/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "FastThread" //#define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_AUDIO #include "Configuration.h" #include #include #include #include #include "FastThread.h" #include "FastThreadDumpState.h" #define FAST_DEFAULT_NS 999999999L // ~1 sec: default time to sleep #define FAST_HOT_IDLE_NS 1000000L // 1 ms: time to sleep while hot idling #define MIN_WARMUP_CYCLES 2 // minimum number of consecutive in-range loop cycles // to wait for warmup #define MAX_WARMUP_CYCLES 10 // maximum number of loop cycles to wait for warmup namespace android { FastThread::FastThread() : Thread(false /*canCallJava*/), // re-initialized to &initial by subclass constructor previous(NULL), current(NULL), /* oldTs({0, 0}), */ oldTsValid(false), sleepNs(-1), periodNs(0), underrunNs(0), overrunNs(0), forceNs(0), warmupNsMin(0), warmupNsMax(LONG_MAX), // re-initialized to &dummyDumpState by subclass constructor mDummyDumpState(NULL), dumpState(NULL), ignoreNextOverrun(true), #ifdef FAST_MIXER_STATISTICS // oldLoad oldLoadValid(false), bounds(0), full(false), // tcu #endif coldGen(0), isWarm(false), /* measuredWarmupTs({0, 0}), */ warmupCycles(0), warmupConsecutiveInRangeCycles(0), // dummyLogWriter logWriter(&dummyLogWriter), timestampStatus(INVALID_OPERATION), command(FastThreadState::INITIAL), #if 0 frameCount(0), #endif attemptedWrite(false) { oldTs.tv_sec = 0; oldTs.tv_nsec = 0; measuredWarmupTs.tv_sec = 0; measuredWarmupTs.tv_nsec = 0; } FastThread::~FastThread() { } bool FastThread::threadLoop() { for (;;) { // either nanosleep, sched_yield, or busy wait if (sleepNs >= 0) { if (sleepNs > 0) { ALOG_ASSERT(sleepNs < 1000000000); const struct timespec req = {0, sleepNs}; nanosleep(&req, NULL); } else { sched_yield(); } } // default to long sleep for next cycle sleepNs = FAST_DEFAULT_NS; // poll for state change const FastThreadState *next = poll(); if (next == NULL) { // continue to use the default initial state until a real state is available // FIXME &initial not available, should save address earlier //ALOG_ASSERT(current == &initial && previous == &initial); next = current; } command = next->mCommand; if (next != current) { // As soon as possible of learning of a new dump area, start using it dumpState = next->mDumpState != NULL ? next->mDumpState : mDummyDumpState; logWriter = next->mNBLogWriter != NULL ? next->mNBLogWriter : &dummyLogWriter; setLog(logWriter); // We want to always have a valid reference to the previous (non-idle) state. // However, the state queue only guarantees access to current and previous states. // So when there is a transition from a non-idle state into an idle state, we make a // copy of the last known non-idle state so it is still available on return from idle. // The possible transitions are: // non-idle -> non-idle update previous from current in-place // non-idle -> idle update previous from copy of current // idle -> idle don't update previous // idle -> non-idle don't update previous if (!(current->mCommand & FastThreadState::IDLE)) { if (command & FastThreadState::IDLE) { onIdle(); oldTsValid = false; #ifdef FAST_MIXER_STATISTICS oldLoadValid = false; #endif ignoreNextOverrun = true; } previous = current; } current = next; } #if !LOG_NDEBUG next = NULL; // not referenced again #endif dumpState->mCommand = command; // << current, previous, command, dumpState >> switch (command) { case FastThreadState::INITIAL: case FastThreadState::HOT_IDLE: sleepNs = FAST_HOT_IDLE_NS; continue; case FastThreadState::COLD_IDLE: // only perform a cold idle command once // FIXME consider checking previous state and only perform if previous != COLD_IDLE if (current->mColdGen != coldGen) { int32_t *coldFutexAddr = current->mColdFutexAddr; ALOG_ASSERT(coldFutexAddr != NULL); int32_t old = android_atomic_dec(coldFutexAddr); if (old <= 0) { syscall(__NR_futex, coldFutexAddr, FUTEX_WAIT_PRIVATE, old - 1, NULL); } int policy = sched_getscheduler(0); if (!(policy == SCHED_FIFO || policy == SCHED_RR)) { ALOGE("did not receive expected priority boost"); } // This may be overly conservative; there could be times that the normal mixer // requests such a brief cold idle that it doesn't require resetting this flag. isWarm = false; measuredWarmupTs.tv_sec = 0; measuredWarmupTs.tv_nsec = 0; warmupCycles = 0; warmupConsecutiveInRangeCycles = 0; sleepNs = -1; coldGen = current->mColdGen; #ifdef FAST_MIXER_STATISTICS bounds = 0; full = false; #endif oldTsValid = !clock_gettime(CLOCK_MONOTONIC, &oldTs); timestampStatus = INVALID_OPERATION; } else { sleepNs = FAST_HOT_IDLE_NS; } continue; case FastThreadState::EXIT: onExit(); return false; default: LOG_ALWAYS_FATAL_IF(!isSubClassCommand(command)); break; } // there is a non-idle state available to us; did the state change? if (current != previous) { onStateChange(); #if 1 // FIXME shouldn't need this // only process state change once previous = current; #endif } // do work using current state here attemptedWrite = false; onWork(); // To be exactly periodic, compute the next sleep time based on current time. // This code doesn't have long-term stability when the sink is non-blocking. // FIXME To avoid drift, use the local audio clock or watch the sink's fill status. struct timespec newTs; int rc = clock_gettime(CLOCK_MONOTONIC, &newTs); if (rc == 0) { //logWriter->logTimestamp(newTs); if (oldTsValid) { time_t sec = newTs.tv_sec - oldTs.tv_sec; long nsec = newTs.tv_nsec - oldTs.tv_nsec; ALOGE_IF(sec < 0 || (sec == 0 && nsec < 0), "clock_gettime(CLOCK_MONOTONIC) failed: was %ld.%09ld but now %ld.%09ld", oldTs.tv_sec, oldTs.tv_nsec, newTs.tv_sec, newTs.tv_nsec); if (nsec < 0) { --sec; nsec += 1000000000; } // To avoid an initial underrun on fast tracks after exiting standby, // do not start pulling data from tracks and mixing until warmup is complete. // Warmup is considered complete after the earlier of: // MIN_WARMUP_CYCLES consecutive in-range write() attempts, // where "in-range" means warmupNsMin <= cycle time <= warmupNsMax // MAX_WARMUP_CYCLES write() attempts. // This is overly conservative, but to get better accuracy requires a new HAL API. if (!isWarm && attemptedWrite) { measuredWarmupTs.tv_sec += sec; measuredWarmupTs.tv_nsec += nsec; if (measuredWarmupTs.tv_nsec >= 1000000000) { measuredWarmupTs.tv_sec++; measuredWarmupTs.tv_nsec -= 1000000000; } ++warmupCycles; if (warmupNsMin <= nsec && nsec <= warmupNsMax) { ALOGV("warmup cycle %d in range: %.03f ms", warmupCycles, nsec * 1e-9); ++warmupConsecutiveInRangeCycles; } else { ALOGV("warmup cycle %d out of range: %.03f ms", warmupCycles, nsec * 1e-9); warmupConsecutiveInRangeCycles = 0; } if ((warmupConsecutiveInRangeCycles >= MIN_WARMUP_CYCLES) || (warmupCycles >= MAX_WARMUP_CYCLES)) { isWarm = true; dumpState->mMeasuredWarmupTs = measuredWarmupTs; dumpState->mWarmupCycles = warmupCycles; } } sleepNs = -1; if (isWarm) { if (sec > 0 || nsec > underrunNs) { ATRACE_NAME("underrun"); // FIXME only log occasionally ALOGV("underrun: time since last cycle %d.%03ld sec", (int) sec, nsec / 1000000L); dumpState->mUnderruns++; ignoreNextOverrun = true; } else if (nsec < overrunNs) { if (ignoreNextOverrun) { ignoreNextOverrun = false; } else { // FIXME only log occasionally ALOGV("overrun: time since last cycle %d.%03ld sec", (int) sec, nsec / 1000000L); dumpState->mOverruns++; } // This forces a minimum cycle time. It: // - compensates for an audio HAL with jitter due to sample rate conversion // - works with a variable buffer depth audio HAL that never pulls at a // rate < than overrunNs per buffer. // - recovers from overrun immediately after underrun // It doesn't work with a non-blocking audio HAL. sleepNs = forceNs - nsec; } else { ignoreNextOverrun = false; } } #ifdef FAST_MIXER_STATISTICS if (isWarm) { // advance the FIFO queue bounds size_t i = bounds & (dumpState->mSamplingN - 1); bounds = (bounds & 0xFFFF0000) | ((bounds + 1) & 0xFFFF); if (full) { bounds += 0x10000; } else if (!(bounds & (dumpState->mSamplingN - 1))) { full = true; } // compute the delta value of clock_gettime(CLOCK_MONOTONIC) uint32_t monotonicNs = nsec; if (sec > 0 && sec < 4) { monotonicNs += sec * 1000000000; } // compute raw CPU load = delta value of clock_gettime(CLOCK_THREAD_CPUTIME_ID) uint32_t loadNs = 0; struct timespec newLoad; rc = clock_gettime(CLOCK_THREAD_CPUTIME_ID, &newLoad); if (rc == 0) { if (oldLoadValid) { sec = newLoad.tv_sec - oldLoad.tv_sec; nsec = newLoad.tv_nsec - oldLoad.tv_nsec; if (nsec < 0) { --sec; nsec += 1000000000; } loadNs = nsec; if (sec > 0 && sec < 4) { loadNs += sec * 1000000000; } } else { // first time through the loop oldLoadValid = true; } oldLoad = newLoad; } #ifdef CPU_FREQUENCY_STATISTICS // get the absolute value of CPU clock frequency in kHz int cpuNum = sched_getcpu(); uint32_t kHz = tcu.getCpukHz(cpuNum); kHz = (kHz << 4) | (cpuNum & 0xF); #endif // save values in FIFO queues for dumpsys // these stores #1, #2, #3 are not atomic with respect to each other, // or with respect to store #4 below dumpState->mMonotonicNs[i] = monotonicNs; dumpState->mLoadNs[i] = loadNs; #ifdef CPU_FREQUENCY_STATISTICS dumpState->mCpukHz[i] = kHz; #endif // this store #4 is not atomic with respect to stores #1, #2, #3 above, but // the newest open & oldest closed halves are atomic with respect to each other dumpState->mBounds = bounds; ATRACE_INT("cycle_ms", monotonicNs / 1000000); ATRACE_INT("load_us", loadNs / 1000); } #endif } else { // first time through the loop oldTsValid = true; sleepNs = periodNs; ignoreNextOverrun = true; } oldTs = newTs; } else { // monotonic clock is broken oldTsValid = false; sleepNs = periodNs; } } // for (;;) // never return 'true'; Thread::_threadLoop() locks mutex which can result in priority inversion } } // namespace android