, int64_t pts) { int32_t outTemp[BLOCKSIZE * MAX_NUM_CHANNELS] __attribute__((aligned(32))); // acquire each track's buffer uint32_t enabledTracks = state->enabledTracks; uint32_t e0 = enabledTracks; while (e0) { const int i = 31 - __builtin_clz(e0); e0 &= ~(1<tracks[i]; t.buffer.frameCount = state->frameCount; t.bufferProvider->getNextBuffer(&t.buffer, pts); t.frameCount = t.buffer.frameCount; t.in = t.buffer.raw; // t.in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (t.in == NULL) { enabledTracks &= ~(1<tracks[j]; e2 &= ~(1<tracks[j]; if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) { e1 &= ~(1<tracks[i]; size_t outFrames = BLOCKSIZE; int32_t *aux = NULL; if (CC_UNLIKELY(t.needs & NEEDS_AUX)) { aux = t.auxBuffer + numFrames; } while (outFrames) { size_t inFrames = (t.frameCount > outFrames)?outFrames:t.frameCount; if (inFrames > 0) { t.hook(&t, outTemp + (BLOCKSIZE-outFrames)*MAX_NUM_CHANNELS, inFrames, state->resampleTemp, aux); t.frameCount -= inFrames; outFrames -= inFrames; if (CC_UNLIKELY(aux != NULL)) { aux += inFrames; } } if (t.frameCount == 0 && outFrames) { t.bufferProvider->releaseBuffer(&t.buffer); t.buffer.frameCount = (state->frameCount - numFrames) - (BLOCKSIZE - outFrames); int64_t outputPTS = calculateOutputPTS( t, pts, numFrames + (BLOCKSIZE - outFrames)); t.bufferProvider->getNextBuffer(&t.buffer, outputPTS); t.in = t.buffer.raw; if (t.in == NULL) { enabledTracks &= ~(1<frameCount); } // release each track's buffer e0 = enabledTracks; while (e0) { const int i = 31 - __builtin_clz(e0); e0 &= ~(1<tracks[i]; t.bufferProvider->releaseBuffer(&t.buffer); } } // generic code with resampling void AudioMixer::process__genericResampling(state_t* state, int64_t pts) { // this const just means that local variable outTemp doesn't change int32_t* const outTemp = state->outputTemp; const size_t size = sizeof(int32_t) * MAX_NUM_CHANNELS * state->frameCount; size_t numFrames = state->frameCount; uint32_t e0 = state->enabledTracks; while (e0) { // process by group of tracks with same output buffer // to optimize cache use uint32_t e1 = e0, e2 = e0; int j = 31 - __builtin_clz(e1); track_t& t1 = state->tracks[j]; e2 &= ~(1<tracks[j]; if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) { e1 &= ~(1<tracks[i]; int32_t *aux = NULL; if (CC_UNLIKELY(t.needs & NEEDS_AUX)) { aux = t.auxBuffer; } // this is a little goofy, on the resampling case we don't // acquire/release the buffers because it's done by // the resampler. if (t.needs & NEEDS_RESAMPLE) { t.resampler->setPTS(pts); t.hook(&t, outTemp, numFrames, state->resampleTemp, aux); } else { size_t outFrames = 0; while (outFrames < numFrames) { t.buffer.frameCount = numFrames - outFrames; int64_t outputPTS = calculateOutputPTS(t, pts, outFrames); t.bufferProvider->getNextBuffer(&t.buffer, outputPTS); t.in = t.buffer.raw; // t.in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (t.in == NULL) break; if (CC_UNLIKELY(aux != NULL)) { aux += outFrames; } t.hook(&t, outTemp + outFrames*MAX_NUM_CHANNELS, t.buffer.frameCount, state->resampleTemp, aux); outFrames += t.buffer.frameCount; t.bufferProvider->releaseBuffer(&t.buffer); } } } ditherAndClamp(out, outTemp, numFrames); } } // one track, 16 bits stereo without resampling is the most common case void AudioMixer::process__OneTrack16BitsStereoNoResampling(state_t* state, int64_t pts) { // This method is only called when state->enabledTracks has exactly // one bit set. The asserts below would verify this, but are commented out // since the whole point of this method is to optimize performance. //ALOG_ASSERT(0 != state->enabledTracks, "no tracks enabled"); const int i = 31 - __builtin_clz(state->enabledTracks); //ALOG_ASSERT((1 << i) == state->enabledTracks, "more than 1 track enabled"); const track_t& t = state->tracks[i]; AudioBufferProvider::Buffer& b(t.buffer); int32_t* out = t.mainBuffer; size_t numFrames = state->frameCount; const int16_t vl = t.volume[0]; const int16_t vr = t.volume[1]; const uint32_t vrl = t.volumeRL; while (numFrames) { b.frameCount = numFrames; int64_t outputPTS = calculateOutputPTS(t, pts, out - t.mainBuffer); t.bufferProvider->getNextBuffer(&b, outputPTS); const int16_t *in = b.i16; // in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (in == NULL || ((unsigned long)in & 3)) { memset(out, 0, numFrames*MAX_NUM_CHANNELS*sizeof(int16_t)); ALOGE_IF(((unsigned long)in & 3), "process stereo track: input buffer alignment pb: " "buffer %p track %d, channels %d, needs %08x", in, i, t.channelCount, t.needs); return; } size_t outFrames = b.frameCount; if (CC_UNLIKELY(uint32_t(vl) > UNITY_GAIN || uint32_t(vr) > UNITY_GAIN)) { // volume is boosted, so we might need to clamp even though // we process only one track. do { uint32_t rl = *reinterpret_cast(in); in += 2; int32_t l = mulRL(1, rl, vrl) >> 12; int32_t r = mulRL(0, rl, vrl) >> 12; // clamping... l = clamp16(l); r = clamp16(r); *out++ = (r<<16) | (l & 0xFFFF); } while (--outFrames); } else { do { uint32_t rl = *reinterpret_cast(in); in += 2; int32_t l = mulRL(1, rl, vrl) >> 12; int32_t r = mulRL(0, rl, vrl) >> 12; *out++ = (r<<16) | (l & 0xFFFF); } while (--outFrames); } numFrames -= b.frameCount; t.bufferProvider->releaseBuffer(&b); } } #if 0 // 2 tracks is also a common case // NEVER used in current implementation of process__validate() // only use if the 2 tracks have the same output buffer void AudioMixer::process__TwoTracks16BitsStereoNoResampling(state_t* state, int64_t pts) { int i; uint32_t en = state->enabledTracks; i = 31 - __builtin_clz(en); const track_t& t0 = state->tracks[i]; AudioBufferProvider::Buffer& b0(t0.buffer); en &= ~(1<tracks[i]; AudioBufferProvider::Buffer& b1(t1.buffer); const int16_t *in0; const int16_t vl0 = t0.volume[0]; const int16_t vr0 = t0.volume[1]; size_t frameCount0 = 0; const int16_t *in1; const int16_t vl1 = t1.volume[0]; const int16_t vr1 = t1.volume[1]; size_t frameCount1 = 0; //FIXME: only works if two tracks use same buffer int32_t* out = t0.mainBuffer; size_t numFrames = state->frameCount; const int16_t *buff = NULL; while (numFrames) { if (frameCount0 == 0) { b0.frameCount = numFrames; int64_t outputPTS = calculateOutputPTS(t0, pts, out - t0.mainBuffer); t0.bufferProvider->getNextBuffer(&b0, outputPTS); if (b0.i16 == NULL) { if (buff == NULL) { buff = new int16_t[MAX_NUM_CHANNELS * state->frameCount]; } in0 = buff; b0.frameCount = numFrames; } else { in0 = b0.i16; } frameCount0 = b0.frameCount; } if (frameCount1 == 0) { b1.frameCount = numFrames; int64_t outputPTS = calculateOutputPTS(t1, pts, out - t0.mainBuffer); t1.bufferProvider->getNextBuffer(&b1, outputPTS); if (b1.i16 == NULL) { if (buff == NULL) { buff = new int16_t[MAX_NUM_CHANNELS * state->frameCount]; } in1 = buff; b1.frameCount = numFrames; } else { in1 = b1.i16; } frameCount1 = b1.frameCount; } size_t outFrames = frameCount0 < frameCount1?frameCount0:frameCount1; numFrames -= outFrames; frameCount0 -= outFrames; frameCount1 -= outFrames; do { int32_t l0 = *in0++; int32_t r0 = *in0++; l0 = mul(l0, vl0); r0 = mul(r0, vr0); int32_t l = *in1++; int32_t r = *in1++; l = mulAdd(l, vl1, l0) >> 12; r = mulAdd(r, vr1, r0) >> 12; // clamping... l = clamp16(l); r = clamp16(r); *out++ = (r<<16) | (l & 0xFFFF); } while (--outFrames); if (frameCount0 == 0) { t0.bufferProvider->releaseBuffer(&b0); } if (frameCount1 == 0) { t1.bufferProvider->releaseBuffer(&b1); } } delete [] buff; } #endif int64_t AudioMixer::calculateOutputPTS(const track_t& t, int64_t basePTS, int outputFrameIndex) { if (AudioBufferProvider::kInvalidPTS == basePTS) { return AudioBufferProvider::kInvalidPTS; } return basePTS + ((outputFrameIndex * sLocalTimeFreq) / t.sampleRate); } /*static*/ uint64_t AudioMixer::sLocalTimeFreq; /*static*/ pthread_once_t AudioMixer::sOnceControl = PTHREAD_ONCE_INIT; /*static*/ void AudioMixer::sInitRoutine() { LocalClock lc; sLocalTimeFreq = lc.getLocalFreq(); // find multichannel downmix effect if we have to play multichannel content uint32_t numEffects = 0; int ret = EffectQueryNumberEffects(&numEffects); if (ret != 0) { ALOGE("AudioMixer() error %d querying number of effects", ret); return; } ALOGV("EffectQueryNumberEffects() numEffects=%d", numEffects); for (uint32_t i = 0 ; i < numEffects ; i++) { if (EffectQueryEffect(i, &sDwnmFxDesc) == 0) { ALOGV("effect %d is called %s", i, sDwnmFxDesc.name); if (memcmp(&sDwnmFxDesc.type, EFFECT_UIID_DOWNMIX, sizeof(effect_uuid_t)) == 0) { ALOGI("found effect \"%s\" from %s", sDwnmFxDesc.name, sDwnmFxDesc.implementor); sIsMultichannelCapable = true; break; } } } ALOGW_IF(!sIsMultichannelCapable, "unable to find downmix effect"); } // ---------------------------------------------------------------------------- }; // namespace android