/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ // // Design rules for threadLoop() are given in the comments at section "Fast mixer thread" of // StateQueue.h. In particular, avoid library and system calls except at well-known points. // The design rules are only for threadLoop(), and don't apply to FastMixerDumpState methods. // #define LOG_TAG "FastMixer" //#define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_AUDIO #include "Configuration.h" #include #include #include #include #ifdef FAST_MIXER_STATISTICS #include #ifdef CPU_FREQUENCY_STATISTICS #include #endif #endif #include "AudioMixer.h" #include "FastMixer.h" #define FAST_HOT_IDLE_NS 1000000L // 1 ms: time to sleep while hot idling #define FAST_DEFAULT_NS 999999999L // ~1 sec: default time to sleep #define MIN_WARMUP_CYCLES 2 // minimum number of loop cycles to wait for warmup #define MAX_WARMUP_CYCLES 10 // maximum number of loop cycles to wait for warmup #define FCC_2 2 // fixed channel count assumption namespace android { // Fast mixer thread bool FastMixer::threadLoop() { static const FastMixerState initial; const FastMixerState *previous = &initial, *current = &initial; FastMixerState preIdle; // copy of state before we went into idle struct timespec oldTs = {0, 0}; bool oldTsValid = false; long slopNs = 0; // accumulated time we've woken up too early (> 0) or too late (< 0) long sleepNs = -1; // -1: busy wait, 0: sched_yield, > 0: nanosleep int fastTrackNames[FastMixerState::kMaxFastTracks]; // handles used by mixer to identify tracks int generations[FastMixerState::kMaxFastTracks]; // last observed mFastTracks[i].mGeneration unsigned i; for (i = 0; i < FastMixerState::kMaxFastTracks; ++i) { fastTrackNames[i] = -1; generations[i] = 0; } NBAIO_Sink *outputSink = NULL; int outputSinkGen = 0; AudioMixer* mixer = NULL; short *mixBuffer = NULL; enum {UNDEFINED, MIXED, ZEROED} mixBufferState = UNDEFINED; NBAIO_Format format = Format_Invalid; unsigned sampleRate = 0; int fastTracksGen = 0; long periodNs = 0; // expected period; the time required to render one mix buffer long underrunNs = 0; // underrun likely when write cycle is greater than this value long overrunNs = 0; // overrun likely when write cycle is less than this value long forceNs = 0; // if overrun detected, force the write cycle to take this much time long warmupNs = 0; // warmup complete when write cycle is greater than to this value FastMixerDumpState dummyDumpState, *dumpState = &dummyDumpState; bool ignoreNextOverrun = true; // used to ignore initial overrun and first after an underrun #ifdef FAST_MIXER_STATISTICS struct timespec oldLoad = {0, 0}; // previous value of clock_gettime(CLOCK_THREAD_CPUTIME_ID) bool oldLoadValid = false; // whether oldLoad is valid uint32_t bounds = 0; bool full = false; // whether we have collected at least mSamplingN samples #ifdef CPU_FREQUENCY_STATISTICS ThreadCpuUsage tcu; // for reading the current CPU clock frequency in kHz #endif #endif unsigned coldGen = 0; // last observed mColdGen bool isWarm = false; // true means ready to mix, false means wait for warmup before mixing struct timespec measuredWarmupTs = {0, 0}; // how long did it take for warmup to complete uint32_t warmupCycles = 0; // counter of number of loop cycles required to warmup NBAIO_Sink* teeSink = NULL; // if non-NULL, then duplicate write() to this non-blocking sink NBLog::Writer dummyLogWriter, *logWriter = &dummyLogWriter; uint32_t totalNativeFramesWritten = 0; // copied to dumpState->mFramesWritten // next 2 fields are valid only when timestampStatus == NO_ERROR AudioTimestamp timestamp; uint32_t nativeFramesWrittenButNotPresented = 0; // the = 0 is to silence the compiler status_t timestampStatus = INVALID_OPERATION; for (;;) { // either nanosleep, sched_yield, or busy wait if (sleepNs >= 0) { if (sleepNs > 0) { ALOG_ASSERT(sleepNs < 1000000000); const struct timespec req = {0, sleepNs}; nanosleep(&req, NULL); } else { sched_yield(); } } // default to long sleep for next cycle sleepNs = FAST_DEFAULT_NS; // poll for state change const FastMixerState *next = mSQ.poll(); if (next == NULL) { // continue to use the default initial state until a real state is available ALOG_ASSERT(current == &initial && previous == &initial); next = current; } FastMixerState::Command command = next->mCommand; if (next != current) { // As soon as possible of learning of a new dump area, start using it dumpState = next->mDumpState != NULL ? next->mDumpState : &dummyDumpState; teeSink = next->mTeeSink; logWriter = next->mNBLogWriter != NULL ? next->mNBLogWriter : &dummyLogWriter; if (mixer != NULL) { mixer->setLog(logWriter); } // We want to always have a valid reference to the previous (non-idle) state. // However, the state queue only guarantees access to current and previous states. // So when there is a transition from a non-idle state into an idle state, we make a // copy of the last known non-idle state so it is still available on return from idle. // The possible transitions are: // non-idle -> non-idle update previous from current in-place // non-idle -> idle update previous from copy of current // idle -> idle don't update previous // idle -> non-idle don't update previous if (!(current->mCommand & FastMixerState::IDLE)) { if (command & FastMixerState::IDLE) { preIdle = *current; current = &preIdle; oldTsValid = false; #ifdef FAST_MIXER_STATISTICS oldLoadValid = false; #endif ignoreNextOverrun = true; } previous = current; } current = next; } #if !LOG_NDEBUG next = NULL; // not referenced again #endif dumpState->mCommand = command; switch (command) { case FastMixerState::INITIAL: case FastMixerState::HOT_IDLE: sleepNs = FAST_HOT_IDLE_NS; continue; case FastMixerState::COLD_IDLE: // only perform a cold idle command once // FIXME consider checking previous state and only perform if previous != COLD_IDLE if (current->mColdGen != coldGen) { int32_t *coldFutexAddr = current->mColdFutexAddr; ALOG_ASSERT(coldFutexAddr != NULL); int32_t old = android_atomic_dec(coldFutexAddr); if (old <= 0) { (void) syscall(__NR_futex, coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, NULL); } int policy = sched_getscheduler(0); if (!(policy == SCHED_FIFO || policy == SCHED_RR)) { ALOGE("did not receive expected priority boost"); } // This may be overly conservative; there could be times that the normal mixer // requests such a brief cold idle that it doesn't require resetting this flag. isWarm = false; measuredWarmupTs.tv_sec = 0; measuredWarmupTs.tv_nsec = 0; warmupCycles = 0; sleepNs = -1; coldGen = current->mColdGen; #ifdef FAST_MIXER_STATISTICS bounds = 0; full = false; #endif oldTsValid = !clock_gettime(CLOCK_MONOTONIC, &oldTs); timestampStatus = INVALID_OPERATION; } else { sleepNs = FAST_HOT_IDLE_NS; } continue; case FastMixerState::EXIT: delete mixer; delete[] mixBuffer; return false; case FastMixerState::MIX: case FastMixerState::WRITE: case FastMixerState::MIX_WRITE: break; default: LOG_FATAL("bad command %d", command); } // there is a non-idle state available to us; did the state change? size_t frameCount = current->mFrameCount; if (current != previous) { // handle state change here, but since we want to diff the state, // we're prepared for previous == &initial the first time through unsigned previousTrackMask; // check for change in output HAL configuration NBAIO_Format previousFormat = format; if (current->mOutputSinkGen != outputSinkGen) { outputSink = current->mOutputSink; outputSinkGen = current->mOutputSinkGen; if (outputSink == NULL) { format = Format_Invalid; sampleRate = 0; } else { format = outputSink->format(); sampleRate = Format_sampleRate(format); ALOG_ASSERT(Format_channelCount(format) == FCC_2); } } if ((format != previousFormat) || (frameCount != previous->mFrameCount)) { // FIXME to avoid priority inversion, don't delete here delete mixer; mixer = NULL; delete[] mixBuffer; mixBuffer = NULL; if (frameCount > 0 && sampleRate > 0) { // FIXME new may block for unbounded time at internal mutex of the heap // implementation; it would be better to have normal mixer allocate for us // to avoid blocking here and to prevent possible priority inversion mixer = new AudioMixer(frameCount, sampleRate, FastMixerState::kMaxFastTracks); mixBuffer = new short[frameCount * FCC_2]; periodNs = (frameCount * 1000000000LL) / sampleRate; // 1.00 underrunNs = (frameCount * 1750000000LL) / sampleRate; // 1.75 overrunNs = (frameCount * 500000000LL) / sampleRate; // 0.50 forceNs = (frameCount * 950000000LL) / sampleRate; // 0.95 warmupNs = (frameCount * 500000000LL) / sampleRate; // 0.50 } else { periodNs = 0; underrunNs = 0; overrunNs = 0; forceNs = 0; warmupNs = 0; } mixBufferState = UNDEFINED; #if !LOG_NDEBUG for (i = 0; i < FastMixerState::kMaxFastTracks; ++i) { fastTrackNames[i] = -1; } #endif // we need to reconfigure all active tracks previousTrackMask = 0; fastTracksGen = current->mFastTracksGen - 1; dumpState->mFrameCount = frameCount; } else { previousTrackMask = previous->mTrackMask; } // check for change in active track set unsigned currentTrackMask = current->mTrackMask; dumpState->mTrackMask = currentTrackMask; if (current->mFastTracksGen != fastTracksGen) { ALOG_ASSERT(mixBuffer != NULL); int name; // process removed tracks first to avoid running out of track names unsigned removedTracks = previousTrackMask & ~currentTrackMask; while (removedTracks != 0) { i = __builtin_ctz(removedTracks); removedTracks &= ~(1 << i); const FastTrack* fastTrack = ¤t->mFastTracks[i]; ALOG_ASSERT(fastTrack->mBufferProvider == NULL); if (mixer != NULL) { name = fastTrackNames[i]; ALOG_ASSERT(name >= 0); mixer->deleteTrackName(name); } #if !LOG_NDEBUG fastTrackNames[i] = -1; #endif // don't reset track dump state, since other side is ignoring it generations[i] = fastTrack->mGeneration; } // now process added tracks unsigned addedTracks = currentTrackMask & ~previousTrackMask; while (addedTracks != 0) { i = __builtin_ctz(addedTracks); addedTracks &= ~(1 << i); const FastTrack* fastTrack = ¤t->mFastTracks[i]; AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider; ALOG_ASSERT(bufferProvider != NULL && fastTrackNames[i] == -1); if (mixer != NULL) { // calling getTrackName with default channel mask and a random invalid // sessionId (no effects here) name = mixer->getTrackName(AUDIO_CHANNEL_OUT_STEREO, -555); ALOG_ASSERT(name >= 0); fastTrackNames[i] = name; mixer->setBufferProvider(name, bufferProvider); mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::MAIN_BUFFER, (void *) mixBuffer); // newly allocated track names default to full scale volume mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)fastTrack->mChannelMask); mixer->enable(name); } generations[i] = fastTrack->mGeneration; } // finally process (potentially) modified tracks; these use the same slot // but may have a different buffer provider or volume provider unsigned modifiedTracks = currentTrackMask & previousTrackMask; while (modifiedTracks != 0) { i = __builtin_ctz(modifiedTracks); modifiedTracks &= ~(1 << i); const FastTrack* fastTrack = ¤t->mFastTracks[i]; if (fastTrack->mGeneration != generations[i]) { // this track was actually modified AudioBufferProvider *bufferProvider = fastTrack->mBufferProvider; ALOG_ASSERT(bufferProvider != NULL); if (mixer != NULL) { name = fastTrackNames[i]; ALOG_ASSERT(name >= 0); mixer->setBufferProvider(name, bufferProvider); if (fastTrack->mVolumeProvider == NULL) { mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME0, (void *)0x1000); mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME1, (void *)0x1000); } mixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::REMOVE, NULL); mixer->setParameter(name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK, (void *)(uintptr_t) fastTrack->mChannelMask); // already enabled } generations[i] = fastTrack->mGeneration; } } fastTracksGen = current->mFastTracksGen; dumpState->mNumTracks = popcount(currentTrackMask); } #if 1 // FIXME shouldn't need this // only process state change once previous = current; #endif } // do work using current state here if ((command & FastMixerState::MIX) && (mixer != NULL) && isWarm) { ALOG_ASSERT(mixBuffer != NULL); // for each track, update volume and check for underrun unsigned currentTrackMask = current->mTrackMask; while (currentTrackMask != 0) { i = __builtin_ctz(currentTrackMask); currentTrackMask &= ~(1 << i); const FastTrack* fastTrack = ¤t->mFastTracks[i]; // Refresh the per-track timestamp if (timestampStatus == NO_ERROR) { uint32_t trackFramesWrittenButNotPresented = nativeFramesWrittenButNotPresented; uint32_t trackFramesWritten = fastTrack->mBufferProvider->framesReleased(); // Can't provide an AudioTimestamp before first frame presented, // or during the brief 32-bit wraparound window if (trackFramesWritten >= trackFramesWrittenButNotPresented) { AudioTimestamp perTrackTimestamp; perTrackTimestamp.mPosition = trackFramesWritten - trackFramesWrittenButNotPresented; perTrackTimestamp.mTime = timestamp.mTime; fastTrack->mBufferProvider->onTimestamp(perTrackTimestamp); } } int name = fastTrackNames[i]; ALOG_ASSERT(name >= 0); if (fastTrack->mVolumeProvider != NULL) { uint32_t vlr = fastTrack->mVolumeProvider->getVolumeLR(); mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME0, (void *)(uintptr_t)(vlr & 0xFFFF)); mixer->setParameter(name, AudioMixer::VOLUME, AudioMixer::VOLUME1, (void *)(uintptr_t)(vlr >> 16)); } // FIXME The current implementation of framesReady() for fast tracks // takes a tryLock, which can block // up to 1 ms. If enough active tracks all blocked in sequence, this would result // in the overall fast mix cycle being delayed. Should use a non-blocking FIFO. size_t framesReady = fastTrack->mBufferProvider->framesReady(); if (ATRACE_ENABLED()) { // I wish we had formatted trace names char traceName[16]; strcpy(traceName, "fRdy"); traceName[4] = i + (i < 10 ? '0' : 'A' - 10); traceName[5] = '\0'; ATRACE_INT(traceName, framesReady); } FastTrackDump *ftDump = &dumpState->mTracks[i]; FastTrackUnderruns underruns = ftDump->mUnderruns; if (framesReady < frameCount) { if (framesReady == 0) { underruns.mBitFields.mEmpty++; underruns.mBitFields.mMostRecent = UNDERRUN_EMPTY; mixer->disable(name); } else { // allow mixing partial buffer underruns.mBitFields.mPartial++; underruns.mBitFields.mMostRecent = UNDERRUN_PARTIAL; mixer->enable(name); } } else { underruns.mBitFields.mFull++; underruns.mBitFields.mMostRecent = UNDERRUN_FULL; mixer->enable(name); } ftDump->mUnderruns = underruns; ftDump->mFramesReady = framesReady; } int64_t pts; if (outputSink == NULL || (OK != outputSink->getNextWriteTimestamp(&pts))) pts = AudioBufferProvider::kInvalidPTS; // process() is CPU-bound mixer->process(pts); mixBufferState = MIXED; } else if (mixBufferState == MIXED) { mixBufferState = UNDEFINED; } bool attemptedWrite = false; //bool didFullWrite = false; // dumpsys could display a count of partial writes if ((command & FastMixerState::WRITE) && (outputSink != NULL) && (mixBuffer != NULL)) { if (mixBufferState == UNDEFINED) { memset(mixBuffer, 0, frameCount * FCC_2 * sizeof(short)); mixBufferState = ZEROED; } if (teeSink != NULL) { (void) teeSink->write(mixBuffer, frameCount); } // FIXME write() is non-blocking and lock-free for a properly implemented NBAIO sink, // but this code should be modified to handle both non-blocking and blocking sinks dumpState->mWriteSequence++; ATRACE_BEGIN("write"); ssize_t framesWritten = outputSink->write(mixBuffer, frameCount); ATRACE_END(); dumpState->mWriteSequence++; if (framesWritten >= 0) { ALOG_ASSERT((size_t) framesWritten <= frameCount); totalNativeFramesWritten += framesWritten; dumpState->mFramesWritten = totalNativeFramesWritten; //if ((size_t) framesWritten == frameCount) { // didFullWrite = true; //} } else { dumpState->mWriteErrors++; } attemptedWrite = true; // FIXME count # of writes blocked excessively, CPU usage, etc. for dump timestampStatus = outputSink->getTimestamp(timestamp); if (timestampStatus == NO_ERROR) { uint32_t totalNativeFramesPresented = timestamp.mPosition; if (totalNativeFramesPresented <= totalNativeFramesWritten) { nativeFramesWrittenButNotPresented = totalNativeFramesWritten - totalNativeFramesPresented; } else { // HAL reported that more frames were presented than were written timestampStatus = INVALID_OPERATION; } } } // To be exactly periodic, compute the next sleep time based on current time. // This code doesn't have long-term stability when the sink is non-blocking. // FIXME To avoid drift, use the local audio clock or watch the sink's fill status. struct timespec newTs; int rc = clock_gettime(CLOCK_MONOTONIC, &newTs); if (rc == 0) { //logWriter->logTimestamp(newTs); if (oldTsValid) { time_t sec = newTs.tv_sec - oldTs.tv_sec; long nsec = newTs.tv_nsec - oldTs.tv_nsec; ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0), "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld", oldTs.tv_sec, oldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec); if (nsec < 0) { --sec; nsec += 1000000000; } // To avoid an initial underrun on fast tracks after exiting standby, // do not start pulling data from tracks and mixing until warmup is complete. // Warmup is considered complete after the earlier of: // MIN_WARMUP_CYCLES write() attempts and last one blocks for at least warmupNs // MAX_WARMUP_CYCLES write() attempts. // This is overly conservative, but to get better accuracy requires a new HAL API. if (!isWarm && attemptedWrite) { measuredWarmupTs.tv_sec += sec; measuredWarmupTs.tv_nsec += nsec; if (measuredWarmupTs.tv_nsec >= 1000000000) { measuredWarmupTs.tv_sec++; measuredWarmupTs.tv_nsec -= 1000000000; } ++warmupCycles; if ((nsec > warmupNs && warmupCycles >= MIN_WARMUP_CYCLES) || (warmupCycles >= MAX_WARMUP_CYCLES)) { isWarm = true; dumpState->mMeasuredWarmupTs = measuredWarmupTs; dumpState->mWarmupCycles = warmupCycles; } } sleepNs = -1; if (isWarm) { if (sec > 0 || nsec > underrunNs) { ATRACE_NAME("underrun"); // FIXME only log occasionally ALOGV("underrun: time since last cycle %d.%03ld sec", (int) sec, nsec / 1000000L); dumpState->mUnderruns++; ignoreNextOverrun = true; } else if (nsec < overrunNs) { if (ignoreNextOverrun) { ignoreNextOverrun = false; } else { // FIXME only log occasionally ALOGV("overrun: time since last cycle %d.%03ld sec", (int) sec, nsec / 1000000L); dumpState->mOverruns++; } // This forces a minimum cycle time. It: // - compensates for an audio HAL with jitter due to sample rate conversion // - works with a variable buffer depth audio HAL that never pulls at a // rate < than overrunNs per buffer. // - recovers from overrun immediately after underrun // It doesn't work with a non-blocking audio HAL. sleepNs = forceNs - nsec; } else { ignoreNextOverrun = false; } } #ifdef FAST_MIXER_STATISTICS if (isWarm) { // advance the FIFO queue bounds size_t i = bounds & (dumpState->mSamplingN - 1); bounds = (bounds & 0xFFFF0000) | ((bounds + 1) & 0xFFFF); if (full) { bounds += 0x10000; } else if (!(bounds & (dumpState->mSamplingN - 1))) { full = true; } // compute the delta value of clock_gettime(CLOCK_MONOTONIC) uint32_t monotonicNs = nsec; if (sec > 0 && sec < 4) { monotonicNs += sec * 1000000000; } // compute raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID) uint32_t loadNs = 0; struct timespec newLoad; rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad); if (rc == 0) { if (oldLoadValid) { sec = newLoad.tv_sec - oldLoad.tv_sec; nsec = newLoad.tv_nsec - oldLoad.tv_nsec; if (nsec < 0) { --sec; nsec += 1000000000; } loadNs = nsec; if (sec > 0 && sec < 4) { loadNs += sec * 1000000000; } } else { // first time through the loop oldLoadValid = true; } oldLoad = newLoad; } #ifdef CPU_FREQUENCY_STATISTICS // get the absolute value of CPU clock frequency in kHz int cpuNum = sched_getcpu(); uint32_t kHz = tcu.getCpukHz(cpuNum); kHz = (kHz << 4) | (cpuNum & 0xF); #endif // save values in FIFO queues for dumpsys // these stores #1, #2, #3 are not atomic with respect to each other, // or with respect to store #4 below dumpState->mMonotonicNs[i] = monotonicNs; dumpState->mLoadNs[i] = loadNs; #ifdef CPU_FREQUENCY_STATISTICS dumpState->mCpukHz[i] = kHz; #endif // this store #4 is not atomic with respect to stores #1, #2, #3 above, but // the newest open & oldest closed halves are atomic with respect to each other dumpState->mBounds = bounds; ATRACE_INT("cycle_ms", monotonicNs / 1000000); ATRACE_INT("load_us", loadNs / 1000); } #endif } else { // first time through the loop oldTsValid = true; sleepNs = periodNs; ignoreNextOverrun = true; } oldTs = newTs; } else { // monotonic clock is broken oldTsValid = false; sleepNs = periodNs; } } // for (;;) // never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion } FastMixerDumpState::FastMixerDumpState( #ifdef FAST_MIXER_STATISTICS uint32_t samplingN #endif ) : mCommand(FastMixerState::INITIAL), mWriteSequence(0), mFramesWritten(0), mNumTracks(0), mWriteErrors(0), mUnderruns(0), mOverruns(0), mSampleRate(0), mFrameCount(0), /* mMeasuredWarmupTs({0, 0}), */ mWarmupCycles(0), mTrackMask(0) #ifdef FAST_MIXER_STATISTICS , mSamplingN(0), mBounds(0) #endif { mMeasuredWarmupTs.tv_sec = 0; mMeasuredWarmupTs.tv_nsec = 0; #ifdef FAST_MIXER_STATISTICS increaseSamplingN(samplingN); #endif } #ifdef FAST_MIXER_STATISTICS void FastMixerDumpState::increaseSamplingN(uint32_t samplingN) { if (samplingN <= mSamplingN || samplingN > kSamplingN || roundup(samplingN) != samplingN) { return; } uint32_t additional = samplingN - mSamplingN; // sample arrays aren't accessed atomically with respect to the bounds, // so clearing reduces chance for dumpsys to read random uninitialized samples memset(&mMonotonicNs[mSamplingN], 0, sizeof(mMonotonicNs[0]) * additional); memset(&mLoadNs[mSamplingN], 0, sizeof(mLoadNs[0]) * additional); #ifdef CPU_FREQUENCY_STATISTICS memset(&mCpukHz[mSamplingN], 0, sizeof(mCpukHz[0]) * additional); #endif mSamplingN = samplingN; } #endif FastMixerDumpState::~FastMixerDumpState() { } // helper function called by qsort() static int compare_uint32_t(const void *pa, const void *pb) { uint32_t a = *(const uint32_t *)pa; uint32_t b = *(const uint32_t *)pb; if (a < b) { return -1; } else if (a > b) { return 1; } else { return 0; } } void FastMixerDumpState::dump(int fd) const { if (mCommand == FastMixerState::INITIAL) { dprintf(fd, "FastMixer not initialized\n"); return; } #define COMMAND_MAX 32 char string[COMMAND_MAX]; switch (mCommand) { case FastMixerState::INITIAL: strcpy(string, "INITIAL"); break; case FastMixerState::HOT_IDLE: strcpy(string, "HOT_IDLE"); break; case FastMixerState::COLD_IDLE: strcpy(string, "COLD_IDLE"); break; case FastMixerState::EXIT: strcpy(string, "EXIT"); break; case FastMixerState::MIX: strcpy(string, "MIX"); break; case FastMixerState::WRITE: strcpy(string, "WRITE"); break; case FastMixerState::MIX_WRITE: strcpy(string, "MIX_WRITE"); break; default: snprintf(string, COMMAND_MAX, "%d", mCommand); break; } double measuredWarmupMs = (mMeasuredWarmupTs.tv_sec * 1000.0) + (mMeasuredWarmupTs.tv_nsec / 1000000.0); double mixPeriodSec = (double) mFrameCount / (double) mSampleRate; dprintf(fd, "FastMixer command=%s writeSequence=%u framesWritten=%u\n" " numTracks=%u writeErrors=%u underruns=%u overruns=%u\n" " sampleRate=%u frameCount=%zu measuredWarmup=%.3g ms, warmupCycles=%u\n" " mixPeriod=%.2f ms\n", string, mWriteSequence, mFramesWritten, mNumTracks, mWriteErrors, mUnderruns, mOverruns, mSampleRate, mFrameCount, measuredWarmupMs, mWarmupCycles, mixPeriodSec * 1e3); #ifdef FAST_MIXER_STATISTICS // find the interval of valid samples uint32_t bounds = mBounds; uint32_t newestOpen = bounds & 0xFFFF; uint32_t oldestClosed = bounds >> 16; uint32_t n = (newestOpen - oldestClosed) & 0xFFFF; if (n > mSamplingN) { ALOGE("too many samples %u", n); n = mSamplingN; } // statistics for monotonic (wall clock) time, thread raw CPU load in time, CPU clock frequency, // and adjusted CPU load in MHz normalized for CPU clock frequency CentralTendencyStatistics wall, loadNs; #ifdef CPU_FREQUENCY_STATISTICS CentralTendencyStatistics kHz, loadMHz; uint32_t previousCpukHz = 0; #endif // Assuming a normal distribution for cycle times, three standard deviations on either side of // the mean account for 99.73% of the population. So if we take each tail to be 1/1000 of the // sample set, we get 99.8% combined, or close to three standard deviations. static const uint32_t kTailDenominator = 1000; uint32_t *tail = n >= kTailDenominator ? new uint32_t[n] : NULL; // loop over all the samples for (uint32_t j = 0; j < n; ++j) { size_t i = oldestClosed++ & (mSamplingN - 1); uint32_t wallNs = mMonotonicNs[i]; if (tail != NULL) { tail[j] = wallNs; } wall.sample(wallNs); uint32_t sampleLoadNs = mLoadNs[i]; loadNs.sample(sampleLoadNs); #ifdef CPU_FREQUENCY_STATISTICS uint32_t sampleCpukHz = mCpukHz[i]; // skip bad kHz samples if ((sampleCpukHz & ~0xF) != 0) { kHz.sample(sampleCpukHz >> 4); if (sampleCpukHz == previousCpukHz) { double megacycles = (double) sampleLoadNs * (double) (sampleCpukHz >> 4) * 1e-12; double adjMHz = megacycles / mixPeriodSec; // _not_ wallNs * 1e9 loadMHz.sample(adjMHz); } } previousCpukHz = sampleCpukHz; #endif } dprintf(fd, "Simple moving statistics over last %.1f seconds:\n", wall.n() * mixPeriodSec); dprintf(fd, " wall clock time in ms per mix cycle:\n" " mean=%.2f min=%.2f max=%.2f stddev=%.2f\n", wall.mean()*1e-6, wall.minimum()*1e-6, wall.maximum()*1e-6, wall.stddev()*1e-6); dprintf(fd, " raw CPU load in us per mix cycle:\n" " mean=%.0f min=%.0f max=%.0f stddev=%.0f\n", loadNs.mean()*1e-3, loadNs.minimum()*1e-3, loadNs.maximum()*1e-3, loadNs.stddev()*1e-3); #ifdef CPU_FREQUENCY_STATISTICS dprintf(fd, " CPU clock frequency in MHz:\n" " mean=%.0f min=%.0f max=%.0f stddev=%.0f\n", kHz.mean()*1e-3, kHz.minimum()*1e-3, kHz.maximum()*1e-3, kHz.stddev()*1e-3); dprintf(fd, " adjusted CPU load in MHz (i.e. normalized for CPU clock frequency):\n" " mean=%.1f min=%.1f max=%.1f stddev=%.1f\n", loadMHz.mean(), loadMHz.minimum(), loadMHz.maximum(), loadMHz.stddev()); #endif if (tail != NULL) { qsort(tail, n, sizeof(uint32_t), compare_uint32_t); // assume same number of tail samples on each side, left and right uint32_t count = n / kTailDenominator; CentralTendencyStatistics left, right; for (uint32_t i = 0; i < count; ++i) { left.sample(tail[i]); right.sample(tail[n - (i + 1)]); } dprintf(fd, "Distribution of mix cycle times in ms for the tails (> ~3 stddev outliers):\n" " left tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n" " right tail: mean=%.2f min=%.2f max=%.2f stddev=%.2f\n", left.mean()*1e-6, left.minimum()*1e-6, left.maximum()*1e-6, left.stddev()*1e-6, right.mean()*1e-6, right.minimum()*1e-6, right.maximum()*1e-6, right.stddev()*1e-6); delete[] tail; } #endif // The active track mask and track states are updated non-atomically. // So if we relied on isActive to decide whether to display, // then we might display an obsolete track or omit an active track. // Instead we always display all tracks, with an indication // of whether we think the track is active. uint32_t trackMask = mTrackMask; dprintf(fd, "Fast tracks: kMaxFastTracks=%u activeMask=%#x\n", FastMixerState::kMaxFastTracks, trackMask); dprintf(fd, "Index Active Full Partial Empty Recent Ready\n"); for (uint32_t i = 0; i < FastMixerState::kMaxFastTracks; ++i, trackMask >>= 1) { bool isActive = trackMask & 1; const FastTrackDump *ftDump = &mTracks[i]; const FastTrackUnderruns& underruns = ftDump->mUnderruns; const char *mostRecent; switch (underruns.mBitFields.mMostRecent) { case UNDERRUN_FULL: mostRecent = "full"; break; case UNDERRUN_PARTIAL: mostRecent = "partial"; break; case UNDERRUN_EMPTY: mostRecent = "empty"; break; default: mostRecent = "?"; break; } dprintf(fd, "%5u %6s %4u %7u %5u %7s %5zu\n", i, isActive ? "yes" : "no", (underruns.mBitFields.mFull) & UNDERRUN_MASK, (underruns.mBitFields.mPartial) & UNDERRUN_MASK, (underruns.mBitFields.mEmpty) & UNDERRUN_MASK, mostRecent, ftDump->mFramesReady); } } } // namespace android