/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_AUDIO_RESAMPLER_FIR_GEN_H #define ANDROID_AUDIO_RESAMPLER_FIR_GEN_H namespace android { /* * Sinc function is the traditional variant. * * TODO: Investigate optimizations (regular sampling grid, NEON vector accelerations) * TODO: Remove comparison at 0 and trap at a higher level. * */ static inline double sinc(double x) { if (fabs(x) < FLT_MIN) { return 1.; } return sin(x) / x; } static inline double sqr(double x) { return x * x; } /* * rounds a double to the nearest integer for FIR coefficients. * * One variant uses noise shaping, which must keep error history * to work (the err parameter, initialized to 0). * The other variant is a non-noise shaped version for * S32 coefficients (noise shaping doesn't gain much). * * Caution: No bounds saturation is applied, but isn't needed in * this case. * * @param x is the value to round. * * @param maxval is the maximum integer scale factor expressed as an int64 (for headroom). * Typically this may be the maximum positive integer+1 (using the fact that double precision * FIR coefficients generated here are never that close to 1.0 to pose an overflow condition). * * @param err is the previous error (actual - rounded) for the previous rounding op. * */ static inline int64_t toint(double x, int64_t maxval, double& err) { double val = x * maxval; double ival = floor(val + 0.5 + err*0.17); err = val - ival; return static_cast(ival); } static inline int64_t toint(double x, int64_t maxval) { return static_cast(floor(x * maxval + 0.5)); } /* * Modified Bessel function of the first kind * http://en.wikipedia.org/wiki/Bessel_function * * The formulas are taken from Abramowitz and Stegun: * * http://people.math.sfu.ca/~cbm/aands/page_375.htm * http://people.math.sfu.ca/~cbm/aands/page_378.htm * * http://dlmf.nist.gov/10.25 * http://dlmf.nist.gov/10.40 * * Note we assume x is nonnegative (the function is symmetric, * pass in the absolute value as needed). * * Constants are compile time derived with templates I0Term<> and * I0ATerm<> to the precision of the compiler. The series can be expanded * to any precision needed, but currently set around 24b precision. * * We use a bit of template math here, constexpr would probably be * more appropriate for a C++11 compiler. * */ template struct I0Term { static const double value = I0Term::value/ (4. * N * N); }; template <> struct I0Term<0> { static const double value = 1.; }; template struct I0ATerm { static const double value = I0ATerm::value * (2.*N-1.) * (2.*N-1.) / (8. * N); }; template <> struct I0ATerm<0> { // 1/sqrt(2*PI); static const double value = 0.398942280401432677939946059934381868475858631164934657665925; }; static inline double I0(double x) { if (x < 3.75) { // TODO: Estrin's method instead of Horner's method? x *= x; return I0Term<0>::value + x*( I0Term<1>::value + x*( I0Term<2>::value + x*( I0Term<3>::value + x*( I0Term<4>::value + x*( I0Term<5>::value + x*( I0Term<6>::value)))))); // e < 1.6e-7 } // a bit ugly here - perhaps we expand the top series // to permit computation to x < 20 (a reasonable range) double y = 1./x; return exp(x) * sqrt(y) * ( // note: reciprocal squareroot may be easier! // http://en.wikipedia.org/wiki/Fast_inverse_square_root I0ATerm<0>::value + y*( I0ATerm<1>::value + y*( I0ATerm<2>::value + y*( I0ATerm<3>::value + y*( I0ATerm<4>::value + y*( I0ATerm<5>::value + y*( I0ATerm<6>::value + y*( I0ATerm<7>::value + y*( I0ATerm<8>::value))))))))); // (... e) < 1.9e-7 } /* * calculates the transition bandwidth for a Kaiser filter * * Formula 3.2.8, Multirate Systems and Filter Banks, PP Vaidyanathan, pg. 48 * * @param halfNumCoef is half the number of coefficients per filter phase. * @param stopBandAtten is the stop band attenuation desired. * @return the transition bandwidth in normalized frequency (0 <= f <= 0.5) */ static inline double firKaiserTbw(int halfNumCoef, double stopBandAtten) { return (stopBandAtten - 7.95)/(2.*14.36*halfNumCoef); } /* * calculates the fir transfer response. * * calculates the transfer coefficient H(w) for 0 <= w <= PI. * Be careful be careful to consider the fact that this is an interpolated filter * of length L, so normalizing H(w)/L is probably what you expect. */ template static inline double firTransfer(const T* coef, int L, int halfNumCoef, double w) { double accum = static_cast(coef[0])*0.5; coef += halfNumCoef; // skip first row. for (int i=1 ; i<=L ; ++i) { for (int j=0, ix=i ; j(*coef++); } } return accum*2.; } /* * returns the minimum and maximum |H(f)| bounds * * @param coef is the designed polyphase filter banks * * @param L is the number of phases (for interpolation) * * @param halfNumCoef should be half the number of coefficients for a single * polyphase. * * @param fstart is the normalized frequency start. * * @param fend is the normalized frequency end. * * @param steps is the number of steps to take (sampling) between frequency start and end * * @param firMin returns the minimum transfer |H(f)| found * * @param firMax returns the maximum transfer |H(f)| found * * 0 <= f <= 0.5. * This is used to test passband and stopband performance. */ template static void testFir(const T* coef, int L, int halfNumCoef, double fstart, double fend, int steps, double &firMin, double &firMax) { double wstart = fstart*(2.*M_PI); double wend = fend*(2.*M_PI); double wstep = (wend - wstart)/steps; double fmax, fmin; double trf = firTransfer(coef, L, halfNumCoef, wstart); if (trf<0) { trf = -trf; } fmin = fmax = trf; wstart += wstep; for (int i=1; ifmax) { fmax = trf; } else if (trf50dB. * * @param fcr is cutoff frequency/sampling rate (<0.5). At this point, the energy * should be 6dB less. (fcr is where the amplitude drops by half). Use the * firKaiserTbw() to calculate the transition bandwidth. fcr is the midpoint * between the stop band and the pass band (fstop+fpass)/2. * * @param atten is the attenuation (generally slightly less than 1). */ template static inline void firKaiserGen(T* coef, int L, int halfNumCoef, double stopBandAtten, double fcr, double atten) { // // Formula 3.2.5, 3.2.7, Multirate Systems and Filter Banks, PP Vaidyanathan, pg. 48 // // See also: http://melodi.ee.washington.edu/courses/ee518/notes/lec17.pdf // // Kaiser window and beta parameter // // | 0.1102*(A - 8.7) A > 50 // beta = | 0.5842*(A - 21)^0.4 + 0.07886*(A - 21) 21 <= A <= 50 // | 0. A < 21 // // with A is the desired stop-band attenuation in dBFS // // 30 dB 2.210 // 40 dB 3.384 // 50 dB 4.538 // 60 dB 5.658 // 70 dB 6.764 // 80 dB 7.865 // 90 dB 8.960 // 100 dB 10.056 const int N = L * halfNumCoef; // non-negative half const double beta = 0.1102 * (stopBandAtten - 8.7); // >= 50dB always const double yscale = 2. * atten * fcr / I0(beta); const double xstep = 2. * M_PI * fcr / L; const double xfrac = 1. / N; double err = 0; // for noise shaping on int16_t coefficients for (int i=0 ; i<=L ; ++i) { // generate an extra set of coefs for interpolation for (int j=0, ix=i ; j::value) { // int16_t needs noise shaping *coef++ = static_cast(toint(y, 1ULL<<(sizeof(T)*8-1), err)); } else { *coef++ = static_cast(toint(y, 1ULL<<(sizeof(T)*8-1))); } } } } }; // namespace android #endif /*ANDROID_AUDIO_RESAMPLER_FIR_GEN_H*/