/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H #define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H namespace android { // depends on AudioResamplerFirOps.h template static inline void mac( int32_t& l, int32_t& r, const TC coef, const int16_t* samples) { if (CHANNELS == 2) { uint32_t rl = *reinterpret_cast(samples); l = mulAddRL(1, rl, coef, l); r = mulAddRL(0, rl, coef, r); } else { r = l = mulAdd(samples[0], coef, l); } } template static inline void interpolate( int32_t& l, int32_t& r, const TC coef_0, const TC coef_1, const int16_t lerp, const int16_t* samples) { TC sinc; if (is_same::value) { sinc = (lerp * ((coef_1-coef_0)<<1)>>16) + coef_0; } else { sinc = mulAdd(lerp, (coef_1-coef_0)<<1, coef_0); } if (CHANNELS == 2) { uint32_t rl = *reinterpret_cast(samples); l = mulAddRL(1, rl, sinc, l); r = mulAddRL(0, rl, sinc, r); } else { r = l = mulAdd(samples[0], sinc, l); } } /* * Calculates a single output sample (two stereo frames). * * This function computes both the positive half FIR dot product and * the negative half FIR dot product, accumulates, and then applies the volume. * * This is a locked phase filter (it does not compute the interpolation). * * Use fir() to compute the proper coefficient pointers for a polyphase * filter bank. */ template static inline void ProcessL(int32_t* const out, int count, const TC* coefsP, const TC* coefsN, const int16_t* sP, const int16_t* sN, const int32_t* const volumeLR) { int32_t l = 0; int32_t r = 0; do { mac(l, r, *coefsP++, sP); sP -= CHANNELS; mac(l, r, *coefsN++, sN); sN += CHANNELS; } while (--count > 0); out[0] += 2 * mulRL(0, l, volumeLR[0]); // Note: only use top 16b out[1] += 2 * mulRL(0, r, volumeLR[1]); // Note: only use top 16b } /* * Calculates a single output sample (two stereo frames) interpolating phase. * * This function computes both the positive half FIR dot product and * the negative half FIR dot product, accumulates, and then applies the volume. * * This is an interpolated phase filter. * * Use fir() to compute the proper coefficient pointers for a polyphase * filter bank. */ template static inline void Process(int32_t* const out, int count, const TC* coefsP, const TC* coefsN, const TC* coefsP1, const TC* coefsN1, const int16_t* sP, const int16_t* sN, uint32_t lerpP, const int32_t* const volumeLR) { (void) coefsP1; // suppress unused parameter warning (void) coefsN1; if (sizeof(*coefsP)==4) { lerpP >>= 16; // ensure lerpP is 16b } int32_t l = 0; int32_t r = 0; for (size_t i = 0; i < count; ++i) { interpolate(l, r, coefsP[0], coefsP[count], lerpP, sP); coefsP++; sP -= CHANNELS; interpolate(l, r, coefsN[count], coefsN[0], lerpP, sN); coefsN++; sN += CHANNELS; } out[0] += 2 * mulRL(0, l, volumeLR[0]); // Note: only use top 16b out[1] += 2 * mulRL(0, r, volumeLR[1]); // Note: only use top 16b } /* * Calculates a single output sample (two stereo frames) from input sample pointer. * * This sets up the params for the accelerated Process() and ProcessL() * functions to do the appropriate dot products. * * @param out should point to the output buffer with at least enough space for 2 output frames. * * @param phase is the fractional distance between input samples for interpolation: * phase >= 0 && phase < phaseWrapLimit. It can be thought of as a rational fraction * of phase/phaseWrapLimit. * * @param phaseWrapLimit is #polyphases<>coefShift). * * @param coefShift gives the bit alignment of the polyphase index in the phase parameter. * * @param halfNumCoefs is the half the number of coefficients per polyphase filter. Since the * overall filterbank is odd-length symmetric, only halfNumCoefs need be stored. * * @param coefs is the polyphase filter bank, starting at from polyphase index 0, and ranging to * and including the #polyphases. Each polyphase of the filter has half-length halfNumCoefs * (due to symmetry). The total size of the filter bank in coefficients is * (#polyphases+1)*halfNumCoefs. * * The filter bank coefs should be aligned to a minimum of 16 bytes (preferrably to cache line). * * The coefs should be attenuated (to compensate for passband ripple) * if storing back into the native format. * * @param samples are unaligned input samples. The position is in the "middle" of the * sample array with respect to the FIR filter: * the negative half of the filter is dot product from samples+1 to samples+halfNumCoefs; * the positive half of the filter is dot product from samples to samples-halfNumCoefs+1. * * @param volumeLR is a pointer to an array of two 32 bit volume values, one per stereo channel, * expressed as a S32 integer. A negative value inverts the channel 180 degrees. * The pointer volumeLR should be aligned to a minimum of 8 bytes. * A typical value for volume is 0x1000 to align to a unity gain output of 20.12. * * In between calls to filterCoefficient, the phase is incremented by phaseIncrement, where * phaseIncrement is calculated as inputSampling * phaseWrapLimit / outputSampling. * * The filter polyphase index is given by indexP = phase >> coefShift. Due to * odd length symmetric filter, the polyphase index of the negative half depends on * whether interpolation is used. * * The fractional siting between the polyphase indices is given by the bits below coefShift: * * lerpP = phase << 32 - coefShift >> 1; // for 32 bit unsigned phase multiply * lerpP = phase << 32 - coefShift >> 17; // for 16 bit unsigned phase multiply * * For integer types, this is expressed as: * * lerpP = phase << sizeof(phase)*8 - coefShift * >> (sizeof(phase)-sizeof(*coefs))*8 + 1; * */ template static inline void fir(int32_t* const out, const uint32_t phase, const uint32_t phaseWrapLimit, const int coefShift, const int halfNumCoefs, const TC* const coefs, const int16_t* const samples, const int32_t* const volumeLR) { // NOTE: be very careful when modifying the code here. register // pressure is very high and a small change might cause the compiler // to generate far less efficient code. // Always sanity check the result with objdump or test-resample. if (LOCKED) { // locked polyphase (no interpolation) // Compute the polyphase filter index on the positive and negative side. uint32_t indexP = phase >> coefShift; uint32_t indexN = (phaseWrapLimit - phase) >> coefShift; const TC* coefsP = coefs + indexP*halfNumCoefs; const TC* coefsN = coefs + indexN*halfNumCoefs; const int16_t* sP = samples; const int16_t* sN = samples + CHANNELS; // dot product filter. ProcessL(out, halfNumCoefs, coefsP, coefsN, sP, sN, volumeLR); } else { // interpolated polyphase // Compute the polyphase filter index on the positive and negative side. uint32_t indexP = phase >> coefShift; uint32_t indexN = (phaseWrapLimit - phase - 1) >> coefShift; // one's complement. const TC* coefsP = coefs + indexP*halfNumCoefs; const TC* coefsN = coefs + indexN*halfNumCoefs; const TC* coefsP1 = coefsP + halfNumCoefs; const TC* coefsN1 = coefsN + halfNumCoefs; const int16_t* sP = samples; const int16_t* sN = samples + CHANNELS; // Interpolation fraction lerpP derived by shifting all the way up and down // to clear the appropriate bits and align to the appropriate level // for the integer multiply. The constants should resolve in compile time. // // The interpolated filter coefficient is derived as follows for the pos/neg half: // // interpolated[P] = index[P]*lerpP + index[P+1]*(1-lerpP) // interpolated[N] = index[N+1]*lerpP + index[N]*(1-lerpP) uint32_t lerpP = phase << (sizeof(phase)*8 - coefShift) >> ((sizeof(phase)-sizeof(*coefs))*8 + 1); // on-the-fly interpolated dot product filter Process(out, halfNumCoefs, coefsP, coefsN, coefsP1, coefsN1, sP, sN, lerpP, volumeLR); } } }; // namespace android #endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_H*/