/* ** ** Copyright 2012, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ** ** This file was modified by DTS, Inc. The portions of the ** code that are surrounded by "DTS..." are copyrighted and ** licensed separately, as follows: ** ** (C) 2015 DTS, Inc. ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ** */ #define LOG_TAG "AudioFlinger" //#define LOG_NDEBUG 0 #define ATRACE_TAG ATRACE_TAG_AUDIO #include "Configuration.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // NBAIO implementations #include #include #include #include #include #include #include #include #include #include #include "AudioFlinger.h" #include "AudioMixer.h" #include "BufferProviders.h" #include "FastMixer.h" #include "FastCapture.h" #include "ServiceUtilities.h" #include "mediautils/SchedulingPolicyService.h" #ifdef ADD_BATTERY_DATA #include #include #endif #ifdef DEBUG_CPU_USAGE #include #include #endif #ifdef SRS_PROCESSING #include "postpro_patch.h" #endif // ---------------------------------------------------------------------------- // Note: the following macro is used for extremely verbose logging message. In // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to // 0; but one side effect of this is to turn all LOGV's as well. Some messages // are so verbose that we want to suppress them even when we have ALOG_ASSERT // turned on. Do not uncomment the #def below unless you really know what you // are doing and want to see all of the extremely verbose messages. //#define VERY_VERY_VERBOSE_LOGGING #ifdef VERY_VERY_VERBOSE_LOGGING #define ALOGVV ALOGV #else #define ALOGVV(a...) do { } while(0) #endif // TODO: Move these macro/inlines to a header file. #define max(a, b) ((a) > (b) ? (a) : (b)) template static inline T min(const T& a, const T& b) { return a < b ? a : b; } #ifndef ARRAY_SIZE #define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0])) #endif namespace android { // retry counts for buffer fill timeout // 50 * ~20msecs = 1 second static const int8_t kMaxTrackRetries = 50; static const int8_t kMaxTrackStartupRetries = 50; // allow less retry attempts on direct output thread. // direct outputs can be a scarce resource in audio hardware and should // be released as quickly as possible. static const int8_t kMaxTrackRetriesDirect = 2; // don't warn about blocked writes or record buffer overflows more often than this static const nsecs_t kWarningThrottleNs = seconds(5); // RecordThread loop sleep time upon application overrun or audio HAL read error static const int kRecordThreadSleepUs = 5000; // maximum time to wait in sendConfigEvent_l() for a status to be received static const nsecs_t kConfigEventTimeoutNs = seconds(2); // minimum sleep time for the mixer thread loop when tracks are active but in underrun static const uint32_t kMinThreadSleepTimeUs = 5000; // maximum divider applied to the active sleep time in the mixer thread loop static const uint32_t kMaxThreadSleepTimeShift = 2; // minimum normal sink buffer size, expressed in milliseconds rather than frames // FIXME This should be based on experimentally observed scheduling jitter static const uint32_t kMinNormalSinkBufferSizeMs = 20; // maximum normal sink buffer size static const uint32_t kMaxNormalSinkBufferSizeMs = 24; // minimum capture buffer size in milliseconds to _not_ need a fast capture thread // FIXME This should be based on experimentally observed scheduling jitter static const uint32_t kMinNormalCaptureBufferSizeMs = 12; // Offloaded output thread standby delay: allows track transition without going to standby static const nsecs_t kOffloadStandbyDelayNs = seconds(1); // Whether to use fast mixer static const enum { FastMixer_Never, // never initialize or use: for debugging only FastMixer_Always, // always initialize and use, even if not needed: for debugging only // normal mixer multiplier is 1 FastMixer_Static, // initialize if needed, then use all the time if initialized, // multiplier is calculated based on min & max normal mixer buffer size FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load, // multiplier is calculated based on min & max normal mixer buffer size // FIXME for FastMixer_Dynamic: // Supporting this option will require fixing HALs that can't handle large writes. // For example, one HAL implementation returns an error from a large write, // and another HAL implementation corrupts memory, possibly in the sample rate converter. // We could either fix the HAL implementations, or provide a wrapper that breaks // up large writes into smaller ones, and the wrapper would need to deal with scheduler. } kUseFastMixer = FastMixer_Static; // Whether to use fast capture static const enum { FastCapture_Never, // never initialize or use: for debugging only FastCapture_Always, // always initialize and use, even if not needed: for debugging only FastCapture_Static, // initialize if needed, then use all the time if initialized } kUseFastCapture = FastCapture_Static; // Priorities for requestPriority static const int kPriorityAudioApp = 2; static const int kPriorityFastMixer = 3; static const int kPriorityFastCapture = 3; // IAudioFlinger::createTrack() reports back to client the total size of shared memory area // for the track. The client then sub-divides this into smaller buffers for its use. // Currently the client uses N-buffering by default, but doesn't tell us about the value of N. // So for now we just assume that client is double-buffered for fast tracks. // FIXME It would be better for client to tell AudioFlinger the value of N, // so AudioFlinger could allocate the right amount of memory. // See the client's minBufCount and mNotificationFramesAct calculations for details. // This is the default value, if not specified by property. static const int kFastTrackMultiplier = 2; // The minimum and maximum allowed values static const int kFastTrackMultiplierMin = 1; static const int kFastTrackMultiplierMax = 2; // The actual value to use, which can be specified per-device via property af.fast_track_multiplier. static int sFastTrackMultiplier = kFastTrackMultiplier; // See Thread::readOnlyHeap(). // Initially this heap is used to allocate client buffers for "fast" AudioRecord. // Eventually it will be the single buffer that FastCapture writes into via HAL read(), // and that all "fast" AudioRecord clients read from. In either case, the size can be small. static const size_t kRecordThreadReadOnlyHeapSize = 0x2000; // ---------------------------------------------------------------------------- static pthread_once_t sFastTrackMultiplierOnce = PTHREAD_ONCE_INIT; static void sFastTrackMultiplierInit() { char value[PROPERTY_VALUE_MAX]; if (property_get("af.fast_track_multiplier", value, NULL) > 0) { char *endptr; unsigned long ul = strtoul(value, &endptr, 0); if (*endptr == '\0' && kFastTrackMultiplierMin <= ul && ul <= kFastTrackMultiplierMax) { sFastTrackMultiplier = (int) ul; } } } // ---------------------------------------------------------------------------- #ifdef ADD_BATTERY_DATA // To collect the amplifier usage static void addBatteryData(uint32_t params) { sp service = IMediaDeathNotifier::getMediaPlayerService(); if (service == NULL) { // it already logged return; } service->addBatteryData(params); } #endif // ---------------------------------------------------------------------------- // CPU Stats // ---------------------------------------------------------------------------- class CpuStats { public: CpuStats(); void sample(const String8 &title); #ifdef DEBUG_CPU_USAGE private: ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles int mCpuNum; // thread's current CPU number int mCpukHz; // frequency of thread's current CPU in kHz #endif }; CpuStats::CpuStats() #ifdef DEBUG_CPU_USAGE : mCpuNum(-1), mCpukHz(-1) #endif { } void CpuStats::sample(const String8 &title #ifndef DEBUG_CPU_USAGE __unused #endif ) { #ifdef DEBUG_CPU_USAGE // get current thread's delta CPU time in wall clock ns double wcNs; bool valid = mCpuUsage.sampleAndEnable(wcNs); // record sample for wall clock statistics if (valid) { mWcStats.sample(wcNs); } // get the current CPU number int cpuNum = sched_getcpu(); // get the current CPU frequency in kHz int cpukHz = mCpuUsage.getCpukHz(cpuNum); // check if either CPU number or frequency changed if (cpuNum != mCpuNum || cpukHz != mCpukHz) { mCpuNum = cpuNum; mCpukHz = cpukHz; // ignore sample for purposes of cycles valid = false; } // if no change in CPU number or frequency, then record sample for cycle statistics if (valid && mCpukHz > 0) { double cycles = wcNs * cpukHz * 0.000001; mHzStats.sample(cycles); } unsigned n = mWcStats.n(); // mCpuUsage.elapsed() is expensive, so don't call it every loop if ((n & 127) == 1) { long long elapsed = mCpuUsage.elapsed(); if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) { double perLoop = elapsed / (double) n; double perLoop100 = perLoop * 0.01; double perLoop1k = perLoop * 0.001; double mean = mWcStats.mean(); double stddev = mWcStats.stddev(); double minimum = mWcStats.minimum(); double maximum = mWcStats.maximum(); double meanCycles = mHzStats.mean(); double stddevCycles = mHzStats.stddev(); double minCycles = mHzStats.minimum(); double maxCycles = mHzStats.maximum(); mCpuUsage.resetElapsed(); mWcStats.reset(); mHzStats.reset(); ALOGD("CPU usage for %s over past %.1f secs\n" " (%u mixer loops at %.1f mean ms per loop):\n" " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n" " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n" " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f", title.string(), elapsed * .000000001, n, perLoop * .000001, mean * .001, stddev * .001, minimum * .001, maximum * .001, mean / perLoop100, stddev / perLoop100, minimum / perLoop100, maximum / perLoop100, meanCycles / perLoop1k, stddevCycles / perLoop1k, minCycles / perLoop1k, maxCycles / perLoop1k); } } #endif }; // ---------------------------------------------------------------------------- // ThreadBase // ---------------------------------------------------------------------------- // static const char *AudioFlinger::ThreadBase::threadTypeToString(AudioFlinger::ThreadBase::type_t type) { switch (type) { case MIXER: return "MIXER"; case DIRECT: return "DIRECT"; case DUPLICATING: return "DUPLICATING"; case RECORD: return "RECORD"; case OFFLOAD: return "OFFLOAD"; default: return "unknown"; } } String8 devicesToString(audio_devices_t devices) { static const struct mapping { audio_devices_t mDevices; const char * mString; } mappingsOut[] = { AUDIO_DEVICE_OUT_EARPIECE, "EARPIECE", AUDIO_DEVICE_OUT_SPEAKER, "SPEAKER", AUDIO_DEVICE_OUT_WIRED_HEADSET, "WIRED_HEADSET", AUDIO_DEVICE_OUT_WIRED_HEADPHONE, "WIRED_HEADPHONE", AUDIO_DEVICE_OUT_BLUETOOTH_SCO, "BLUETOOTH_SCO", AUDIO_DEVICE_OUT_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET", AUDIO_DEVICE_OUT_BLUETOOTH_SCO_CARKIT, "BLUETOOTH_SCO_CARKIT", AUDIO_DEVICE_OUT_BLUETOOTH_A2DP, "BLUETOOTH_A2DP", AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_HEADPHONES, "BLUETOOTH_A2DP_HEADPHONES", AUDIO_DEVICE_OUT_BLUETOOTH_A2DP_SPEAKER, "BLUETOOTH_A2DP_SPEAKER", AUDIO_DEVICE_OUT_AUX_DIGITAL, "AUX_DIGITAL", AUDIO_DEVICE_OUT_HDMI, "HDMI", AUDIO_DEVICE_OUT_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET", AUDIO_DEVICE_OUT_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET", AUDIO_DEVICE_OUT_USB_ACCESSORY, "USB_ACCESSORY", AUDIO_DEVICE_OUT_USB_DEVICE, "USB_DEVICE", AUDIO_DEVICE_OUT_TELEPHONY_TX, "TELEPHONY_TX", AUDIO_DEVICE_OUT_LINE, "LINE", AUDIO_DEVICE_OUT_HDMI_ARC, "HDMI_ARC", AUDIO_DEVICE_OUT_SPDIF, "SPDIF", AUDIO_DEVICE_OUT_FM, "FM", AUDIO_DEVICE_OUT_AUX_LINE, "AUX_LINE", AUDIO_DEVICE_OUT_SPEAKER_SAFE, "SPEAKER_SAFE", AUDIO_DEVICE_OUT_IP, "IP", AUDIO_DEVICE_NONE, "NONE", // must be last }, mappingsIn[] = { AUDIO_DEVICE_IN_COMMUNICATION, "COMMUNICATION", AUDIO_DEVICE_IN_AMBIENT, "AMBIENT", AUDIO_DEVICE_IN_BUILTIN_MIC, "BUILTIN_MIC", AUDIO_DEVICE_IN_BLUETOOTH_SCO_HEADSET, "BLUETOOTH_SCO_HEADSET", AUDIO_DEVICE_IN_WIRED_HEADSET, "WIRED_HEADSET", AUDIO_DEVICE_IN_AUX_DIGITAL, "AUX_DIGITAL", AUDIO_DEVICE_IN_VOICE_CALL, "VOICE_CALL", AUDIO_DEVICE_IN_TELEPHONY_RX, "TELEPHONY_RX", AUDIO_DEVICE_IN_BACK_MIC, "BACK_MIC", AUDIO_DEVICE_IN_REMOTE_SUBMIX, "REMOTE_SUBMIX", AUDIO_DEVICE_IN_ANLG_DOCK_HEADSET, "ANLG_DOCK_HEADSET", AUDIO_DEVICE_IN_DGTL_DOCK_HEADSET, "DGTL_DOCK_HEADSET", AUDIO_DEVICE_IN_USB_ACCESSORY, "USB_ACCESSORY", AUDIO_DEVICE_IN_USB_DEVICE, "USB_DEVICE", AUDIO_DEVICE_IN_FM_TUNER, "FM_TUNER", AUDIO_DEVICE_IN_TV_TUNER, "TV_TUNER", AUDIO_DEVICE_IN_LINE, "LINE", AUDIO_DEVICE_IN_SPDIF, "SPDIF", AUDIO_DEVICE_IN_BLUETOOTH_A2DP, "BLUETOOTH_A2DP", AUDIO_DEVICE_IN_LOOPBACK, "LOOPBACK", AUDIO_DEVICE_IN_IP, "IP", AUDIO_DEVICE_NONE, "NONE", // must be last }; String8 result; audio_devices_t allDevices = AUDIO_DEVICE_NONE; const mapping *entry; if (devices & AUDIO_DEVICE_BIT_IN) { devices &= ~AUDIO_DEVICE_BIT_IN; entry = mappingsIn; } else { entry = mappingsOut; } for ( ; entry->mDevices != AUDIO_DEVICE_NONE; entry++) { allDevices = (audio_devices_t) (allDevices | entry->mDevices); if (devices & entry->mDevices) { if (!result.isEmpty()) { result.append("|"); } result.append(entry->mString); } } if (devices & ~allDevices) { if (!result.isEmpty()) { result.append("|"); } result.appendFormat("0x%X", devices & ~allDevices); } if (result.isEmpty()) { result.append(entry->mString); } return result; } String8 inputFlagsToString(audio_input_flags_t flags) { static const struct mapping { audio_input_flags_t mFlag; const char * mString; } mappings[] = { AUDIO_INPUT_FLAG_FAST, "FAST", AUDIO_INPUT_FLAG_HW_HOTWORD, "HW_HOTWORD", AUDIO_INPUT_FLAG_NONE, "NONE", // must be last }; String8 result; audio_input_flags_t allFlags = AUDIO_INPUT_FLAG_NONE; const mapping *entry; for (entry = mappings; entry->mFlag != AUDIO_INPUT_FLAG_NONE; entry++) { allFlags = (audio_input_flags_t) (allFlags | entry->mFlag); if (flags & entry->mFlag) { if (!result.isEmpty()) { result.append("|"); } result.append(entry->mString); } } if (flags & ~allFlags) { if (!result.isEmpty()) { result.append("|"); } result.appendFormat("0x%X", flags & ~allFlags); } if (result.isEmpty()) { result.append(entry->mString); } return result; } String8 outputFlagsToString(audio_output_flags_t flags) { static const struct mapping { audio_output_flags_t mFlag; const char * mString; } mappings[] = { AUDIO_OUTPUT_FLAG_DIRECT, "DIRECT", AUDIO_OUTPUT_FLAG_PRIMARY, "PRIMARY", AUDIO_OUTPUT_FLAG_FAST, "FAST", AUDIO_OUTPUT_FLAG_DEEP_BUFFER, "DEEP_BUFFER", AUDIO_OUTPUT_FLAG_COMPRESS_OFFLOAD, "COMPRESS_OFFLOAD", AUDIO_OUTPUT_FLAG_NON_BLOCKING, "NON_BLOCKING", AUDIO_OUTPUT_FLAG_HW_AV_SYNC, "HW_AV_SYNC", AUDIO_OUTPUT_FLAG_NONE, "NONE", // must be last }; String8 result; audio_output_flags_t allFlags = AUDIO_OUTPUT_FLAG_NONE; const mapping *entry; for (entry = mappings; entry->mFlag != AUDIO_OUTPUT_FLAG_NONE; entry++) { allFlags = (audio_output_flags_t) (allFlags | entry->mFlag); if (flags & entry->mFlag) { if (!result.isEmpty()) { result.append("|"); } result.append(entry->mString); } } if (flags & ~allFlags) { if (!result.isEmpty()) { result.append("|"); } result.appendFormat("0x%X", flags & ~allFlags); } if (result.isEmpty()) { result.append(entry->mString); } return result; } const char *sourceToString(audio_source_t source) { switch (source) { case AUDIO_SOURCE_DEFAULT: return "default"; case AUDIO_SOURCE_MIC: return "mic"; case AUDIO_SOURCE_VOICE_UPLINK: return "voice uplink"; case AUDIO_SOURCE_VOICE_DOWNLINK: return "voice downlink"; case AUDIO_SOURCE_VOICE_CALL: return "voice call"; case AUDIO_SOURCE_CAMCORDER: return "camcorder"; case AUDIO_SOURCE_VOICE_RECOGNITION: return "voice recognition"; case AUDIO_SOURCE_VOICE_COMMUNICATION: return "voice communication"; case AUDIO_SOURCE_REMOTE_SUBMIX: return "remote submix"; case AUDIO_SOURCE_FM_TUNER: return "FM tuner"; case AUDIO_SOURCE_HOTWORD: return "hotword"; default: return "unknown"; } } AudioFlinger::ThreadBase::ThreadBase(const sp& audioFlinger, audio_io_handle_t id, audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady) : Thread(false /*canCallJava*/), mType(type), mAudioFlinger(audioFlinger), // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, mFormat, mBufferSize // are set by PlaybackThread::readOutputParameters_l() or // RecordThread::readInputParameters_l() //FIXME: mStandby should be true here. Is this some kind of hack? mStandby(false), mOutDevice(outDevice), mInDevice(inDevice), mPrevOutDevice(AUDIO_DEVICE_NONE), mPrevInDevice(AUDIO_DEVICE_NONE), mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id), // mName will be set by concrete (non-virtual) subclass mDeathRecipient(new PMDeathRecipient(this)), mSystemReady(systemReady) { memset(&mPatch, 0, sizeof(struct audio_patch)); mIsDirectPcm = false; } AudioFlinger::ThreadBase::~ThreadBase() { // mConfigEvents should be empty, but just in case it isn't, free the memory it owns mConfigEvents.clear(); // do not lock the mutex in destructor releaseWakeLock_l(); if (mPowerManager != 0) { sp binder = IInterface::asBinder(mPowerManager); binder->unlinkToDeath(mDeathRecipient); } } status_t AudioFlinger::ThreadBase::readyToRun() { status_t status = initCheck(); if (status == NO_ERROR) { ALOGI("AudioFlinger's thread %p ready to run", this); } else { ALOGE("No working audio driver found."); } return status; } void AudioFlinger::ThreadBase::exit() { ALOGV("ThreadBase::exit"); // do any cleanup required for exit to succeed preExit(); { // This lock prevents the following race in thread (uniprocessor for illustration): // if (!exitPending()) { // // context switch from here to exit() // // exit() calls requestExit(), what exitPending() observes // // exit() calls signal(), which is dropped since no waiters // // context switch back from exit() to here // mWaitWorkCV.wait(...); // // now thread is hung // } AutoMutex lock(mLock); requestExit(); mWaitWorkCV.broadcast(); } // When Thread::requestExitAndWait is made virtual and this method is renamed to // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();" requestExitAndWait(); } status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs) { status_t status; ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string()); Mutex::Autolock _l(mLock); return sendSetParameterConfigEvent_l(keyValuePairs); } // sendConfigEvent_l() must be called with ThreadBase::mLock held // Can temporarily release the lock if waiting for a reply from processConfigEvents_l(). status_t AudioFlinger::ThreadBase::sendConfigEvent_l(sp& event) { status_t status = NO_ERROR; if (event->mRequiresSystemReady && !mSystemReady) { event->mWaitStatus = false; mPendingConfigEvents.add(event); return status; } mConfigEvents.add(event); ALOGV("sendConfigEvent_l() num events %d event %d", mConfigEvents.size(), event->mType); mWaitWorkCV.signal(); mLock.unlock(); { Mutex::Autolock _l(event->mLock); while (event->mWaitStatus) { if (event->mCond.waitRelative(event->mLock, kConfigEventTimeoutNs) != NO_ERROR) { event->mStatus = TIMED_OUT; event->mWaitStatus = false; } } status = event->mStatus; } mLock.lock(); return status; } void AudioFlinger::ThreadBase::sendIoConfigEvent(audio_io_config_event event, pid_t pid) { Mutex::Autolock _l(mLock); sendIoConfigEvent_l(event, pid); } // sendIoConfigEvent_l() must be called with ThreadBase::mLock held void AudioFlinger::ThreadBase::sendIoConfigEvent_l(audio_io_config_event event, pid_t pid) { sp configEvent = (ConfigEvent *)new IoConfigEvent(event, pid); sendConfigEvent_l(configEvent); } void AudioFlinger::ThreadBase::sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio) { Mutex::Autolock _l(mLock); sendPrioConfigEvent_l(pid, tid, prio); } // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio) { sp configEvent = (ConfigEvent *)new PrioConfigEvent(pid, tid, prio); sendConfigEvent_l(configEvent); } // sendSetParameterConfigEvent_l() must be called with ThreadBase::mLock held status_t AudioFlinger::ThreadBase::sendSetParameterConfigEvent_l(const String8& keyValuePair) { sp configEvent = (ConfigEvent *)new SetParameterConfigEvent(keyValuePair); return sendConfigEvent_l(configEvent); } status_t AudioFlinger::ThreadBase::sendCreateAudioPatchConfigEvent( const struct audio_patch *patch, audio_patch_handle_t *handle) { Mutex::Autolock _l(mLock); sp configEvent = (ConfigEvent *)new CreateAudioPatchConfigEvent(*patch, *handle); status_t status = sendConfigEvent_l(configEvent); if (status == NO_ERROR) { CreateAudioPatchConfigEventData *data = (CreateAudioPatchConfigEventData *)configEvent->mData.get(); *handle = data->mHandle; } return status; } status_t AudioFlinger::ThreadBase::sendReleaseAudioPatchConfigEvent( const audio_patch_handle_t handle) { Mutex::Autolock _l(mLock); sp configEvent = (ConfigEvent *)new ReleaseAudioPatchConfigEvent(handle); return sendConfigEvent_l(configEvent); } // post condition: mConfigEvents.isEmpty() void AudioFlinger::ThreadBase::processConfigEvents_l() { bool configChanged = false; while (!mConfigEvents.isEmpty()) { ALOGV("processConfigEvents_l() remaining events %d", mConfigEvents.size()); sp event = mConfigEvents[0]; mConfigEvents.removeAt(0); switch (event->mType) { case CFG_EVENT_PRIO: { PrioConfigEventData *data = (PrioConfigEventData *)event->mData.get(); // FIXME Need to understand why this has to be done asynchronously int err = requestPriority(data->mPid, data->mTid, data->mPrio, true /*asynchronous*/); if (err != 0) { ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d", data->mPrio, data->mPid, data->mTid, err); } } break; case CFG_EVENT_IO: { IoConfigEventData *data = (IoConfigEventData *)event->mData.get(); ioConfigChanged(data->mEvent, data->mPid); } break; case CFG_EVENT_SET_PARAMETER: { SetParameterConfigEventData *data = (SetParameterConfigEventData *)event->mData.get(); if (checkForNewParameter_l(data->mKeyValuePairs, event->mStatus)) { configChanged = true; } } break; case CFG_EVENT_CREATE_AUDIO_PATCH: { CreateAudioPatchConfigEventData *data = (CreateAudioPatchConfigEventData *)event->mData.get(); event->mStatus = createAudioPatch_l(&data->mPatch, &data->mHandle); } break; case CFG_EVENT_RELEASE_AUDIO_PATCH: { ReleaseAudioPatchConfigEventData *data = (ReleaseAudioPatchConfigEventData *)event->mData.get(); event->mStatus = releaseAudioPatch_l(data->mHandle); } break; default: ALOG_ASSERT(false, "processConfigEvents_l() unknown event type %d", event->mType); break; } { Mutex::Autolock _l(event->mLock); if (event->mWaitStatus) { event->mWaitStatus = false; event->mCond.signal(); } } ALOGV_IF(mConfigEvents.isEmpty(), "processConfigEvents_l() DONE thread %p", this); } if (configChanged) { cacheParameters_l(); } } String8 channelMaskToString(audio_channel_mask_t mask, bool output) { String8 s; const audio_channel_representation_t representation = audio_channel_mask_get_representation(mask); switch (representation) { case AUDIO_CHANNEL_REPRESENTATION_POSITION: { if (output) { if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT) s.append("front-left, "); if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT) s.append("front-right, "); if (mask & AUDIO_CHANNEL_OUT_FRONT_CENTER) s.append("front-center, "); if (mask & AUDIO_CHANNEL_OUT_LOW_FREQUENCY) s.append("low freq, "); if (mask & AUDIO_CHANNEL_OUT_BACK_LEFT) s.append("back-left, "); if (mask & AUDIO_CHANNEL_OUT_BACK_RIGHT) s.append("back-right, "); if (mask & AUDIO_CHANNEL_OUT_FRONT_LEFT_OF_CENTER) s.append("front-left-of-center, "); if (mask & AUDIO_CHANNEL_OUT_FRONT_RIGHT_OF_CENTER) s.append("front-right-of-center, "); if (mask & AUDIO_CHANNEL_OUT_BACK_CENTER) s.append("back-center, "); if (mask & AUDIO_CHANNEL_OUT_SIDE_LEFT) s.append("side-left, "); if (mask & AUDIO_CHANNEL_OUT_SIDE_RIGHT) s.append("side-right, "); if (mask & AUDIO_CHANNEL_OUT_TOP_CENTER) s.append("top-center ,"); if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_LEFT) s.append("top-front-left, "); if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_CENTER) s.append("top-front-center, "); if (mask & AUDIO_CHANNEL_OUT_TOP_FRONT_RIGHT) s.append("top-front-right, "); if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_LEFT) s.append("top-back-left, "); if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_CENTER) s.append("top-back-center, " ); if (mask & AUDIO_CHANNEL_OUT_TOP_BACK_RIGHT) s.append("top-back-right, " ); if (mask & ~AUDIO_CHANNEL_OUT_ALL) s.append("unknown, "); } else { if (mask & AUDIO_CHANNEL_IN_LEFT) s.append("left, "); if (mask & AUDIO_CHANNEL_IN_RIGHT) s.append("right, "); if (mask & AUDIO_CHANNEL_IN_FRONT) s.append("front, "); if (mask & AUDIO_CHANNEL_IN_BACK) s.append("back, "); if (mask & AUDIO_CHANNEL_IN_LEFT_PROCESSED) s.append("left-processed, "); if (mask & AUDIO_CHANNEL_IN_RIGHT_PROCESSED) s.append("right-processed, "); if (mask & AUDIO_CHANNEL_IN_FRONT_PROCESSED) s.append("front-processed, "); if (mask & AUDIO_CHANNEL_IN_BACK_PROCESSED) s.append("back-processed, "); if (mask & AUDIO_CHANNEL_IN_PRESSURE) s.append("pressure, "); if (mask & AUDIO_CHANNEL_IN_X_AXIS) s.append("X, "); if (mask & AUDIO_CHANNEL_IN_Y_AXIS) s.append("Y, "); if (mask & AUDIO_CHANNEL_IN_Z_AXIS) s.append("Z, "); if (mask & AUDIO_CHANNEL_IN_VOICE_UPLINK) s.append("voice-uplink, "); if (mask & AUDIO_CHANNEL_IN_VOICE_DNLINK) s.append("voice-dnlink, "); if (mask & ~AUDIO_CHANNEL_IN_ALL) s.append("unknown, "); } const int len = s.length(); if (len > 2) { char *str = s.lockBuffer(len); // needed? s.unlockBuffer(len - 2); // remove trailing ", " } return s; } case AUDIO_CHANNEL_REPRESENTATION_INDEX: s.appendFormat("index mask, bits:%#x", audio_channel_mask_get_bits(mask)); return s; default: s.appendFormat("unknown mask, representation:%d bits:%#x", representation, audio_channel_mask_get_bits(mask)); return s; } } void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector& args __unused) { const size_t SIZE = 256; char buffer[SIZE]; String8 result; bool locked = AudioFlinger::dumpTryLock(mLock); if (!locked) { dprintf(fd, "thread %p may be deadlocked\n", this); } dprintf(fd, " Thread name: %s\n", mThreadName); dprintf(fd, " I/O handle: %d\n", mId); dprintf(fd, " TID: %d\n", getTid()); dprintf(fd, " Standby: %s\n", mStandby ? "yes" : "no"); dprintf(fd, " Sample rate: %u Hz\n", mSampleRate); dprintf(fd, " HAL frame count: %zu\n", mFrameCount); dprintf(fd, " HAL format: 0x%x (%s)\n", mHALFormat, formatToString(mHALFormat)); dprintf(fd, " HAL buffer size: %u bytes\n", mBufferSize); dprintf(fd, " Channel count: %u\n", mChannelCount); dprintf(fd, " Channel mask: 0x%08x (%s)\n", mChannelMask, channelMaskToString(mChannelMask, mType != RECORD).string()); dprintf(fd, " Format: 0x%x (%s)\n", mFormat, formatToString(mFormat)); dprintf(fd, " Frame size: %zu bytes\n", mFrameSize); dprintf(fd, " Pending config events:"); size_t numConfig = mConfigEvents.size(); if (numConfig) { for (size_t i = 0; i < numConfig; i++) { mConfigEvents[i]->dump(buffer, SIZE); dprintf(fd, "\n %s", buffer); } dprintf(fd, "\n"); } else { dprintf(fd, " none\n"); } dprintf(fd, " Output device: %#x (%s)\n", mOutDevice, devicesToString(mOutDevice).string()); dprintf(fd, " Input device: %#x (%s)\n", mInDevice, devicesToString(mInDevice).string()); dprintf(fd, " Audio source: %d (%s)\n", mAudioSource, sourceToString(mAudioSource)); if (locked) { mLock.unlock(); } } void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector& args) { const size_t SIZE = 256; char buffer[SIZE]; String8 result; size_t numEffectChains = mEffectChains.size(); snprintf(buffer, SIZE, " %zu Effect Chains\n", numEffectChains); write(fd, buffer, strlen(buffer)); for (size_t i = 0; i < numEffectChains; ++i) { sp chain = mEffectChains[i]; if (chain != 0) { chain->dump(fd, args); } } } void AudioFlinger::ThreadBase::acquireWakeLock(int uid) { Mutex::Autolock _l(mLock); acquireWakeLock_l(uid); } String16 AudioFlinger::ThreadBase::getWakeLockTag() { switch (mType) { case MIXER: return String16("AudioMix"); case DIRECT: return String16("AudioDirectOut"); case DUPLICATING: return String16("AudioDup"); case RECORD: return String16("AudioIn"); case OFFLOAD: return String16("AudioOffload"); default: ALOG_ASSERT(false); return String16("AudioUnknown"); } } void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid) { getPowerManager_l(); if (mPowerManager != 0) { sp binder = new BBinder(); status_t status; if (uid >= 0) { status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK, binder, getWakeLockTag(), String16("media"), uid, true /* FIXME force oneway contrary to .aidl */); } else { status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK, binder, getWakeLockTag(), String16("media"), true /* FIXME force oneway contrary to .aidl */); } if (status == NO_ERROR) { mWakeLockToken = binder; } ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status); } } void AudioFlinger::ThreadBase::releaseWakeLock() { Mutex::Autolock _l(mLock); releaseWakeLock_l(); } void AudioFlinger::ThreadBase::releaseWakeLock_l() { if (mWakeLockToken != 0) { ALOGV("releaseWakeLock_l() %s", mThreadName); if (mPowerManager != 0) { mPowerManager->releaseWakeLock(mWakeLockToken, 0, true /* FIXME force oneway contrary to .aidl */); } mWakeLockToken.clear(); } } void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector &uids) { Mutex::Autolock _l(mLock); updateWakeLockUids_l(uids); } void AudioFlinger::ThreadBase::getPowerManager_l() { if (mSystemReady && mPowerManager == 0) { // use checkService() to avoid blocking if power service is not up yet sp binder = defaultServiceManager()->checkService(String16("power")); if (binder == 0) { ALOGW("Thread %s cannot connect to the power manager service", mThreadName); } else { mPowerManager = interface_cast(binder); binder->linkToDeath(mDeathRecipient); } } } void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector &uids) { getPowerManager_l(); if (mWakeLockToken == NULL) { ALOGE("no wake lock to update!"); return; } if (mPowerManager != 0) { sp binder = new BBinder(); status_t status; status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array(), true /* FIXME force oneway contrary to .aidl */); ALOGV("acquireWakeLock_l() %s status %d", mThreadName, status); } } void AudioFlinger::ThreadBase::clearPowerManager() { Mutex::Autolock _l(mLock); releaseWakeLock_l(); mPowerManager.clear(); } void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp& who __unused) { sp thread = mThread.promote(); if (thread != 0) { thread->clearPowerManager(); } ALOGW("power manager service died !!!"); } void AudioFlinger::ThreadBase::setEffectSuspended( const effect_uuid_t *type, bool suspend, int sessionId) { Mutex::Autolock _l(mLock); setEffectSuspended_l(type, suspend, sessionId); } void AudioFlinger::ThreadBase::setEffectSuspended_l( const effect_uuid_t *type, bool suspend, int sessionId) { sp chain = getEffectChain_l(sessionId); if (chain != 0) { if (type != NULL) { chain->setEffectSuspended_l(type, suspend); } else { chain->setEffectSuspendedAll_l(suspend); } } updateSuspendedSessions_l(type, suspend, sessionId); } void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp& chain) { ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId()); if (index < 0) { return; } const KeyedVector >& sessionEffects = mSuspendedSessions.valueAt(index); for (size_t i = 0; i < sessionEffects.size(); i++) { sp desc = sessionEffects.valueAt(i); for (int j = 0; j < desc->mRefCount; j++) { if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) { chain->setEffectSuspendedAll_l(true); } else { ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x", desc->mType.timeLow); chain->setEffectSuspended_l(&desc->mType, true); } } } } void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type, bool suspend, int sessionId) { ssize_t index = mSuspendedSessions.indexOfKey(sessionId); KeyedVector > sessionEffects; if (suspend) { if (index >= 0) { sessionEffects = mSuspendedSessions.valueAt(index); } else { mSuspendedSessions.add(sessionId, sessionEffects); } } else { if (index < 0) { return; } sessionEffects = mSuspendedSessions.valueAt(index); } int key = EffectChain::kKeyForSuspendAll; if (type != NULL) { key = type->timeLow; } index = sessionEffects.indexOfKey(key); sp desc; if (suspend) { if (index >= 0) { desc = sessionEffects.valueAt(index); } else { desc = new SuspendedSessionDesc(); if (type != NULL) { desc->mType = *type; } sessionEffects.add(key, desc); ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key); } desc->mRefCount++; } else { if (index < 0) { return; } desc = sessionEffects.valueAt(index); if (--desc->mRefCount == 0) { ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key); sessionEffects.removeItemsAt(index); if (sessionEffects.isEmpty()) { ALOGV("updateSuspendedSessions_l() restore removing session %d", sessionId); mSuspendedSessions.removeItem(sessionId); } } } if (!sessionEffects.isEmpty()) { mSuspendedSessions.replaceValueFor(sessionId, sessionEffects); } } void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp& effect, bool enabled, int sessionId) { Mutex::Autolock _l(mLock); checkSuspendOnEffectEnabled_l(effect, enabled, sessionId); } void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp& effect, bool enabled, int sessionId) { if (mType != RECORD) { // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on // another session. This gives the priority to well behaved effect control panels // and applications not using global effects. // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect // global effects if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) { setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX); } } sp chain = getEffectChain_l(sessionId); if (chain != 0) { chain->checkSuspendOnEffectEnabled(effect, enabled); } } // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held sp AudioFlinger::ThreadBase::createEffect_l( const sp& client, const sp& effectClient, int32_t priority, int sessionId, effect_descriptor_t *desc, int *enabled, status_t *status) { sp effect; sp handle; status_t lStatus; sp chain; bool chainCreated = false; bool effectCreated = false; bool effectRegistered = false; lStatus = initCheck(); if (lStatus != NO_ERROR) { ALOGW("createEffect_l() Audio driver not initialized."); goto Exit; } // Reject any effect on Direct output threads for now, since the format of // mSinkBuffer is not guaranteed to be compatible with effect processing (PCM 16 stereo). // Exception: allow effects for Direct PCM if (mType == DIRECT && !mIsDirectPcm) { ALOGW("createEffect_l() Cannot add effect %s on Direct output type thread %s", desc->name, mThreadName); lStatus = BAD_VALUE; goto Exit; } // Reject any effect on mixer or duplicating multichannel sinks. // TODO: fix both format and multichannel issues with effects. if ((mType == MIXER || mType == DUPLICATING) && mChannelCount > FCC_2) { ALOGW("createEffect_l() Cannot add effect %s for multichannel(%d) %s threads", desc->name, mChannelCount, mType == MIXER ? "MIXER" : "DUPLICATING"); lStatus = BAD_VALUE; goto Exit; } // Allow global effects only on offloaded and mixer threads // Exception: allow effects for Direct PCM if (sessionId == AUDIO_SESSION_OUTPUT_MIX) { switch (mType) { case MIXER: case OFFLOAD: break; case DIRECT: if (mIsDirectPcm) { // Allow effects when direct PCM enabled on Direct output break; } case DUPLICATING: case RECORD: default: ALOGW("createEffect_l() Cannot add global effect %s on thread %s", desc->name, mThreadName); lStatus = BAD_VALUE; goto Exit; } } // Only Pre processor effects are allowed on input threads and only on input threads if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) { ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d", desc->name, desc->flags, mType); lStatus = BAD_VALUE; goto Exit; } ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId); { // scope for mLock Mutex::Autolock _l(mLock); // check for existing effect chain with the requested audio session chain = getEffectChain_l(sessionId); if (chain == 0) { // create a new chain for this session ALOGV("createEffect_l() new effect chain for session %d", sessionId); chain = new EffectChain(this, sessionId); addEffectChain_l(chain); chain->setStrategy(getStrategyForSession_l(sessionId)); chainCreated = true; } else { effect = chain->getEffectFromDesc_l(desc); } ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get()); if (effect == 0) { int id = mAudioFlinger->nextUniqueId(); // Check CPU and memory usage lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id); if (lStatus != NO_ERROR) { goto Exit; } effectRegistered = true; // create a new effect module if none present in the chain effect = new EffectModule(this, chain, desc, id, sessionId); lStatus = effect->status(); if (lStatus != NO_ERROR) { goto Exit; } bool setVal = false; if (mType == OFFLOAD || (mType == DIRECT && mIsDirectPcm)) { setVal = true; } effect->setOffloaded(setVal, mId); lStatus = chain->addEffect_l(effect); if (lStatus != NO_ERROR) { goto Exit; } effectCreated = true; effect->setDevice(mOutDevice); effect->setDevice(mInDevice); effect->setMode(mAudioFlinger->getMode()); effect->setAudioSource(mAudioSource); } // create effect handle and connect it to effect module handle = new EffectHandle(effect, client, effectClient, priority); lStatus = handle->initCheck(); if (lStatus == OK) { lStatus = effect->addHandle(handle.get()); } if (enabled != NULL) { *enabled = (int)effect->isEnabled(); } } Exit: if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) { Mutex::Autolock _l(mLock); if (effectCreated) { chain->removeEffect_l(effect); } if (effectRegistered) { AudioSystem::unregisterEffect(effect->id()); } if (chainCreated) { removeEffectChain_l(chain); } handle.clear(); } *status = lStatus; return handle; } sp AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId) { Mutex::Autolock _l(mLock); return getEffect_l(sessionId, effectId); } sp AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId) { sp chain = getEffectChain_l(sessionId); return chain != 0 ? chain->getEffectFromId_l(effectId) : 0; } // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and // PlaybackThread::mLock held status_t AudioFlinger::ThreadBase::addEffect_l(const sp& effect) { // check for existing effect chain with the requested audio session int sessionId = effect->sessionId(); sp chain = getEffectChain_l(sessionId); bool chainCreated = false; ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(), "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x", this, effect->desc().name, effect->desc().flags); if (chain == 0) { // create a new chain for this session ALOGV("addEffect_l() new effect chain for session %d", sessionId); chain = new EffectChain(this, sessionId); addEffectChain_l(chain); chain->setStrategy(getStrategyForSession_l(sessionId)); chainCreated = true; } ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get()); if (chain->getEffectFromId_l(effect->id()) != 0) { ALOGW("addEffect_l() %p effect %s already present in chain %p", this, effect->desc().name, chain.get()); return BAD_VALUE; } bool setval = false; if ((mType == OFFLOAD) || (mType == DIRECT && mIsDirectPcm)) { setval = true; } effect->setOffloaded(setval, mId); status_t status = chain->addEffect_l(effect); if (status != NO_ERROR) { if (chainCreated) { removeEffectChain_l(chain); } return status; } effect->setDevice(mOutDevice); effect->setDevice(mInDevice); effect->setMode(mAudioFlinger->getMode()); effect->setAudioSource(mAudioSource); return NO_ERROR; } void AudioFlinger::ThreadBase::removeEffect_l(const sp& effect) { ALOGV("removeEffect_l() %p effect %p", this, effect.get()); effect_descriptor_t desc = effect->desc(); if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) { detachAuxEffect_l(effect->id()); } sp chain = effect->chain().promote(); if (chain != 0) { // remove effect chain if removing last effect if (chain->removeEffect_l(effect) == 0) { removeEffectChain_l(chain); } } else { ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get()); } } void AudioFlinger::ThreadBase::lockEffectChains_l( Vector< sp >& effectChains) { effectChains = mEffectChains; for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->lock(); } } void AudioFlinger::ThreadBase::unlockEffectChains( const Vector< sp >& effectChains) { for (size_t i = 0; i < effectChains.size(); i++) { effectChains[i]->unlock(); } } sp AudioFlinger::ThreadBase::getEffectChain(int sessionId) { Mutex::Autolock _l(mLock); return getEffectChain_l(sessionId); } sp AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const { size_t size = mEffectChains.size(); for (size_t i = 0; i < size; i++) { if (mEffectChains[i]->sessionId() == sessionId) { return mEffectChains[i]; } } return 0; } void AudioFlinger::ThreadBase::setMode(audio_mode_t mode) { Mutex::Autolock _l(mLock); size_t size = mEffectChains.size(); for (size_t i = 0; i < size; i++) { mEffectChains[i]->setMode_l(mode); } } void AudioFlinger::ThreadBase::getAudioPortConfig(struct audio_port_config *config) { config->type = AUDIO_PORT_TYPE_MIX; config->ext.mix.handle = mId; config->sample_rate = mSampleRate; config->format = mFormat; config->channel_mask = mChannelMask; config->config_mask = AUDIO_PORT_CONFIG_SAMPLE_RATE|AUDIO_PORT_CONFIG_CHANNEL_MASK| AUDIO_PORT_CONFIG_FORMAT; } void AudioFlinger::ThreadBase::systemReady() { Mutex::Autolock _l(mLock); if (mSystemReady) { return; } mSystemReady = true; for (size_t i = 0; i < mPendingConfigEvents.size(); i++) { sendConfigEvent_l(mPendingConfigEvents.editItemAt(i)); } mPendingConfigEvents.clear(); } // ---------------------------------------------------------------------------- // Playback // ---------------------------------------------------------------------------- AudioFlinger::PlaybackThread::PlaybackThread(const sp& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, type_t type, bool systemReady) : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type, systemReady), mNormalFrameCount(0), mSinkBuffer(NULL), mMixerBufferEnabled(AudioFlinger::kEnableExtendedPrecision), mMixerBuffer(NULL), mMixerBufferSize(0), mMixerBufferFormat(AUDIO_FORMAT_INVALID), mMixerBufferValid(false), mEffectBufferEnabled(AudioFlinger::kEnableExtendedPrecision), mEffectBuffer(NULL), mEffectBufferSize(0), mEffectBufferFormat(AUDIO_FORMAT_INVALID), mEffectBufferValid(false), mSuspended(0), mBytesWritten(0), mActiveTracksGeneration(0), // mStreamTypes[] initialized in constructor body mOutput(output), mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false), mMixerStatus(MIXER_IDLE), mMixerStatusIgnoringFastTracks(MIXER_IDLE), mStandbyDelayNs(AudioFlinger::mStandbyTimeInNsecs), mBytesRemaining(0), mCurrentWriteLength(0), mUseAsyncWrite(false), mWriteAckSequence(0), mDrainSequence(0), mSignalPending(false), mScreenState(AudioFlinger::mScreenState), // index 0 is reserved for normal mixer's submix mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1), mHwSupportsPause(false), mHwPaused(false), mFlushPending(false), // mLatchD, mLatchQ, mLatchDValid(false), mLatchQValid(false) { snprintf(mThreadName, kThreadNameLength, "AudioOut_%X", id); mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName); // Assumes constructor is called by AudioFlinger with it's mLock held, but // it would be safer to explicitly pass initial masterVolume/masterMute as // parameter. // // If the HAL we are using has support for master volume or master mute, // then do not attenuate or mute during mixing (just leave the volume at 1.0 // and the mute set to false). mMasterVolume = audioFlinger->masterVolume_l(); mMasterMute = audioFlinger->masterMute_l(); if (mOutput && mOutput->audioHwDev) { if (mOutput->audioHwDev->canSetMasterVolume()) { mMasterVolume = 1.0; } if (mOutput->audioHwDev->canSetMasterMute()) { mMasterMute = false; } } readOutputParameters_l(); // ++ operator does not compile for (audio_stream_type_t stream = AUDIO_STREAM_MIN; stream < AUDIO_STREAM_CNT; stream = (audio_stream_type_t) (stream + 1)) { mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream); mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream); } } AudioFlinger::PlaybackThread::~PlaybackThread() { mAudioFlinger->unregisterWriter(mNBLogWriter); free(mSinkBuffer); free(mMixerBuffer); free(mEffectBuffer); } void AudioFlinger::PlaybackThread::dump(int fd, const Vector& args) { dumpInternals(fd, args); dumpTracks(fd, args); dumpEffectChains(fd, args); } void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector& args __unused) { const size_t SIZE = 256; char buffer[SIZE]; String8 result; result.appendFormat(" Stream volumes in dB: "); for (int i = 0; i < AUDIO_STREAM_CNT; ++i) { const stream_type_t *st = &mStreamTypes[i]; if (i > 0) { result.appendFormat(", "); } result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume)); if (st->mute) { result.append("M"); } } result.append("\n"); write(fd, result.string(), result.length()); result.clear(); // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way. FastTrackUnderruns underruns = getFastTrackUnderruns(0); dprintf(fd, " Normal mixer raw underrun counters: partial=%u empty=%u\n", underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty); size_t numtracks = mTracks.size(); size_t numactive = mActiveTracks.size(); dprintf(fd, " %d Tracks", numtracks); size_t numactiveseen = 0; if (numtracks) { dprintf(fd, " of which %d are active\n", numactive); Track::appendDumpHeader(result); for (size_t i = 0; i < numtracks; ++i) { sp track = mTracks[i]; if (track != 0) { bool active = mActiveTracks.indexOf(track) >= 0; if (active) { numactiveseen++; } track->dump(buffer, SIZE, active); result.append(buffer); } } } else { result.append("\n"); } if (numactiveseen != numactive) { // some tracks in the active list were not in the tracks list snprintf(buffer, SIZE, " The following tracks are in the active list but" " not in the track list\n"); result.append(buffer); Track::appendDumpHeader(result); for (size_t i = 0; i < numactive; ++i) { sp track = mActiveTracks[i].promote(); if (track != 0 && mTracks.indexOf(track) < 0) { track->dump(buffer, SIZE, true); result.append(buffer); } } } write(fd, result.string(), result.size()); } void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector& args) { dprintf(fd, "\nOutput thread %p type %d (%s):\n", this, type(), threadTypeToString(type())); dumpBase(fd, args); dprintf(fd, " Normal frame count: %zu\n", mNormalFrameCount); dprintf(fd, " Last write occurred (msecs): %llu\n", ns2ms(systemTime() - mLastWriteTime)); dprintf(fd, " Total writes: %d\n", mNumWrites); dprintf(fd, " Delayed writes: %d\n", mNumDelayedWrites); dprintf(fd, " Blocked in write: %s\n", mInWrite ? "yes" : "no"); dprintf(fd, " Suspend count: %d\n", mSuspended); dprintf(fd, " Sink buffer : %p\n", mSinkBuffer); dprintf(fd, " Mixer buffer: %p\n", mMixerBuffer); dprintf(fd, " Effect buffer: %p\n", mEffectBuffer); dprintf(fd, " Fast track availMask=%#x\n", mFastTrackAvailMask); dprintf(fd, " Standby delay ns=%lld\n", (long long)mStandbyDelayNs); AudioStreamOut *output = mOutput; audio_output_flags_t flags = output != NULL ? output->flags : AUDIO_OUTPUT_FLAG_NONE; String8 flagsAsString = outputFlagsToString(flags); dprintf(fd, " AudioStreamOut: %p flags %#x (%s)\n", output, flags, flagsAsString.string()); } // Thread virtuals void AudioFlinger::PlaybackThread::onFirstRef() { run(mThreadName, ANDROID_PRIORITY_URGENT_AUDIO); } // ThreadBase virtuals void AudioFlinger::PlaybackThread::preExit() { ALOGV(" preExit()"); // FIXME this is using hard-coded strings but in the future, this functionality will be // converted to use audio HAL extensions required to support tunneling mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1"); } // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held sp AudioFlinger::PlaybackThread::createTrack_l( const sp& client, audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t *pFrameCount, const sp& sharedBuffer, int sessionId, IAudioFlinger::track_flags_t *flags, pid_t tid, int uid, status_t *status) { size_t frameCount = *pFrameCount; sp track; status_t lStatus; bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0; // client expresses a preference for FAST, but we get the final say if (*flags & IAudioFlinger::TRACK_FAST) { if ( // not timed (!isTimed) && // either of these use cases: ( // use case 1: shared buffer with any frame count ( (sharedBuffer != 0) ) || // use case 2: frame count is default or at least as large as HAL ( // we formerly checked for a callback handler (non-0 tid), // but that is no longer required for TRANSFER_OBTAIN mode ((frameCount == 0) || (frameCount >= mFrameCount)) ) ) && // PCM data audio_is_linear_pcm(format) && // TODO: extract as a data library function that checks that a computationally // expensive downmixer is not required: isFastOutputChannelConversion() (channelMask == mChannelMask || mChannelMask != AUDIO_CHANNEL_OUT_STEREO || (channelMask == AUDIO_CHANNEL_OUT_MONO /* && mChannelMask == AUDIO_CHANNEL_OUT_STEREO */)) && // hardware sample rate (sampleRate == mSampleRate) && // normal mixer has an associated fast mixer hasFastMixer() && // there are sufficient fast track slots available (mFastTrackAvailMask != 0) // FIXME test that MixerThread for this fast track has a capable output HAL // FIXME add a permission test also? ) { // if frameCount not specified, then it defaults to fast mixer (HAL) frame count if (frameCount == 0) { // read the fast track multiplier property the first time it is needed int ok = pthread_once(&sFastTrackMultiplierOnce, sFastTrackMultiplierInit); if (ok != 0) { ALOGE("%s pthread_once failed: %d", __func__, ok); } frameCount = mFrameCount * sFastTrackMultiplier; } ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d", frameCount, mFrameCount); } else { ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d " "mFrameCount=%d format=%#x mFormat=%#x isLinear=%d channelMask=%#x " "sampleRate=%u mSampleRate=%u " "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x", isTimed, sharedBuffer.get(), frameCount, mFrameCount, format, mFormat, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask); *flags &= ~IAudioFlinger::TRACK_FAST; } } // For normal PCM streaming tracks, update minimum frame count. // For compatibility with AudioTrack calculation, buffer depth is forced // to be at least 2 x the normal mixer frame count and cover audio hardware latency. // This is probably too conservative, but legacy application code may depend on it. // If you change this calculation, also review the start threshold which is related. if (!(*flags & IAudioFlinger::TRACK_FAST) && audio_is_linear_pcm(format) && sharedBuffer == 0) { // this must match AudioTrack.cpp calculateMinFrameCount(). // TODO: Move to a common library uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream); uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate); if (minBufCount < 2) { minBufCount = 2; } // For normal mixing tracks, if speed is > 1.0f (normal), AudioTrack // or the client should compute and pass in a larger buffer request. size_t minFrameCount = minBufCount * sourceFramesNeededWithTimestretch( sampleRate, mNormalFrameCount, mSampleRate, AUDIO_TIMESTRETCH_SPEED_NORMAL /*speed*/); if (frameCount < minFrameCount) { // including frameCount == 0 frameCount = minFrameCount; } } *pFrameCount = frameCount; switch (mType) { case DIRECT: if (audio_is_linear_pcm(format)) { if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) { ALOGE("createTrack_l() Bad parameter: sampleRate %u format %#x, channelMask 0x%08x " "for output %p with format %#x", sampleRate, format, channelMask, mOutput, mFormat); lStatus = BAD_VALUE; goto Exit; } } break; case OFFLOAD: if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) { ALOGE("createTrack_l() Bad parameter: sampleRate %d format %#x, channelMask 0x%08x \"" "for output %p with format %#x", sampleRate, format, channelMask, mOutput, mFormat); lStatus = BAD_VALUE; goto Exit; } break; default: if (!audio_is_linear_pcm(format)) { ALOGE("createTrack_l() Bad parameter: format %#x \"" "for output %p with format %#x", format, mOutput, mFormat); lStatus = BAD_VALUE; goto Exit; } if (sampleRate > mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) { ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate); lStatus = BAD_VALUE; goto Exit; } break; } lStatus = initCheck(); if (lStatus != NO_ERROR) { ALOGE("createTrack_l() audio driver not initialized"); goto Exit; } { // scope for mLock Mutex::Autolock _l(mLock); // all tracks in same audio session must share the same routing strategy otherwise // conflicts will happen when tracks are moved from one output to another by audio policy // manager uint32_t strategy = AudioSystem::getStrategyForStream(streamType); for (size_t i = 0; i < mTracks.size(); ++i) { sp t = mTracks[i]; if (t != 0 && t->isExternalTrack()) { uint32_t actual = AudioSystem::getStrategyForStream(t->streamType()); if (sessionId == t->sessionId() && strategy != actual) { ALOGE("createTrack_l() mismatched strategy; expected %u but found %u", strategy, actual); lStatus = BAD_VALUE; goto Exit; } } } if (!isTimed) { track = new Track(this, client, streamType, sampleRate, format, channelMask, frameCount, NULL, sharedBuffer, sessionId, uid, *flags, TrackBase::TYPE_DEFAULT); } else { track = TimedTrack::create(this, client, streamType, sampleRate, format, channelMask, frameCount, sharedBuffer, sessionId, uid); } // new Track always returns non-NULL, // but TimedTrack::create() is a factory that could fail by returning NULL lStatus = track != 0 ? track->initCheck() : (status_t) NO_MEMORY; if (lStatus != NO_ERROR) { ALOGE("createTrack_l() initCheck failed %d; no control block?", lStatus); // track must be cleared from the caller as the caller has the AF lock goto Exit; } mTracks.add(track); sp chain = getEffectChain_l(sessionId); if (chain != 0) { ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer()); track->setMainBuffer(chain->inBuffer()); chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType())); chain->incTrackCnt(); } if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) { pid_t callingPid = IPCThreadState::self()->getCallingPid(); // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful, // so ask activity manager to do this on our behalf sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp); } } lStatus = NO_ERROR; Exit: *status = lStatus; return track; } uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const { return latency; } uint32_t AudioFlinger::PlaybackThread::latency() const { Mutex::Autolock _l(mLock); return latency_l(); } uint32_t AudioFlinger::PlaybackThread::latency_l() const { if (initCheck() == NO_ERROR) { return correctLatency_l(mOutput->stream->get_latency(mOutput->stream)); } else { return 0; } } void AudioFlinger::PlaybackThread::setMasterVolume(float value) { Mutex::Autolock _l(mLock); // Don't apply master volume in SW if our HAL can do it for us. if (mOutput && mOutput->audioHwDev && mOutput->audioHwDev->canSetMasterVolume()) { mMasterVolume = 1.0; } else { mMasterVolume = value; } } void AudioFlinger::PlaybackThread::setMasterMute(bool muted) { Mutex::Autolock _l(mLock); // Don't apply master mute in SW if our HAL can do it for us. if (mOutput && mOutput->audioHwDev && mOutput->audioHwDev->canSetMasterMute()) { mMasterMute = false; } else { mMasterMute = muted; } } void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value) { Mutex::Autolock _l(mLock); mStreamTypes[stream].volume = value; broadcast_l(); } void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted) { Mutex::Autolock _l(mLock); mStreamTypes[stream].mute = muted; broadcast_l(); } float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const { Mutex::Autolock _l(mLock); return mStreamTypes[stream].volume; } // addTrack_l() must be called with ThreadBase::mLock held status_t AudioFlinger::PlaybackThread::addTrack_l(const sp& track) { status_t status = ALREADY_EXISTS; // set retry count for buffer fill track->mRetryCount = kMaxTrackStartupRetries; if (mActiveTracks.indexOf(track) < 0) { // the track is newly added, make sure it fills up all its // buffers before playing. This is to ensure the client will // effectively get the latency it requested. if (track->isExternalTrack()) { TrackBase::track_state state = track->mState; mLock.unlock(); status = AudioSystem::startOutput(mId, track->streamType(), (audio_session_t)track->sessionId()); mLock.lock(); // abort track was stopped/paused while we released the lock if (state != track->mState) { if (status == NO_ERROR) { mLock.unlock(); AudioSystem::stopOutput(mId, track->streamType(), (audio_session_t)track->sessionId()); mLock.lock(); } return INVALID_OPERATION; } // abort if start is rejected by audio policy manager if (status != NO_ERROR) { return PERMISSION_DENIED; } #ifdef ADD_BATTERY_DATA // to track the speaker usage addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart); #endif } track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING; track->mResetDone = false; track->mPresentationCompleteFrames = 0; mActiveTracks.add(track); mWakeLockUids.add(track->uid()); mActiveTracksGeneration++; mLatestActiveTrack = track; sp chain = getEffectChain_l(track->sessionId()); if (chain != 0) { ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(), track->sessionId()); chain->incActiveTrackCnt(); } status = NO_ERROR; } onAddNewTrack_l(); return status; } bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp& track) { track->terminate(); // active tracks are removed by threadLoop() bool trackActive = (mActiveTracks.indexOf(track) >= 0); track->mState = TrackBase::STOPPED; if (!trackActive) { removeTrack_l(track); } else if (track->isFastTrack() || track->isOffloaded() || track->isDirect()) { track->mState = TrackBase::STOPPING_1; } return trackActive; } void AudioFlinger::PlaybackThread::removeTrack_l(const sp& track) { track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE); mTracks.remove(track); deleteTrackName_l(track->name()); // redundant as track is about to be destroyed, for dumpsys only track->mName = -1; if (track->isFastTrack()) { int index = track->mFastIndex; ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks); ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index))); mFastTrackAvailMask |= 1 << index; // redundant as track is about to be destroyed, for dumpsys only track->mFastIndex = -1; } sp chain = getEffectChain_l(track->sessionId()); if (chain != 0) { chain->decTrackCnt(); } } void AudioFlinger::PlaybackThread::broadcast_l() { // Thread could be blocked waiting for async // so signal it to handle state changes immediately // If threadLoop is currently unlocked a signal of mWaitWorkCV will // be lost so we also flag to prevent it blocking on mWaitWorkCV mSignalPending = true; mWaitWorkCV.broadcast(); } String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys) { Mutex::Autolock _l(mLock); if (initCheck() != NO_ERROR) { return String8(); } char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string()); const String8 out_s8(s); free(s); return out_s8; } void AudioFlinger::PlaybackThread::ioConfigChanged(audio_io_config_event event, pid_t pid) { sp desc = new AudioIoDescriptor(); ALOGV("PlaybackThread::ioConfigChanged, thread %p, event %d", this, event); desc->mIoHandle = mId; switch (event) { case AUDIO_OUTPUT_OPENED: case AUDIO_OUTPUT_CONFIG_CHANGED: desc->mPatch = mPatch; desc->mChannelMask = mChannelMask; desc->mSamplingRate = mSampleRate; desc->mFormat = mFormat; desc->mFrameCount = mNormalFrameCount; // FIXME see // AudioFlinger::frameCount(audio_io_handle_t) desc->mLatency = latency_l(); break; case AUDIO_OUTPUT_CLOSED: default: break; } mAudioFlinger->ioConfigChanged(event, desc, pid); } void AudioFlinger::PlaybackThread::writeCallback() { ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->resetWriteBlocked(); } void AudioFlinger::PlaybackThread::drainCallback() { ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->resetDraining(); } void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence) { Mutex::Autolock _l(mLock); // reject out of sequence requests if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) { mWriteAckSequence &= ~1; mWaitWorkCV.signal(); } } void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence) { Mutex::Autolock _l(mLock); // reject out of sequence requests if ((mDrainSequence & 1) && (sequence == mDrainSequence)) { mDrainSequence &= ~1; mWaitWorkCV.signal(); } } // static int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event, void *param __unused, void *cookie) { AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie; ALOGV("asyncCallback() event %d", event); switch (event) { case STREAM_CBK_EVENT_WRITE_READY: me->writeCallback(); break; case STREAM_CBK_EVENT_DRAIN_READY: me->drainCallback(); break; default: ALOGW("asyncCallback() unknown event %d", event); break; } return 0; } void AudioFlinger::PlaybackThread::readOutputParameters_l() { // unfortunately we have no way of recovering from errors here, hence the LOG_ALWAYS_FATAL mSampleRate = mOutput->getSampleRate(); mChannelMask = mOutput->getChannelMask(); if (!audio_is_output_channel(mChannelMask)) { LOG_ALWAYS_FATAL("HAL channel mask %#x not valid for output", mChannelMask); } if ((mType == MIXER || mType == DUPLICATING) && !isValidPcmSinkChannelMask(mChannelMask)) { LOG_ALWAYS_FATAL("HAL channel mask %#x not supported for mixed output", mChannelMask); } mChannelCount = audio_channel_count_from_out_mask(mChannelMask); // Get actual HAL format. mHALFormat = mOutput->stream->common.get_format(&mOutput->stream->common); // Get format from the shim, which will be different than the HAL format // if playing compressed audio over HDMI passthrough. mFormat = mOutput->getFormat(); if (!audio_is_valid_format(mFormat)) { LOG_ALWAYS_FATAL("HAL format %#x not valid for output", mFormat); } if ((mType == MIXER || mType == DUPLICATING) && !isValidPcmSinkFormat(mFormat)) { LOG_FATAL("HAL format %#x not supported for mixed output", mFormat); } mFrameSize = mOutput->getFrameSize(); mBufferSize = mOutput->stream->common.get_buffer_size(&mOutput->stream->common); mFrameCount = mBufferSize / mFrameSize; if (mFrameCount & 15) { ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames", mFrameCount); } if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) && (mOutput->stream->set_callback != NULL)) { if (mOutput->stream->set_callback(mOutput->stream, AudioFlinger::PlaybackThread::asyncCallback, this) == 0) { mUseAsyncWrite = true; mCallbackThread = new AudioFlinger::AsyncCallbackThread(this); } } mHwSupportsPause = false; if (mOutput->flags & AUDIO_OUTPUT_FLAG_DIRECT) { if (mOutput->stream->pause != NULL) { if (mOutput->stream->resume != NULL) { mHwSupportsPause = true; } else { ALOGW("direct output implements pause but not resume"); } } else if (mOutput->stream->resume != NULL) { ALOGW("direct output implements resume but not pause"); } } if (!mHwSupportsPause && mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC) { LOG_ALWAYS_FATAL("HW_AV_SYNC requested but HAL does not implement pause and resume"); } if (mType == DUPLICATING && mMixerBufferEnabled && mEffectBufferEnabled) { // For best precision, we use float instead of the associated output // device format (typically PCM 16 bit). mFormat = AUDIO_FORMAT_PCM_FLOAT; mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat); mBufferSize = mFrameSize * mFrameCount; // TODO: We currently use the associated output device channel mask and sample rate. // (1) Perhaps use the ORed channel mask of all downstream MixerThreads // (if a valid mask) to avoid premature downmix. // (2) Perhaps use the maximum sample rate of all downstream MixerThreads // instead of the output device sample rate to avoid loss of high frequency information. // This may need to be updated as MixerThread/OutputTracks are added and not here. } // Calculate size of normal sink buffer relative to the HAL output buffer size double multiplier = 1.0; if (mType == MIXER && (kUseFastMixer == FastMixer_Static || kUseFastMixer == FastMixer_Dynamic)) { size_t minNormalFrameCount = (kMinNormalSinkBufferSizeMs * mSampleRate) / 1000; size_t maxNormalFrameCount = (kMaxNormalSinkBufferSizeMs * mSampleRate) / 1000; // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer minNormalFrameCount = (minNormalFrameCount + 15) & ~15; maxNormalFrameCount = maxNormalFrameCount & ~15; if (maxNormalFrameCount < minNormalFrameCount) { maxNormalFrameCount = minNormalFrameCount; } multiplier = (double) minNormalFrameCount / (double) mFrameCount; if (multiplier <= 1.0) { multiplier = 1.0; } else if (multiplier <= 2.0) { if (2 * mFrameCount <= maxNormalFrameCount) { multiplier = 2.0; } else { multiplier = (double) maxNormalFrameCount / (double) mFrameCount; } } } mNormalFrameCount = multiplier * mFrameCount; // round up to nearest 16 frames to satisfy AudioMixer if (mType == MIXER || mType == DUPLICATING) { mNormalFrameCount = (mNormalFrameCount + 15) & ~15; } ALOGI("HAL output buffer size %u frames, normal sink buffer size %u frames", mFrameCount, mNormalFrameCount); // Check if we want to throttle the processing to no more than 2x normal rate mThreadThrottle = property_get_bool("af.thread.throttle", true /* default_value */); mThreadThrottleTimeMs = 0; mThreadThrottleEndMs = 0; mHalfBufferMs = mNormalFrameCount * 1000 / (2 * mSampleRate); // mSinkBuffer is the sink buffer. Size is always multiple-of-16 frames. // Originally this was int16_t[] array, need to remove legacy implications. free(mSinkBuffer); mSinkBuffer = NULL; // For sink buffer size, we use the frame size from the downstream sink to avoid problems // with non PCM formats for compressed music, e.g. AAC, and Offload threads. const size_t sinkBufferSize = mNormalFrameCount * mFrameSize; (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize); // We resize the mMixerBuffer according to the requirements of the sink buffer which // drives the output. free(mMixerBuffer); mMixerBuffer = NULL; if (mMixerBufferEnabled) { mMixerBufferFormat = AUDIO_FORMAT_PCM_FLOAT; // also valid: AUDIO_FORMAT_PCM_16_BIT. mMixerBufferSize = mNormalFrameCount * mChannelCount * audio_bytes_per_sample(mMixerBufferFormat); (void)posix_memalign(&mMixerBuffer, 32, mMixerBufferSize); } free(mEffectBuffer); mEffectBuffer = NULL; if (mEffectBufferEnabled) { mEffectBufferFormat = AUDIO_FORMAT_PCM_16_BIT; // Note: Effects support 16b only mEffectBufferSize = mNormalFrameCount * mChannelCount * audio_bytes_per_sample(mEffectBufferFormat); (void)posix_memalign(&mEffectBuffer, 32, mEffectBufferSize); } // force reconfiguration of effect chains and engines to take new buffer size and audio // parameters into account // Note that mLock is not held when readOutputParameters_l() is called from the constructor // but in this case nothing is done below as no audio sessions have effect yet so it doesn't // matter. // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains Vector< sp > effectChains = mEffectChains; for (size_t i = 0; i < effectChains.size(); i ++) { mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false); } } status_t AudioFlinger::PlaybackThread::getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames) { if (halFrames == NULL || dspFrames == NULL) { return BAD_VALUE; } Mutex::Autolock _l(mLock); if (initCheck() != NO_ERROR) { return INVALID_OPERATION; } size_t framesWritten = mBytesWritten / mFrameSize; *halFrames = framesWritten; if (isSuspended()) { // return an estimation of rendered frames when the output is suspended size_t latencyFrames = (latency_l() * mSampleRate) / 1000; *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0; return NO_ERROR; } else { status_t status; uint32_t frames; status = mOutput->getRenderPosition(&frames); *dspFrames = (size_t)frames; return status; } } uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const { Mutex::Autolock _l(mLock); uint32_t result = 0; if (getEffectChain_l(sessionId) != 0) { result = EFFECT_SESSION; } for (size_t i = 0; i < mTracks.size(); ++i) { sp track = mTracks[i]; if (sessionId == track->sessionId() && !track->isInvalid()) { result |= TRACK_SESSION; break; } } return result; } uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId) { // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that // it is moved to correct output by audio policy manager when A2DP is connected or disconnected if (sessionId == AUDIO_SESSION_OUTPUT_MIX) { return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC); } for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; if (sessionId == track->sessionId() && !track->isInvalid()) { return AudioSystem::getStrategyForStream(track->streamType()); } } return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC); } AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const { Mutex::Autolock _l(mLock); return mOutput; } AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput() { Mutex::Autolock _l(mLock); AudioStreamOut *output = mOutput; mOutput = NULL; // FIXME FastMixer might also have a raw ptr to mOutputSink; // must push a NULL and wait for ack mOutputSink.clear(); mPipeSink.clear(); mNormalSink.clear(); return output; } // this method must always be called either with ThreadBase mLock held or inside the thread loop audio_stream_t* AudioFlinger::PlaybackThread::stream() const { if (mOutput == NULL) { return NULL; } return &mOutput->stream->common; } uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const { return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000); } status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp& event) { if (!isValidSyncEvent(event)) { return BAD_VALUE; } Mutex::Autolock _l(mLock); for (size_t i = 0; i < mTracks.size(); ++i) { sp track = mTracks[i]; if (event->triggerSession() == track->sessionId()) { (void) track->setSyncEvent(event); return NO_ERROR; } } return NAME_NOT_FOUND; } bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp& event) const { return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE; } void AudioFlinger::PlaybackThread::threadLoop_removeTracks( const Vector< sp >& tracksToRemove) { size_t count = tracksToRemove.size(); if (count > 0) { for (size_t i = 0 ; i < count ; i++) { const sp& track = tracksToRemove.itemAt(i); if (track->isExternalTrack()) { AudioSystem::stopOutput(mId, track->streamType(), (audio_session_t)track->sessionId()); #ifdef ADD_BATTERY_DATA // to track the speaker usage addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop); #endif if (track->isTerminated()) { AudioSystem::releaseOutput(mId, track->streamType(), (audio_session_t)track->sessionId()); } } } } } void AudioFlinger::PlaybackThread::checkSilentMode_l() { if (!mMasterMute) { char value[PROPERTY_VALUE_MAX]; if (property_get("ro.audio.silent", value, "0") > 0) { char *endptr; unsigned long ul = strtoul(value, &endptr, 0); if (*endptr == '\0' && ul != 0) { ALOGD("Silence is golden"); // The setprop command will not allow a property to be changed after // the first time it is set, so we don't have to worry about un-muting. setMasterMute_l(true); } } } } // shared by MIXER and DIRECT, overridden by DUPLICATING ssize_t AudioFlinger::PlaybackThread::threadLoop_write() { // FIXME rewrite to reduce number of system calls mLastWriteTime = systemTime(); mInWrite = true; ssize_t bytesWritten; const size_t offset = mCurrentWriteLength - mBytesRemaining; // If an NBAIO sink is present, use it to write the normal mixer's submix if (mNormalSink != 0) { const size_t count = mBytesRemaining / mFrameSize; ATRACE_BEGIN("write"); // update the setpoint when AudioFlinger::mScreenState changes uint32_t screenState = AudioFlinger::mScreenState; if (screenState != mScreenState) { mScreenState = screenState; MonoPipe *pipe = (MonoPipe *)mPipeSink.get(); if (pipe != NULL) { pipe->setAvgFrames((mScreenState & 1) ? (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2); } } ssize_t framesWritten = mNormalSink->write((char *)mSinkBuffer + offset, count); ATRACE_END(); if (framesWritten > 0) { bytesWritten = framesWritten * mFrameSize; } else { bytesWritten = framesWritten; } mLatchDValid = false; status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp); if (status == NO_ERROR) { size_t totalFramesWritten = mNormalSink->framesWritten(); if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) { mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition; // mLatchD.mFramesReleased is set immediately before D is clocked into Q mLatchDValid = true; } } // otherwise use the HAL / AudioStreamOut directly } else { // Direct output and offload threads if (mUseAsyncWrite) { ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request"); mWriteAckSequence += 2; mWriteAckSequence |= 1; ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->setWriteBlocked(mWriteAckSequence); } // FIXME We should have an implementation of timestamps for direct output threads. // They are used e.g for multichannel PCM playback over HDMI. bytesWritten = mOutput->write((char *)mSinkBuffer + offset, mBytesRemaining); if (mUseAsyncWrite && ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) { // do not wait for async callback in case of error of full write mWriteAckSequence &= ~1; ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->setWriteBlocked(mWriteAckSequence); } } mNumWrites++; mInWrite = false; mStandby = false; return bytesWritten; } void AudioFlinger::PlaybackThread::threadLoop_drain() { if (mOutput->stream->drain) { ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full"); if (mUseAsyncWrite) { ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request"); mDrainSequence |= 1; ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->setDraining(mDrainSequence); } mOutput->stream->drain(mOutput->stream, (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY : AUDIO_DRAIN_ALL); } } void AudioFlinger::PlaybackThread::threadLoop_exit() { { Mutex::Autolock _l(mLock); for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; track->invalidate(); } } } /* The derived values that are cached: - mSinkBufferSize from frame count * frame size - mActiveSleepTimeUs from activeSleepTimeUs() - mIdleSleepTimeUs from idleSleepTimeUs() - mStandbyDelayNs from mActiveSleepTimeUs (DIRECT only) or forced to at least kDefaultStandbyTimeInNsecs when connected to an A2DP device. - maxPeriod from frame count and sample rate (MIXER only) The parameters that affect these derived values are: - frame count - frame size - sample rate - device type: A2DP or not - device latency - format: PCM or not - active sleep time - idle sleep time */ void AudioFlinger::PlaybackThread::cacheParameters_l() { mSinkBufferSize = mNormalFrameCount * mFrameSize; mActiveSleepTimeUs = activeSleepTimeUs(); mIdleSleepTimeUs = idleSleepTimeUs(); // make sure standby delay is not too short when connected to an A2DP sink to avoid // truncating audio when going to standby. mStandbyDelayNs = AudioFlinger::mStandbyTimeInNsecs; if ((mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != 0) { if (mStandbyDelayNs < kDefaultStandbyTimeInNsecs) { mStandbyDelayNs = kDefaultStandbyTimeInNsecs; } } } void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType) { ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d", this, streamType, mTracks.size()); Mutex::Autolock _l(mLock); size_t size = mTracks.size(); for (size_t i = 0; i < size; i++) { sp t = mTracks[i]; if (t->streamType() == streamType) { t->invalidate(); } } } status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp& chain) { int session = chain->sessionId(); int16_t* buffer = reinterpret_cast(mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer); bool ownsBuffer = false; ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session); if (session > 0) { // Only one effect chain can be present in direct output thread and it uses // the sink buffer as input if (mType != DIRECT) { size_t numSamples = mNormalFrameCount * mChannelCount; buffer = new int16_t[numSamples]; memset(buffer, 0, numSamples * sizeof(int16_t)); ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session); ownsBuffer = true; } // Attach all tracks with same session ID to this chain. for (size_t i = 0; i < mTracks.size(); ++i) { sp track = mTracks[i]; if (session == track->sessionId()) { ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(), buffer); track->setMainBuffer(buffer); chain->incTrackCnt(); } } // indicate all active tracks in the chain for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) { sp track = mActiveTracks[i].promote(); if (track == 0) { continue; } if (session == track->sessionId()) { ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session); chain->incActiveTrackCnt(); } } } chain->setThread(this); chain->setInBuffer(buffer, ownsBuffer); chain->setOutBuffer(reinterpret_cast(mEffectBufferEnabled ? mEffectBuffer : mSinkBuffer)); // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect // chains list in order to be processed last as it contains output stage effects // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before // session AUDIO_SESSION_OUTPUT_STAGE to be processed // after track specific effects and before output stage // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX // Effect chain for other sessions are inserted at beginning of effect // chains list to be processed before output mix effects. Relative order between other // sessions is not important size_t size = mEffectChains.size(); size_t i = 0; for (i = 0; i < size; i++) { if (mEffectChains[i]->sessionId() < session) { break; } } mEffectChains.insertAt(chain, i); checkSuspendOnAddEffectChain_l(chain); return NO_ERROR; } size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp& chain) { int session = chain->sessionId(); ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session); for (size_t i = 0; i < mEffectChains.size(); i++) { if (chain == mEffectChains[i]) { mEffectChains.removeAt(i); // detach all active tracks from the chain for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) { sp track = mActiveTracks[i].promote(); if (track == 0) { continue; } if (session == track->sessionId()) { ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d", chain.get(), session); chain->decActiveTrackCnt(); } } // detach all tracks with same session ID from this chain for (size_t i = 0; i < mTracks.size(); ++i) { sp track = mTracks[i]; if (session == track->sessionId()) { track->setMainBuffer(reinterpret_cast(mSinkBuffer)); chain->decTrackCnt(); } } break; } } return mEffectChains.size(); } status_t AudioFlinger::PlaybackThread::attachAuxEffect( const sp track, int EffectId) { Mutex::Autolock _l(mLock); return attachAuxEffect_l(track, EffectId); } status_t AudioFlinger::PlaybackThread::attachAuxEffect_l( const sp track, int EffectId) { status_t status = NO_ERROR; if (EffectId == 0) { track->setAuxBuffer(0, NULL); } else { // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX sp effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId); if (effect != 0) { if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) { track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer()); } else { status = INVALID_OPERATION; } } else { status = BAD_VALUE; } } return status; } void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId) { for (size_t i = 0; i < mTracks.size(); ++i) { sp track = mTracks[i]; if (track->auxEffectId() == effectId) { attachAuxEffect_l(track, 0); } } } bool AudioFlinger::PlaybackThread::threadLoop() { Vector< sp > tracksToRemove; mStandbyTimeNs = systemTime(); // MIXER nsecs_t lastWarning = 0; // DUPLICATING // FIXME could this be made local to while loop? writeFrames = 0; int lastGeneration = 0; cacheParameters_l(); mSleepTimeUs = mIdleSleepTimeUs; if (mType == MIXER) { sleepTimeShift = 0; } CpuStats cpuStats; const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid())); acquireWakeLock(); #ifdef SRS_PROCESSING String8 bt_param = String8("bluetooth_enabled=0"); POSTPRO_PATCH_PARAMS_SET(bt_param); if (mType == MIXER) { POSTPRO_PATCH_OUTPROC_PLAY_INIT(this, myName); } else if (mType == OFFLOAD) { POSTPRO_PATCH_OUTPROC_DIRECT_INIT(this, myName); POSTPRO_PATCH_OUTPROC_PLAY_ROUTE_BY_VALUE(this, mOutDevice); } else if (mType == DIRECT) { POSTPRO_PATCH_OUTPROC_DIRECT_INIT(this, myName); POSTPRO_PATCH_OUTPROC_PLAY_ROUTE_BY_VALUE(this, mOutDevice); } #endif // mNBLogWriter->log can only be called while thread mutex mLock is held. // So if you need to log when mutex is unlocked, set logString to a non-NULL string, // and then that string will be logged at the next convenient opportunity. const char *logString = NULL; checkSilentMode_l(); while (!exitPending()) { cpuStats.sample(myName); Vector< sp > effectChains; { // scope for mLock Mutex::Autolock _l(mLock); processConfigEvents_l(); if (logString != NULL) { mNBLogWriter->logTimestamp(); mNBLogWriter->log(logString); logString = NULL; } // Gather the framesReleased counters for all active tracks, // and latch them atomically with the timestamp. // FIXME We're using raw pointers as indices. A unique track ID would be a better index. mLatchD.mFramesReleased.clear(); size_t size = mActiveTracks.size(); for (size_t i = 0; i < size; i++) { sp t = mActiveTracks[i].promote(); if (t != 0) { mLatchD.mFramesReleased.add(t.get(), t->mAudioTrackServerProxy->framesReleased()); } } if (mLatchDValid) { mLatchQ = mLatchD; mLatchDValid = false; mLatchQValid = true; } saveOutputTracks(); if (mSignalPending) { // A signal was raised while we were unlocked mSignalPending = false; } else if (waitingAsyncCallback_l()) { if (exitPending()) { break; } bool released = false; // The following works around a bug in the offload driver. Ideally we would release // the wake lock every time, but that causes the last offload buffer(s) to be // dropped while the device is on battery, so we need to hold a wake lock during // the drain phase. if (mBytesRemaining && !(mDrainSequence & 1)) { releaseWakeLock_l(); released = true; } mWakeLockUids.clear(); mActiveTracksGeneration++; ALOGV("wait async completion"); mWaitWorkCV.wait(mLock); ALOGV("async completion/wake"); if (released) { acquireWakeLock_l(); } mStandbyTimeNs = systemTime() + mStandbyDelayNs; mSleepTimeUs = 0; continue; } if ((!mActiveTracks.size() && systemTime() > mStandbyTimeNs) || isSuspended()) { // put audio hardware into standby after short delay if (shouldStandby_l()) { threadLoop_standby(); mStandby = true; } if (!mActiveTracks.size() && mConfigEvents.isEmpty()) { // we're about to wait, flush the binder command buffer IPCThreadState::self()->flushCommands(); clearOutputTracks(); if (exitPending()) { break; } releaseWakeLock_l(); mWakeLockUids.clear(); mActiveTracksGeneration++; // wait until we have something to do... ALOGV("%s going to sleep", myName.string()); mWaitWorkCV.wait(mLock); ALOGV("%s waking up", myName.string()); acquireWakeLock_l(); mMixerStatus = MIXER_IDLE; mMixerStatusIgnoringFastTracks = MIXER_IDLE; mBytesWritten = 0; mBytesRemaining = 0; checkSilentMode_l(); mStandbyTimeNs = systemTime() + mStandbyDelayNs; mSleepTimeUs = mIdleSleepTimeUs; if (mType == MIXER) { sleepTimeShift = 0; } continue; } } // mMixerStatusIgnoringFastTracks is also updated internally mMixerStatus = prepareTracks_l(&tracksToRemove); // compare with previously applied list if (lastGeneration != mActiveTracksGeneration) { // update wakelock updateWakeLockUids_l(mWakeLockUids); lastGeneration = mActiveTracksGeneration; } // prevent any changes in effect chain list and in each effect chain // during mixing and effect process as the audio buffers could be deleted // or modified if an effect is created or deleted lockEffectChains_l(effectChains); } // mLock scope ends if (mBytesRemaining == 0) { mCurrentWriteLength = 0; if (mMixerStatus == MIXER_TRACKS_READY) { // threadLoop_mix() sets mCurrentWriteLength threadLoop_mix(); } else if ((mMixerStatus != MIXER_DRAIN_TRACK) && (mMixerStatus != MIXER_DRAIN_ALL)) { // threadLoop_sleepTime sets mSleepTimeUs to 0 if data // must be written to HAL threadLoop_sleepTime(); if (mSleepTimeUs == 0) { mCurrentWriteLength = mSinkBufferSize; } } // Either threadLoop_mix() or threadLoop_sleepTime() should have set // mMixerBuffer with data if mMixerBufferValid is true and mSleepTimeUs == 0. // Merge mMixerBuffer data into mEffectBuffer (if any effects are valid) // or mSinkBuffer (if there are no effects). // // This is done pre-effects computation; if effects change to // support higher precision, this needs to move. // // mMixerBufferValid is only set true by MixerThread::prepareTracks_l(). // TODO use mSleepTimeUs == 0 as an additional condition. if (mMixerBufferValid) { void *buffer = mEffectBufferValid ? mEffectBuffer : mSinkBuffer; audio_format_t format = mEffectBufferValid ? mEffectBufferFormat : mFormat; memcpy_by_audio_format(buffer, format, mMixerBuffer, mMixerBufferFormat, mNormalFrameCount * mChannelCount); } mBytesRemaining = mCurrentWriteLength; if (isSuspended()) { mSleepTimeUs = suspendSleepTimeUs(); // simulate write to HAL when suspended mBytesWritten += mSinkBufferSize; mBytesRemaining = 0; } // only process effects if we're going to write if (mSleepTimeUs == 0 && mType != OFFLOAD && !(mType == DIRECT && mIsDirectPcm)) { for (size_t i = 0; i < effectChains.size(); i ++) { effectChains[i]->process_l(); } } } // Process effect chains for offloaded thread even if no audio // was read from audio track: process only updates effect state // and thus does have to be synchronized with audio writes but may have // to be called while waiting for async write callback if ((mType == OFFLOAD) || (mType == DIRECT && mIsDirectPcm)) { for (size_t i = 0; i < effectChains.size(); i ++) { effectChains[i]->process_l(); } } #ifdef SRS_PROCESSING // Offload thread if (mType == OFFLOAD) { char buffer[2]; POSTPRO_PATCH_OUTPROC_DIRECT_SAMPLES(this, AUDIO_FORMAT_PCM_16_BIT, (int16_t *) buffer, 2, 48000, 2); } #endif // Only if the Effects buffer is enabled and there is data in the // Effects buffer (buffer valid), we need to // copy into the sink buffer. // TODO use mSleepTimeUs == 0 as an additional condition. if (mEffectBufferValid) { //ALOGV("writing effect buffer to sink buffer format %#x", mFormat); memcpy_by_audio_format(mSinkBuffer, mFormat, mEffectBuffer, mEffectBufferFormat, mNormalFrameCount * mChannelCount); } // enable changes in effect chain unlockEffectChains(effectChains); if (!waitingAsyncCallback()) { // mSleepTimeUs == 0 means we must write to audio hardware if (mSleepTimeUs == 0) { ssize_t ret = 0; #ifdef SRS_PROCESSING if (mType == MIXER && mMixerStatus == MIXER_TRACKS_READY) { POSTPRO_PATCH_OUTPROC_PLAY_SAMPLES(this, mFormat, mSinkBuffer, mSinkBufferSize, mSampleRate, mChannelCount); } #endif if (mBytesRemaining) { ret = threadLoop_write(); if (ret < 0) { mBytesRemaining = 0; } else { mBytesWritten += ret; mBytesRemaining -= ret; } } else if ((mMixerStatus == MIXER_DRAIN_TRACK) || (mMixerStatus == MIXER_DRAIN_ALL)) { threadLoop_drain(); } if (mType == MIXER && !mStandby) { // write blocked detection nsecs_t now = systemTime(); nsecs_t delta = now - mLastWriteTime; if (delta > maxPeriod) { mNumDelayedWrites++; if ((now - lastWarning) > kWarningThrottleNs) { ATRACE_NAME("underrun"); ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p", ns2ms(delta), mNumDelayedWrites, this); lastWarning = now; } } if (mThreadThrottle && mMixerStatus == MIXER_TRACKS_READY // we are mixing (active tracks) && ret > 0) { // we wrote something // Limit MixerThread data processing to no more than twice the // expected processing rate. // // This helps prevent underruns with NuPlayer and other applications // which may set up buffers that are close to the minimum size, or use // deep buffers, and rely on a double-buffering sleep strategy to fill. // // The throttle smooths out sudden large data drains from the device, // e.g. when it comes out of standby, which often causes problems with // (1) mixer threads without a fast mixer (which has its own warm-up) // (2) minimum buffer sized tracks (even if the track is full, // the app won't fill fast enough to handle the sudden draw). const int32_t deltaMs = delta / 1000000; const int32_t halfBufferMs = mHalfBufferMs / (mEffectBufferValid ? 4 : 1); const int32_t throttleMs = halfBufferMs - deltaMs; if ((signed)halfBufferMs >= throttleMs && throttleMs > 0) { usleep(throttleMs * 1000); // notify of throttle start on verbose log ALOGV_IF(mThreadThrottleEndMs == mThreadThrottleTimeMs, "mixer(%p) throttle begin:" " ret(%zd) deltaMs(%d) requires sleep %d ms", this, ret, deltaMs, throttleMs); mThreadThrottleTimeMs += throttleMs; } else { uint32_t diff = mThreadThrottleTimeMs - mThreadThrottleEndMs; if (diff > 0) { // notify of throttle end on debug log ALOGD("mixer(%p) throttle end: throttle time(%u)", this, diff); mThreadThrottleEndMs = mThreadThrottleTimeMs; } } } } } else { ATRACE_BEGIN("sleep"); usleep(mSleepTimeUs); ATRACE_END(); } } // Finally let go of removed track(s), without the lock held // since we can't guarantee the destructors won't acquire that // same lock. This will also mutate and push a new fast mixer state. threadLoop_removeTracks(tracksToRemove); tracksToRemove.clear(); // FIXME I don't understand the need for this here; // it was in the original code but maybe the // assignment in saveOutputTracks() makes this unnecessary? clearOutputTracks(); // Effect chains will be actually deleted here if they were removed from // mEffectChains list during mixing or effects processing effectChains.clear(); // FIXME Note that the above .clear() is no longer necessary since effectChains // is now local to this block, but will keep it for now (at least until merge done). } threadLoop_exit(); if (!mStandby) { threadLoop_standby(); mStandby = true; } #ifdef SRS_PROCESSING if (mType == MIXER) { POSTPRO_PATCH_OUTPROC_PLAY_EXIT(this, myName); } else if (mType == OFFLOAD) { POSTPRO_PATCH_OUTPROC_DIRECT_EXIT(this, myName); } else if (mType == DIRECT) { POSTPRO_PATCH_OUTPROC_DIRECT_EXIT(this, myName); } #endif releaseWakeLock(); mWakeLockUids.clear(); mActiveTracksGeneration++; ALOGV("Thread %p type %d exiting", this, mType); return false; } // removeTracks_l() must be called with ThreadBase::mLock held void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp >& tracksToRemove) { size_t count = tracksToRemove.size(); if (count > 0) { for (size_t i=0 ; i& track = tracksToRemove.itemAt(i); mActiveTracks.remove(track); mWakeLockUids.remove(track->uid()); mActiveTracksGeneration++; ALOGV("removeTracks_l removing track on session %d", track->sessionId()); sp chain = getEffectChain_l(track->sessionId()); if (chain != 0) { ALOGV("stopping track on chain %p for session Id: %d", chain.get(), track->sessionId()); chain->decActiveTrackCnt(); } if (track->isTerminated()) { removeTrack_l(track); } } } } status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp) { if (mNormalSink != 0) { return mNormalSink->getTimestamp(timestamp); } if ((mType == OFFLOAD || mType == DIRECT) && mOutput != NULL && mOutput->stream->get_presentation_position) { uint64_t position64; int ret = mOutput->getPresentationPosition(&position64, ×tamp.mTime); if (ret == 0) { timestamp.mPosition = (uint32_t)position64; return NO_ERROR; } } return INVALID_OPERATION; } status_t AudioFlinger::MixerThread::createAudioPatch_l(const struct audio_patch *patch, audio_patch_handle_t *handle) { // if !&IDLE, holds the FastMixer state to restore after new parameters processed FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE; if (mFastMixer != 0) { FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); if (!(state->mCommand & FastMixerState::IDLE)) { previousCommand = state->mCommand; state->mCommand = FastMixerState::HOT_IDLE; sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED); } else { sq->end(false /*didModify*/); } } status_t status = PlaybackThread::createAudioPatch_l(patch, handle); if (!(previousCommand & FastMixerState::IDLE)) { ALOG_ASSERT(mFastMixer != 0); FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE); state->mCommand = previousCommand; sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); } return status; } status_t AudioFlinger::PlaybackThread::createAudioPatch_l(const struct audio_patch *patch, audio_patch_handle_t *handle) { status_t status = NO_ERROR; // store new device and send to effects audio_devices_t type = AUDIO_DEVICE_NONE; for (unsigned int i = 0; i < patch->num_sinks; i++) { type |= patch->sinks[i].ext.device.type; } #ifdef SRS_PROCESSING POSTPRO_PATCH_OUTPROC_PLAY_ROUTE_BY_VALUE(this, type); #endif #ifdef ADD_BATTERY_DATA // when changing the audio output device, call addBatteryData to notify // the change if (mOutDevice != type) { uint32_t params = 0; // check whether speaker is on if (type & AUDIO_DEVICE_OUT_SPEAKER) { params |= IMediaPlayerService::kBatteryDataSpeakerOn; } audio_devices_t deviceWithoutSpeaker = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER; // check if any other device (except speaker) is on if (type & deviceWithoutSpeaker) { params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn; } if (params != 0) { addBatteryData(params); } } #endif for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setDevice_l(type); } // mPrevOutDevice is the latest device set by createAudioPatch_l(). It is not set when // the thread is created so that the first patch creation triggers an ioConfigChanged callback bool configChanged = mPrevOutDevice != type; mOutDevice = type; mPatch = *patch; if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) { audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice(); status = hwDevice->create_audio_patch(hwDevice, patch->num_sources, patch->sources, patch->num_sinks, patch->sinks, handle); } else { char *address; if (strcmp(patch->sinks[0].ext.device.address, "") != 0) { //FIXME: we only support address on first sink with HAL version < 3.0 address = audio_device_address_to_parameter( patch->sinks[0].ext.device.type, patch->sinks[0].ext.device.address); } else { address = (char *)calloc(1, 1); } AudioParameter param = AudioParameter(String8(address)); free(address); param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)type); status = mOutput->stream->common.set_parameters(&mOutput->stream->common, param.toString().string()); *handle = AUDIO_PATCH_HANDLE_NONE; } if (configChanged) { mPrevOutDevice = type; sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); } return status; } status_t AudioFlinger::MixerThread::releaseAudioPatch_l(const audio_patch_handle_t handle) { // if !&IDLE, holds the FastMixer state to restore after new parameters processed FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE; if (mFastMixer != 0) { FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); if (!(state->mCommand & FastMixerState::IDLE)) { previousCommand = state->mCommand; state->mCommand = FastMixerState::HOT_IDLE; sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED); } else { sq->end(false /*didModify*/); } } status_t status = PlaybackThread::releaseAudioPatch_l(handle); if (!(previousCommand & FastMixerState::IDLE)) { ALOG_ASSERT(mFastMixer != 0); FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE); state->mCommand = previousCommand; sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); } return status; } status_t AudioFlinger::PlaybackThread::releaseAudioPatch_l(const audio_patch_handle_t handle) { status_t status = NO_ERROR; mOutDevice = AUDIO_DEVICE_NONE; if (mOutput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) { audio_hw_device_t *hwDevice = mOutput->audioHwDev->hwDevice(); status = hwDevice->release_audio_patch(hwDevice, handle); } else { AudioParameter param; param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0); status = mOutput->stream->common.set_parameters(&mOutput->stream->common, param.toString().string()); } return status; } void AudioFlinger::PlaybackThread::addPatchTrack(const sp& track) { Mutex::Autolock _l(mLock); mTracks.add(track); } void AudioFlinger::PlaybackThread::deletePatchTrack(const sp& track) { Mutex::Autolock _l(mLock); destroyTrack_l(track); } void AudioFlinger::PlaybackThread::getAudioPortConfig(struct audio_port_config *config) { ThreadBase::getAudioPortConfig(config); config->role = AUDIO_PORT_ROLE_SOURCE; config->ext.mix.hw_module = mOutput->audioHwDev->handle(); config->ext.mix.usecase.stream = AUDIO_STREAM_DEFAULT; } // ---------------------------------------------------------------------------- AudioFlinger::MixerThread::MixerThread(const sp& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type) : PlaybackThread(audioFlinger, output, id, device, type, systemReady), // mAudioMixer below // mFastMixer below mFastMixerFutex(0) // mOutputSink below // mPipeSink below // mNormalSink below { ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type); ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, " "mFrameCount=%d, mNormalFrameCount=%d", mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount, mNormalFrameCount); mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate); if (type == DUPLICATING) { // The Duplicating thread uses the AudioMixer and delivers data to OutputTracks // (downstream MixerThreads) in DuplicatingThread::threadLoop_write(). // Do not create or use mFastMixer, mOutputSink, mPipeSink, or mNormalSink. return; } // create an NBAIO sink for the HAL output stream, and negotiate mOutputSink = new AudioStreamOutSink(output->stream); size_t numCounterOffers = 0; const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)}; ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); // initialize fast mixer depending on configuration bool initFastMixer; switch (kUseFastMixer) { case FastMixer_Never: initFastMixer = false; break; case FastMixer_Always: initFastMixer = true; break; case FastMixer_Static: case FastMixer_Dynamic: initFastMixer = mFrameCount < mNormalFrameCount; break; } if (initFastMixer) { audio_format_t fastMixerFormat; #ifdef LEGACY_ALSA_AUDIO fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT; #else if (mMixerBufferEnabled && mEffectBufferEnabled) { fastMixerFormat = AUDIO_FORMAT_PCM_FLOAT; } else { fastMixerFormat = AUDIO_FORMAT_PCM_16_BIT; } #endif if (mFormat != fastMixerFormat) { // change our Sink format to accept our intermediate precision mFormat = fastMixerFormat; free(mSinkBuffer); mFrameSize = mChannelCount * audio_bytes_per_sample(mFormat); const size_t sinkBufferSize = mNormalFrameCount * mFrameSize; (void)posix_memalign(&mSinkBuffer, 32, sinkBufferSize); } // create a MonoPipe to connect our submix to FastMixer NBAIO_Format format = mOutputSink->format(); NBAIO_Format origformat = format; // adjust format to match that of the Fast Mixer ALOGV("format changed from %d to %d", format.mFormat, fastMixerFormat); format.mFormat = fastMixerFormat; format.mFrameSize = audio_bytes_per_sample(format.mFormat) * format.mChannelCount; // This pipe depth compensates for scheduling latency of the normal mixer thread. // When it wakes up after a maximum latency, it runs a few cycles quickly before // finally blocking. Note the pipe implementation rounds up the request to a power of 2. MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/); const NBAIO_Format offers[1] = {format}; size_t numCounterOffers = 0; ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); monoPipe->setAvgFrames((mScreenState & 1) ? (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2); mPipeSink = monoPipe; #ifdef TEE_SINK if (mTeeSinkOutputEnabled) { // create a Pipe to archive a copy of FastMixer's output for dumpsys Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, origformat); const NBAIO_Format offers2[1] = {origformat}; numCounterOffers = 0; index = teeSink->negotiate(offers2, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); mTeeSink = teeSink; PipeReader *teeSource = new PipeReader(*teeSink); numCounterOffers = 0; index = teeSource->negotiate(offers2, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); mTeeSource = teeSource; } #endif // create fast mixer and configure it initially with just one fast track for our submix mFastMixer = new FastMixer(); FastMixerStateQueue *sq = mFastMixer->sq(); #ifdef STATE_QUEUE_DUMP sq->setObserverDump(&mStateQueueObserverDump); sq->setMutatorDump(&mStateQueueMutatorDump); #endif FastMixerState *state = sq->begin(); FastTrack *fastTrack = &state->mFastTracks[0]; // wrap the source side of the MonoPipe to make it an AudioBufferProvider fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe)); fastTrack->mVolumeProvider = NULL; fastTrack->mChannelMask = mChannelMask; // mPipeSink channel mask for audio to FastMixer fastTrack->mFormat = mFormat; // mPipeSink format for audio to FastMixer fastTrack->mGeneration++; state->mFastTracksGen++; state->mTrackMask = 1; // fast mixer will use the HAL output sink state->mOutputSink = mOutputSink.get(); state->mOutputSinkGen++; state->mFrameCount = mFrameCount; state->mCommand = FastMixerState::COLD_IDLE; // already done in constructor initialization list //mFastMixerFutex = 0; state->mColdFutexAddr = &mFastMixerFutex; state->mColdGen++; state->mDumpState = &mFastMixerDumpState; #ifdef TEE_SINK state->mTeeSink = mTeeSink.get(); #endif mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer"); state->mNBLogWriter = mFastMixerNBLogWriter.get(); sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); // start the fast mixer mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO); pid_t tid = mFastMixer->getTid(); sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer); #ifdef AUDIO_WATCHDOG // create and start the watchdog mAudioWatchdog = new AudioWatchdog(); mAudioWatchdog->setDump(&mAudioWatchdogDump); mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO); tid = mAudioWatchdog->getTid(); sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer); #endif } switch (kUseFastMixer) { case FastMixer_Never: case FastMixer_Dynamic: mNormalSink = mOutputSink; break; case FastMixer_Always: mNormalSink = mPipeSink; break; case FastMixer_Static: mNormalSink = initFastMixer ? mPipeSink : mOutputSink; break; } } AudioFlinger::MixerThread::~MixerThread() { if (mFastMixer != 0) { FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); if (state->mCommand == FastMixerState::COLD_IDLE) { int32_t old = android_atomic_inc(&mFastMixerFutex); if (old == -1) { (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1); } } state->mCommand = FastMixerState::EXIT; sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); mFastMixer->join(); // Though the fast mixer thread has exited, it's state queue is still valid. // We'll use that extract the final state which contains one remaining fast track // corresponding to our sub-mix. state = sq->begin(); ALOG_ASSERT(state->mTrackMask == 1); FastTrack *fastTrack = &state->mFastTracks[0]; ALOG_ASSERT(fastTrack->mBufferProvider != NULL); delete fastTrack->mBufferProvider; sq->end(false /*didModify*/); mFastMixer.clear(); #ifdef AUDIO_WATCHDOG if (mAudioWatchdog != 0) { mAudioWatchdog->requestExit(); mAudioWatchdog->requestExitAndWait(); mAudioWatchdog.clear(); } #endif } mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter); delete mAudioMixer; } uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const { if (mFastMixer != 0) { MonoPipe *pipe = (MonoPipe *)mPipeSink.get(); latency += (pipe->getAvgFrames() * 1000) / mSampleRate; } return latency; } void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp >& tracksToRemove) { PlaybackThread::threadLoop_removeTracks(tracksToRemove); } ssize_t AudioFlinger::MixerThread::threadLoop_write() { // FIXME we should only do one push per cycle; confirm this is true // Start the fast mixer if it's not already running if (mFastMixer != 0) { FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); if (state->mCommand != FastMixerState::MIX_WRITE && (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) { if (state->mCommand == FastMixerState::COLD_IDLE) { // FIXME workaround for first HAL write being CPU bound on some devices ATRACE_BEGIN("write"); mOutput->write((char *)mSinkBuffer, 0); ATRACE_END(); int32_t old = android_atomic_inc(&mFastMixerFutex); if (old == -1) { (void) syscall(__NR_futex, &mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1); } #ifdef AUDIO_WATCHDOG if (mAudioWatchdog != 0) { mAudioWatchdog->resume(); } #endif } state->mCommand = FastMixerState::MIX_WRITE; #ifdef FAST_THREAD_STATISTICS mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ? FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN); #endif sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); if (kUseFastMixer == FastMixer_Dynamic) { mNormalSink = mPipeSink; } } else { sq->end(false /*didModify*/); } } return PlaybackThread::threadLoop_write(); } void AudioFlinger::MixerThread::threadLoop_standby() { // Idle the fast mixer if it's currently running if (mFastMixer != 0) { FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); if (!(state->mCommand & FastMixerState::IDLE)) { state->mCommand = FastMixerState::COLD_IDLE; state->mColdFutexAddr = &mFastMixerFutex; state->mColdGen++; mFastMixerFutex = 0; sq->end(); // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED); if (kUseFastMixer == FastMixer_Dynamic) { mNormalSink = mOutputSink; } #ifdef AUDIO_WATCHDOG if (mAudioWatchdog != 0) { mAudioWatchdog->pause(); } #endif } else { sq->end(false /*didModify*/); } } PlaybackThread::threadLoop_standby(); } bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l() { return false; } bool AudioFlinger::PlaybackThread::shouldStandby_l() { return !mStandby; } bool AudioFlinger::PlaybackThread::waitingAsyncCallback() { Mutex::Autolock _l(mLock); return waitingAsyncCallback_l(); } // shared by MIXER and DIRECT, overridden by DUPLICATING void AudioFlinger::PlaybackThread::threadLoop_standby() { ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended); mOutput->standby(); if (mUseAsyncWrite != 0) { // discard any pending drain or write ack by incrementing sequence mWriteAckSequence = (mWriteAckSequence + 2) & ~1; mDrainSequence = (mDrainSequence + 2) & ~1; ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->setWriteBlocked(mWriteAckSequence); mCallbackThread->setDraining(mDrainSequence); } mHwPaused = false; } void AudioFlinger::PlaybackThread::onAddNewTrack_l() { ALOGV("signal playback thread"); broadcast_l(); } void AudioFlinger::MixerThread::threadLoop_mix() { // obtain the presentation timestamp of the next output buffer int64_t pts; status_t status = INVALID_OPERATION; if (mNormalSink != 0) { status = mNormalSink->getNextWriteTimestamp(&pts); } else { status = mOutputSink->getNextWriteTimestamp(&pts); } if (status != NO_ERROR) { pts = AudioBufferProvider::kInvalidPTS; } // mix buffers... mAudioMixer->process(pts); mCurrentWriteLength = mSinkBufferSize; // increase sleep time progressively when application underrun condition clears. // Only increase sleep time if the mixer is ready for two consecutive times to avoid // that a steady state of alternating ready/not ready conditions keeps the sleep time // such that we would underrun the audio HAL. if ((mSleepTimeUs == 0) && (sleepTimeShift > 0)) { sleepTimeShift--; } mSleepTimeUs = 0; mStandbyTimeNs = systemTime() + mStandbyDelayNs; //TODO: delay standby when effects have a tail } void AudioFlinger::MixerThread::threadLoop_sleepTime() { // If no tracks are ready, sleep once for the duration of an output // buffer size, then write 0s to the output if (mSleepTimeUs == 0) { if (mMixerStatus == MIXER_TRACKS_ENABLED) { mSleepTimeUs = mActiveSleepTimeUs >> sleepTimeShift; if (mSleepTimeUs < kMinThreadSleepTimeUs) { mSleepTimeUs = kMinThreadSleepTimeUs; } // reduce sleep time in case of consecutive application underruns to avoid // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer // duration we would end up writing less data than needed by the audio HAL if // the condition persists. if (sleepTimeShift < kMaxThreadSleepTimeShift) { sleepTimeShift++; } } else { mSleepTimeUs = mIdleSleepTimeUs; } } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) { // clear out mMixerBuffer or mSinkBuffer, to ensure buffers are cleared // before effects processing or output. if (mMixerBufferValid) { memset(mMixerBuffer, 0, mMixerBufferSize); } else { memset(mSinkBuffer, 0, mSinkBufferSize); } mSleepTimeUs = 0; ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED), "anticipated start"); } // TODO add standby time extension fct of effect tail } // prepareTracks_l() must be called with ThreadBase::mLock held AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l( Vector< sp > *tracksToRemove) { mixer_state mixerStatus = MIXER_IDLE; // find out which tracks need to be processed size_t count = mActiveTracks.size(); size_t mixedTracks = 0; size_t tracksWithEffect = 0; // counts only _active_ fast tracks size_t fastTracks = 0; uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset float masterVolume = mMasterVolume; bool masterMute = mMasterMute; if (masterMute) { masterVolume = 0; } // Delegate master volume control to effect in output mix effect chain if needed sp chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX); if (chain != 0) { uint32_t v = (uint32_t)(masterVolume * (1 << 24)); chain->setVolume_l(&v, &v); masterVolume = (float)((v + (1 << 23)) >> 24); chain.clear(); } // prepare a new state to push FastMixerStateQueue *sq = NULL; FastMixerState *state = NULL; bool didModify = false; FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED; if (mFastMixer != 0) { sq = mFastMixer->sq(); state = sq->begin(); } mMixerBufferValid = false; // mMixerBuffer has no valid data until appropriate tracks found. mEffectBufferValid = false; // mEffectBuffer has no valid data until tracks found. for (size_t i=0 ; i t = mActiveTracks[i].promote(); if (t == 0) { continue; } // this const just means the local variable doesn't change Track* const track = t.get(); // process fast tracks if (track->isFastTrack()) { // It's theoretically possible (though unlikely) for a fast track to be created // and then removed within the same normal mix cycle. This is not a problem, as // the track never becomes active so it's fast mixer slot is never touched. // The converse, of removing an (active) track and then creating a new track // at the identical fast mixer slot within the same normal mix cycle, // is impossible because the slot isn't marked available until the end of each cycle. int j = track->mFastIndex; ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks); ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j))); FastTrack *fastTrack = &state->mFastTracks[j]; // Determine whether the track is currently in underrun condition, // and whether it had a recent underrun. FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j]; FastTrackUnderruns underruns = ftDump->mUnderruns; uint32_t recentFull = (underruns.mBitFields.mFull - track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK; uint32_t recentPartial = (underruns.mBitFields.mPartial - track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK; uint32_t recentEmpty = (underruns.mBitFields.mEmpty - track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK; uint32_t recentUnderruns = recentPartial + recentEmpty; track->mObservedUnderruns = underruns; // don't count underruns that occur while stopping or pausing // or stopped which can occur when flush() is called while active if (!(track->isStopping() || track->isPausing() || track->isStopped()) && recentUnderruns > 0) { // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount); } // This is similar to the state machine for normal tracks, // with a few modifications for fast tracks. bool isActive = true; switch (track->mState) { case TrackBase::STOPPING_1: // track stays active in STOPPING_1 state until first underrun if (recentUnderruns > 0 || track->isTerminated()) { track->mState = TrackBase::STOPPING_2; } break; case TrackBase::PAUSING: // ramp down is not yet implemented track->setPaused(); break; case TrackBase::RESUMING: // ramp up is not yet implemented track->mState = TrackBase::ACTIVE; break; case TrackBase::ACTIVE: if (recentFull > 0 || recentPartial > 0) { // track has provided at least some frames recently: reset retry count track->mRetryCount = kMaxTrackRetries; } if (recentUnderruns == 0) { // no recent underruns: stay active break; } // there has recently been an underrun of some kind if (track->sharedBuffer() == 0) { // were any of the recent underruns "empty" (no frames available)? if (recentEmpty == 0) { // no, then ignore the partial underruns as they are allowed indefinitely break; } // there has recently been an "empty" underrun: decrement the retry counter if (--(track->mRetryCount) > 0) { break; } // indicate to client process that the track was disabled because of underrun; // it will then automatically call start() when data is available android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags); // remove from active list, but state remains ACTIVE [confusing but true] isActive = false; break; } // fall through case TrackBase::STOPPING_2: case TrackBase::PAUSED: case TrackBase::STOPPED: case TrackBase::FLUSHED: // flush() while active // Check for presentation complete if track is inactive // We have consumed all the buffers of this track. // This would be incomplete if we auto-paused on underrun { size_t audioHALFrames = (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000; size_t framesWritten = mBytesWritten / mFrameSize; if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) { // track stays in active list until presentation is complete break; } } if (track->isStopping_2()) { track->mState = TrackBase::STOPPED; } if (track->isStopped()) { // Can't reset directly, as fast mixer is still polling this track // track->reset(); // So instead mark this track as needing to be reset after push with ack resetMask |= 1 << i; } isActive = false; break; case TrackBase::IDLE: default: LOG_ALWAYS_FATAL("unexpected track state %d", track->mState); } if (isActive) { // was it previously inactive? if (!(state->mTrackMask & (1 << j))) { ExtendedAudioBufferProvider *eabp = track; VolumeProvider *vp = track; fastTrack->mBufferProvider = eabp; fastTrack->mVolumeProvider = vp; fastTrack->mChannelMask = track->mChannelMask; fastTrack->mFormat = track->mFormat; fastTrack->mGeneration++; state->mTrackMask |= 1 << j; didModify = true; // no acknowledgement required for newly active tracks } // cache the combined master volume and stream type volume for fast mixer; this // lacks any synchronization or barrier so VolumeProvider may read a stale value track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume; ++fastTracks; } else { // was it previously active? if (state->mTrackMask & (1 << j)) { fastTrack->mBufferProvider = NULL; fastTrack->mGeneration++; state->mTrackMask &= ~(1 << j); didModify = true; // If any fast tracks were removed, we must wait for acknowledgement // because we're about to decrement the last sp<> on those tracks. block = FastMixerStateQueue::BLOCK_UNTIL_ACKED; } else { LOG_ALWAYS_FATAL("fast track %d should have been active", j); } tracksToRemove->add(track); // Avoids a misleading display in dumpsys track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL; } continue; } { // local variable scope to avoid goto warning audio_track_cblk_t* cblk = track->cblk(); // The first time a track is added we wait // for all its buffers to be filled before processing it int name = track->name(); // make sure that we have enough frames to mix one full buffer. // enforce this condition only once to enable draining the buffer in case the client // app does not call stop() and relies on underrun to stop: // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed // during last round size_t desiredFrames; const uint32_t sampleRate = track->mAudioTrackServerProxy->getSampleRate(); AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate(); desiredFrames = sourceFramesNeededWithTimestretch( sampleRate, mNormalFrameCount, mSampleRate, playbackRate.mSpeed); // TODO: ONLY USED FOR LEGACY RESAMPLERS, remove when they are removed. // add frames already consumed but not yet released by the resampler // because mAudioTrackServerProxy->framesReady() will include these frames desiredFrames += mAudioMixer->getUnreleasedFrames(track->name()); uint32_t minFrames = 1; if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() && (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) { minFrames = desiredFrames; } size_t framesReady = track->framesReady(); if (ATRACE_ENABLED()) { // I wish we had formatted trace names char traceName[16]; strcpy(traceName, "nRdy"); int name = track->name(); if (AudioMixer::TRACK0 <= name && name < (int) (AudioMixer::TRACK0 + AudioMixer::MAX_NUM_TRACKS)) { name -= AudioMixer::TRACK0; traceName[4] = (name / 10) + '0'; traceName[5] = (name % 10) + '0'; } else { traceName[4] = '?'; traceName[5] = '?'; } traceName[6] = '\0'; ATRACE_INT(traceName, framesReady); } if ((framesReady >= minFrames) && track->isReady() && !track->isPaused() && !track->isTerminated()) { ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this); mixedTracks++; // track->mainBuffer() != mSinkBuffer or mMixerBuffer means // there is an effect chain connected to the track chain.clear(); if (track->mainBuffer() != mSinkBuffer && track->mainBuffer() != mMixerBuffer) { if (mEffectBufferEnabled) { mEffectBufferValid = true; // Later can set directly. } chain = getEffectChain_l(track->sessionId()); // Delegate volume control to effect in track effect chain if needed if (chain != 0) { tracksWithEffect++; } else { ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on " "session %d", name, track->sessionId()); } } int param = AudioMixer::VOLUME; if (track->mFillingUpStatus == Track::FS_FILLED) { // no ramp for the first volume setting track->mFillingUpStatus = Track::FS_ACTIVE; if (track->mState == TrackBase::RESUMING) { track->mState = TrackBase::ACTIVE; param = AudioMixer::RAMP_VOLUME; } mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL); // FIXME should not make a decision based on mServer } else if (cblk->mServer != 0) { // If the track is stopped before the first frame was mixed, // do not apply ramp param = AudioMixer::RAMP_VOLUME; } // compute volume for this track uint32_t vl, vr; // in U8.24 integer format float vlf, vrf, vaf; // in [0.0, 1.0] float format if (track->isPausing() || mStreamTypes[track->streamType()].mute) { vl = vr = 0; vlf = vrf = vaf = 0.; if (track->isPausing()) { track->setPaused(); } } else { // read original volumes with volume control float typeVolume = mStreamTypes[track->streamType()].volume; float v = masterVolume * typeVolume; AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy; gain_minifloat_packed_t vlr = proxy->getVolumeLR(); vlf = float_from_gain(gain_minifloat_unpack_left(vlr)); vrf = float_from_gain(gain_minifloat_unpack_right(vlr)); // track volumes come from shared memory, so can't be trusted and must be clamped if (vlf > GAIN_FLOAT_UNITY) { ALOGV("Track left volume out of range: %.3g", vlf); vlf = GAIN_FLOAT_UNITY; } if (vrf > GAIN_FLOAT_UNITY) { ALOGV("Track right volume out of range: %.3g", vrf); vrf = GAIN_FLOAT_UNITY; } // now apply the master volume and stream type volume vlf *= v; vrf *= v; // assuming master volume and stream type volume each go up to 1.0, // then derive vl and vr as U8.24 versions for the effect chain const float scaleto8_24 = MAX_GAIN_INT * MAX_GAIN_INT; vl = (uint32_t) (scaleto8_24 * vlf); vr = (uint32_t) (scaleto8_24 * vrf); // vl and vr are now in U8.24 format uint16_t sendLevel = proxy->getSendLevel_U4_12(); // send level comes from shared memory and so may be corrupt if (sendLevel > MAX_GAIN_INT) { ALOGV("Track send level out of range: %04X", sendLevel); sendLevel = MAX_GAIN_INT; } // vaf is represented as [0.0, 1.0] float by rescaling sendLevel vaf = v * sendLevel * (1. / MAX_GAIN_INT); } // Delegate volume control to effect in track effect chain if needed if (chain != 0 && chain->setVolume_l(&vl, &vr)) { // Do not ramp volume if volume is controlled by effect param = AudioMixer::VOLUME; // Update remaining floating point volume levels vlf = (float)vl / (1 << 24); vrf = (float)vr / (1 << 24); track->mHasVolumeController = true; } else { // force no volume ramp when volume controller was just disabled or removed // from effect chain to avoid volume spike if (track->mHasVolumeController) { param = AudioMixer::VOLUME; } track->mHasVolumeController = false; } // XXX: these things DON'T need to be done each time mAudioMixer->setBufferProvider(name, track); mAudioMixer->enable(name); mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, &vlf); mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, &vrf); mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, &vaf); mAudioMixer->setParameter( name, AudioMixer::TRACK, AudioMixer::FORMAT, (void *)track->format()); mAudioMixer->setParameter( name, AudioMixer::TRACK, AudioMixer::CHANNEL_MASK, (void *)(uintptr_t)track->channelMask()); mAudioMixer->setParameter( name, AudioMixer::TRACK, AudioMixer::MIXER_CHANNEL_MASK, (void *)(uintptr_t)mChannelMask); // limit track sample rate to 2 x output sample rate, which changes at re-configuration uint32_t maxSampleRate = mSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX; uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate(); if (reqSampleRate == 0) { reqSampleRate = mSampleRate; } else if (reqSampleRate > maxSampleRate) { reqSampleRate = maxSampleRate; } mAudioMixer->setParameter( name, AudioMixer::RESAMPLE, AudioMixer::SAMPLE_RATE, (void *)(uintptr_t)reqSampleRate); AudioPlaybackRate playbackRate = track->mAudioTrackServerProxy->getPlaybackRate(); mAudioMixer->setParameter( name, AudioMixer::TIMESTRETCH, AudioMixer::PLAYBACK_RATE, &playbackRate); /* * Select the appropriate output buffer for the track. * * Tracks with effects go into their own effects chain buffer * and from there into either mEffectBuffer or mSinkBuffer. * * Other tracks can use mMixerBuffer for higher precision * channel accumulation. If this buffer is enabled * (mMixerBufferEnabled true), then selected tracks will accumulate * into it. * */ if (mMixerBufferEnabled && (track->mainBuffer() == mSinkBuffer || track->mainBuffer() == mMixerBuffer)) { mAudioMixer->setParameter( name, AudioMixer::TRACK, AudioMixer::MIXER_FORMAT, (void *)mMixerBufferFormat); mAudioMixer->setParameter( name, AudioMixer::TRACK, AudioMixer::MAIN_BUFFER, (void *)mMixerBuffer); // TODO: override track->mainBuffer()? mMixerBufferValid = true; } else { mAudioMixer->setParameter( name, AudioMixer::TRACK, AudioMixer::MIXER_FORMAT, (void *)AUDIO_FORMAT_PCM_16_BIT); mAudioMixer->setParameter( name, AudioMixer::TRACK, AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer()); } mAudioMixer->setParameter( name, AudioMixer::TRACK, AudioMixer::AUX_BUFFER, (void *)track->auxBuffer()); // reset retry count track->mRetryCount = kMaxTrackRetries; // If one track is ready, set the mixer ready if: // - the mixer was not ready during previous round OR // - no other track is not ready if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY || mixerStatus != MIXER_TRACKS_ENABLED) { mixerStatus = MIXER_TRACKS_READY; } } else { if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) { ALOGV("track(%p) underrun, framesReady(%zu) < framesDesired(%zd)", track, framesReady, desiredFrames); track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames); } // clear effect chain input buffer if an active track underruns to avoid sending // previous audio buffer again to effects chain = getEffectChain_l(track->sessionId()); if (chain != 0) { chain->clearInputBuffer(); } ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this); if ((track->sharedBuffer() != 0) || track->isTerminated() || track->isStopped() || track->isPaused()) { // We have consumed all the buffers of this track. // Remove it from the list of active tracks. // TODO: use actual buffer filling status instead of latency when available from // audio HAL size_t audioHALFrames = (latency_l() * mSampleRate) / 1000; size_t framesWritten = mBytesWritten / mFrameSize; if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) { if (track->isStopped()) { track->reset(); } tracksToRemove->add(track); } } else { // No buffers for this track. Give it a few chances to // fill a buffer, then remove it from active list. if (--(track->mRetryCount) <= 0) { ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this); tracksToRemove->add(track); // indicate to client process that the track was disabled because of underrun; // it will then automatically call start() when data is available android_atomic_or(CBLK_DISABLED, &cblk->mFlags); // If one track is not ready, mark the mixer also not ready if: // - the mixer was ready during previous round OR // - no other track is ready } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY || mixerStatus != MIXER_TRACKS_READY) { mixerStatus = MIXER_TRACKS_ENABLED; } } mAudioMixer->disable(name); } } // local variable scope to avoid goto warning track_is_ready: ; } // Push the new FastMixer state if necessary bool pauseAudioWatchdog = false; if (didModify) { state->mFastTracksGen++; // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle if (kUseFastMixer == FastMixer_Dynamic && state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) { state->mCommand = FastMixerState::COLD_IDLE; state->mColdFutexAddr = &mFastMixerFutex; state->mColdGen++; mFastMixerFutex = 0; if (kUseFastMixer == FastMixer_Dynamic) { mNormalSink = mOutputSink; } // If we go into cold idle, need to wait for acknowledgement // so that fast mixer stops doing I/O. block = FastMixerStateQueue::BLOCK_UNTIL_ACKED; pauseAudioWatchdog = true; } } if (sq != NULL) { sq->end(didModify); sq->push(block); } #ifdef AUDIO_WATCHDOG if (pauseAudioWatchdog && mAudioWatchdog != 0) { mAudioWatchdog->pause(); } #endif // Now perform the deferred reset on fast tracks that have stopped while (resetMask != 0) { size_t i = __builtin_ctz(resetMask); ALOG_ASSERT(i < count); resetMask &= ~(1 << i); sp t = mActiveTracks[i].promote(); if (t == 0) { continue; } Track* track = t.get(); ALOG_ASSERT(track->isFastTrack() && track->isStopped()); track->reset(); } // remove all the tracks that need to be... removeTracks_l(*tracksToRemove); if (getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX) != 0) { mEffectBufferValid = true; } if (mEffectBufferValid) { // as long as there are effects we should clear the effects buffer, to avoid // passing a non-clean buffer to the effect chain memset(mEffectBuffer, 0, mEffectBufferSize); } // sink or mix buffer must be cleared if all tracks are connected to an // effect chain as in this case the mixer will not write to the sink or mix buffer // and track effects will accumulate into it if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) || (mixedTracks == 0 && fastTracks > 0))) { // FIXME as a performance optimization, should remember previous zero status if (mMixerBufferValid) { memset(mMixerBuffer, 0, mMixerBufferSize); // TODO: In testing, mSinkBuffer below need not be cleared because // the PlaybackThread::threadLoop() copies mMixerBuffer into mSinkBuffer // after mixing. // // To enforce this guarantee: // ((mixedTracks != 0 && mixedTracks == tracksWithEffect) || // (mixedTracks == 0 && fastTracks > 0)) // must imply MIXER_TRACKS_READY. // Later, we may clear buffers regardless, and skip much of this logic. } // FIXME as a performance optimization, should remember previous zero status memset(mSinkBuffer, 0, mNormalFrameCount * mFrameSize); } // if any fast tracks, then status is ready mMixerStatusIgnoringFastTracks = mixerStatus; if (fastTracks > 0) { mixerStatus = MIXER_TRACKS_READY; } return mixerStatus; } // getTrackName_l() must be called with ThreadBase::mLock held int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask, audio_format_t format, int sessionId) { return mAudioMixer->getTrackName(channelMask, format, sessionId); } // deleteTrackName_l() must be called with ThreadBase::mLock held void AudioFlinger::MixerThread::deleteTrackName_l(int name) { ALOGV("remove track (%d) and delete from mixer", name); mAudioMixer->deleteTrackName(name); } // checkForNewParameter_l() must be called with ThreadBase::mLock held bool AudioFlinger::MixerThread::checkForNewParameter_l(const String8& keyValuePair, status_t& status) { bool reconfig = false; bool a2dpDeviceChanged = false; status = NO_ERROR; // if !&IDLE, holds the FastMixer state to restore after new parameters processed FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE; if (mFastMixer != 0) { FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); if (!(state->mCommand & FastMixerState::IDLE)) { previousCommand = state->mCommand; state->mCommand = FastMixerState::HOT_IDLE; sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED); } else { sq->end(false /*didModify*/); } } AudioParameter param = AudioParameter(keyValuePair); int value; #ifdef SRS_PROCESSING POSTPRO_PATCH_OUTPROC_PLAY_ROUTE(this, param, value); #endif if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) { reconfig = true; } if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) { if (!isValidPcmSinkFormat((audio_format_t) value)) { status = BAD_VALUE; } else { // no need to save value, since it's constant reconfig = true; } } if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) { if (!isValidPcmSinkChannelMask((audio_channel_mask_t) value)) { status = BAD_VALUE; } else { // no need to save value, since it's constant reconfig = true; } } if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) { // do not accept frame count changes if tracks are open as the track buffer // size depends on frame count and correct behavior would not be guaranteed // if frame count is changed after track creation if (!mTracks.isEmpty()) { status = INVALID_OPERATION; } else { reconfig = true; } } if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) { #ifdef ADD_BATTERY_DATA // when changing the audio output device, call addBatteryData to notify // the change if (mOutDevice != value) { uint32_t params = 0; // check whether speaker is on if (value & AUDIO_DEVICE_OUT_SPEAKER) { params |= IMediaPlayerService::kBatteryDataSpeakerOn; } audio_devices_t deviceWithoutSpeaker = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER; // check if any other device (except speaker) is on if (value & deviceWithoutSpeaker) { params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn; } if (params != 0) { addBatteryData(params); } } #endif // forward device change to effects that have requested to be // aware of attached audio device. if (value != AUDIO_DEVICE_NONE) { a2dpDeviceChanged = (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP); mOutDevice = value; for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setDevice_l(mOutDevice); } } } if (status == NO_ERROR) { status = mOutput->stream->common.set_parameters(&mOutput->stream->common, keyValuePair.string()); if (!mStandby && status == INVALID_OPERATION) { mOutput->standby(); mStandby = true; mBytesWritten = 0; status = mOutput->stream->common.set_parameters(&mOutput->stream->common, keyValuePair.string()); } if (status == NO_ERROR && reconfig) { readOutputParameters_l(); delete mAudioMixer; mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate); for (size_t i = 0; i < mTracks.size() ; i++) { int name = getTrackName_l(mTracks[i]->mChannelMask, mTracks[i]->mFormat, mTracks[i]->mSessionId); if (name < 0) { break; } mTracks[i]->mName = name; } sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); } } if (!(previousCommand & FastMixerState::IDLE)) { ALOG_ASSERT(mFastMixer != 0); FastMixerStateQueue *sq = mFastMixer->sq(); FastMixerState *state = sq->begin(); ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE); state->mCommand = previousCommand; sq->end(); sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED); } return reconfig || a2dpDeviceChanged; } void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector& args) { const size_t SIZE = 256; char buffer[SIZE]; String8 result; PlaybackThread::dumpInternals(fd, args); dprintf(fd, " Thread throttle time (msecs): %u\n", mThreadThrottleTimeMs); dprintf(fd, " AudioMixer tracks: 0x%08x\n", mAudioMixer->trackNames()); // Make a non-atomic copy of fast mixer dump state so it won't change underneath us const FastMixerDumpState copy(mFastMixerDumpState); copy.dump(fd); #ifdef STATE_QUEUE_DUMP // Similar for state queue StateQueueObserverDump observerCopy = mStateQueueObserverDump; observerCopy.dump(fd); StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump; mutatorCopy.dump(fd); #endif #ifdef TEE_SINK // Write the tee output to a .wav file dumpTee(fd, mTeeSource, mId); #endif #ifdef AUDIO_WATCHDOG if (mAudioWatchdog != 0) { // Make a non-atomic copy of audio watchdog dump so it won't change underneath us AudioWatchdogDump wdCopy = mAudioWatchdogDump; wdCopy.dump(fd); } #endif } uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const { return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2; } uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const { return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000); } void AudioFlinger::MixerThread::cacheParameters_l() { PlaybackThread::cacheParameters_l(); // FIXME: Relaxed timing because of a certain device that can't meet latency // Should be reduced to 2x after the vendor fixes the driver issue // increase threshold again due to low power audio mode. The way this warning // threshold is calculated and its usefulness should be reconsidered anyway. maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15; } // ---------------------------------------------------------------------------- AudioFlinger::DirectOutputThread::DirectOutputThread(const sp& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady) : PlaybackThread(audioFlinger, output, id, device, DIRECT, systemReady) // mLeftVolFloat, mRightVolFloat { } AudioFlinger::DirectOutputThread::DirectOutputThread(const sp& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, uint32_t device, ThreadBase::type_t type, bool systemReady) : PlaybackThread(audioFlinger, output, id, device, type, systemReady) // mLeftVolFloat, mRightVolFloat { } AudioFlinger::DirectOutputThread::~DirectOutputThread() { } void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack) { audio_track_cblk_t* cblk = track->cblk(); float left, right; if (mMasterMute || mStreamTypes[track->streamType()].mute) { left = right = 0; } else { float typeVolume = mStreamTypes[track->streamType()].volume; float v = mMasterVolume * typeVolume; AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy; gain_minifloat_packed_t vlr = proxy->getVolumeLR(); left = float_from_gain(gain_minifloat_unpack_left(vlr)); if (left > GAIN_FLOAT_UNITY) { left = GAIN_FLOAT_UNITY; } left *= v; right = float_from_gain(gain_minifloat_unpack_right(vlr)); if (right > GAIN_FLOAT_UNITY) { right = GAIN_FLOAT_UNITY; } right *= v; } if (lastTrack) { if (left != mLeftVolFloat || right != mRightVolFloat) { mLeftVolFloat = left; mRightVolFloat = right; // Convert volumes from float to 8.24 uint32_t vl = (uint32_t)(left * (1 << 24)); uint32_t vr = (uint32_t)(right * (1 << 24)); // Delegate volume control to effect in track effect chain if needed // only one effect chain can be present on DirectOutputThread, so if // there is one, the track is connected to it if (!mEffectChains.isEmpty()) { mEffectChains[0]->setVolume_l(&vl, &vr); left = (float)vl / (1 << 24); right = (float)vr / (1 << 24); } if (mOutput->stream->set_volume) { mOutput->stream->set_volume(mOutput->stream, left, right); } } } } void AudioFlinger::DirectOutputThread::onAddNewTrack_l() { sp previousTrack = mPreviousTrack.promote(); sp latestTrack = mLatestActiveTrack.promote(); if (previousTrack != 0 && latestTrack != 0) { if (mType == DIRECT) { if (previousTrack.get() != latestTrack.get()) { mFlushPending = true; } } else /* mType == OFFLOAD */ { if (previousTrack->sessionId() != latestTrack->sessionId()) { mFlushPending = true; } } } PlaybackThread::onAddNewTrack_l(); } AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l( Vector< sp > *tracksToRemove ) { size_t count = mActiveTracks.size(); mixer_state mixerStatus = MIXER_IDLE; bool doHwPause = false; bool doHwResume = false; // find out which tracks need to be processed for (size_t i = 0; i < count; i++) { sp t = mActiveTracks[i].promote(); // The track died recently if (t == 0) { continue; } if (t->isInvalid()) { ALOGW("An invalidated track shouldn't be in active list"); tracksToRemove->add(t); continue; } Track* const track = t.get(); audio_track_cblk_t* cblk = track->cblk(); // Only consider last track started for volume and mixer state control. // In theory an older track could underrun and restart after the new one starts // but as we only care about the transition phase between two tracks on a // direct output, it is not a problem to ignore the underrun case. sp l = mLatestActiveTrack.promote(); bool last = l.get() == track; if (track->isPausing()) { track->setPaused(); if (mHwSupportsPause && last && !mHwPaused) { doHwPause = true; mHwPaused = true; } tracksToRemove->add(track); } else if (track->isFlushPending()) { track->flushAck(); if (last) { mFlushPending = true; } } else if (track->isResumePending()) { track->resumeAck(); if (last && mHwPaused) { doHwResume = true; mHwPaused = false; } } // The first time a track is added we wait // for all its buffers to be filled before processing it. // Allow draining the buffer in case the client // app does not call stop() and relies on underrun to stop: // hence the test on (track->mRetryCount > 1). // If retryCount<=1 then track is about to underrun and be removed. // Do not use a high threshold for compressed audio. uint32_t minFrames; if ((track->sharedBuffer() == 0) && !track->isStopping_1() && !track->isPausing() && (track->mRetryCount > 1) && audio_is_linear_pcm(mFormat)) { minFrames = mNormalFrameCount; } else { minFrames = 1; } if ((track->framesReady() >= minFrames) && track->isReady() && !track->isPaused() && !track->isStopping_2() && !track->isStopped()) { ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer); if (track->mFillingUpStatus == Track::FS_FILLED) { track->mFillingUpStatus = Track::FS_ACTIVE; // make sure processVolume_l() will apply new volume even if 0 mLeftVolFloat = mRightVolFloat = -1.0; if (!mHwSupportsPause) { track->resumeAck(); } } // compute volume for this track processVolume_l(track, last); if (last) { sp previousTrack = mPreviousTrack.promote(); if (previousTrack != 0) { if (track != previousTrack.get()) { // Flush any data still being written from last track mBytesRemaining = 0; // Invalidate previous track to force a seek when resuming. previousTrack->invalidate(); } } mPreviousTrack = track; // reset retry count track->mRetryCount = kMaxTrackRetriesDirect; mActiveTrack = t; mixerStatus = MIXER_TRACKS_READY; if (mHwPaused) { doHwResume = true; mHwPaused = false; } } } else { // clear effect chain input buffer if the last active track started underruns // to avoid sending previous audio buffer again to effects if (!mEffectChains.isEmpty() && last) { mEffectChains[0]->clearInputBuffer(); } if (track->isStopping_1()) { track->mState = TrackBase::STOPPING_2; if (last && mHwPaused) { doHwResume = true; mHwPaused = false; } } if ((track->sharedBuffer() != 0) || track->isStopped() || track->isStopping_2() || track->isPaused()) { // We have consumed all the buffers of this track. // Remove it from the list of active tracks. size_t audioHALFrames; if (audio_is_linear_pcm(mFormat)) { audioHALFrames = (latency_l() * mSampleRate) / 1000; } else { audioHALFrames = 0; } size_t framesWritten = mBytesWritten / mFrameSize; if (mStandby || !last || track->presentationComplete(framesWritten, audioHALFrames)) { if (track->isStopping_2()) { track->mState = TrackBase::STOPPED; } if (track->isStopped()) { track->reset(); } tracksToRemove->add(track); } } else { // No buffers for this track. Give it a few chances to // fill a buffer, then remove it from active list. // Only consider last track started for mixer state control if (--(track->mRetryCount) <= 0) { ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name()); tracksToRemove->add(track); // indicate to client process that the track was disabled because of underrun; // it will then automatically call start() when data is available android_atomic_or(CBLK_DISABLED, &cblk->mFlags); } else if (last) { ALOGW("pause because of UNDERRUN, framesReady = %zu," "minFrames = %u, mFormat = %#x", track->framesReady(), minFrames, mFormat); mixerStatus = MIXER_TRACKS_ENABLED; if (mHwSupportsPause && !mHwPaused && !mStandby) { doHwPause = true; mHwPaused = true; } } } } } // if an active track did not command a flush, check for pending flush on stopped tracks if (!mFlushPending) { for (size_t i = 0; i < mTracks.size(); i++) { if (mTracks[i]->isFlushPending()) { mTracks[i]->flushAck(); mFlushPending = true; } } } // make sure the pause/flush/resume sequence is executed in the right order. // If a flush is pending and a track is active but the HW is not paused, force a HW pause // before flush and then resume HW. This can happen in case of pause/flush/resume // if resume is received before pause is executed. if (mHwSupportsPause && !mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) { mOutput->stream->pause(mOutput->stream); } if (mFlushPending) { flushHw_l(); } if (mHwSupportsPause && !mStandby && doHwResume) { mOutput->stream->resume(mOutput->stream); } // remove all the tracks that need to be... removeTracks_l(*tracksToRemove); return mixerStatus; } void AudioFlinger::DirectOutputThread::threadLoop_mix() { size_t frameCount = mFrameCount; int8_t *curBuf = (int8_t *)mSinkBuffer; // output audio to hardware while (frameCount) { AudioBufferProvider::Buffer buffer; buffer.frameCount = frameCount; status_t status = mActiveTrack->getNextBuffer(&buffer); if (status != NO_ERROR || buffer.raw == NULL) { memset(curBuf, 0, frameCount * mFrameSize); break; } memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize); frameCount -= buffer.frameCount; curBuf += buffer.frameCount * mFrameSize; mActiveTrack->releaseBuffer(&buffer); } mCurrentWriteLength = curBuf - (int8_t *)mSinkBuffer; mSleepTimeUs = 0; mStandbyTimeNs = systemTime() + mStandbyDelayNs; mActiveTrack.clear(); } void AudioFlinger::DirectOutputThread::threadLoop_sleepTime() { // do not write to HAL when paused if (mHwPaused || (usesHwAvSync() && mStandby)) { mSleepTimeUs = mIdleSleepTimeUs; return; } if (mSleepTimeUs == 0) { if (mMixerStatus == MIXER_TRACKS_ENABLED) { mSleepTimeUs = mActiveSleepTimeUs; } else { mSleepTimeUs = mIdleSleepTimeUs; } } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) { memset(mSinkBuffer, 0, mFrameCount * mFrameSize); mSleepTimeUs = 0; } } void AudioFlinger::DirectOutputThread::threadLoop_exit() { { Mutex::Autolock _l(mLock); for (size_t i = 0; i < mTracks.size(); i++) { if (mTracks[i]->isFlushPending()) { mTracks[i]->flushAck(); mFlushPending = true; } } if (mFlushPending) { flushHw_l(); } } PlaybackThread::threadLoop_exit(); } // must be called with thread mutex locked bool AudioFlinger::DirectOutputThread::shouldStandby_l() { bool trackPaused = false; bool trackStopped = false; // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack // after a timeout and we will enter standby then. if (mTracks.size() > 0) { trackPaused = mTracks[mTracks.size() - 1]->isPaused(); trackStopped = mTracks[mTracks.size() - 1]->isStopped() || mTracks[mTracks.size() - 1]->mState == TrackBase::IDLE; } return !mStandby && !(trackPaused || (mHwPaused && !trackStopped)); } // getTrackName_l() must be called with ThreadBase::mLock held int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask __unused, audio_format_t format __unused, int sessionId __unused) { return 0; } // deleteTrackName_l() must be called with ThreadBase::mLock held void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name __unused) { } // checkForNewParameter_l() must be called with ThreadBase::mLock held bool AudioFlinger::DirectOutputThread::checkForNewParameter_l(const String8& keyValuePair, status_t& status) { bool reconfig = false; bool a2dpDeviceChanged = false; status = NO_ERROR; AudioParameter param = AudioParameter(keyValuePair); int value; if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) { // forward device change to effects that have requested to be // aware of attached audio device. if (value != AUDIO_DEVICE_NONE) { a2dpDeviceChanged = (mOutDevice & AUDIO_DEVICE_OUT_ALL_A2DP) != (value & AUDIO_DEVICE_OUT_ALL_A2DP); mOutDevice = value; for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setDevice_l(mOutDevice); } } } if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) { // do not accept frame count changes if tracks are open as the track buffer // size depends on frame count and correct behavior would not be garantied // if frame count is changed after track creation if (!mTracks.isEmpty()) { status = INVALID_OPERATION; } else { reconfig = true; } } if (status == NO_ERROR) { status = mOutput->stream->common.set_parameters(&mOutput->stream->common, keyValuePair.string()); if (!mStandby && status == INVALID_OPERATION) { mOutput->standby(); mStandby = true; mBytesWritten = 0; status = mOutput->stream->common.set_parameters(&mOutput->stream->common, keyValuePair.string()); } if (status == NO_ERROR && reconfig) { readOutputParameters_l(); sendIoConfigEvent_l(AUDIO_OUTPUT_CONFIG_CHANGED); } } return reconfig || a2dpDeviceChanged; } uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const { uint32_t time; if (audio_is_linear_pcm(mFormat)) { time = PlaybackThread::activeSleepTimeUs(); } else { time = 10000; } return time; } uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const { uint32_t time; if (audio_is_linear_pcm(mFormat)) { time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2; } else { time = 10000; } return time; } uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const { uint32_t time; if (audio_is_linear_pcm(mFormat)) { time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000); } else { time = 10000; } return time; } void AudioFlinger::DirectOutputThread::cacheParameters_l() { PlaybackThread::cacheParameters_l(); // use shorter standby delay as on normal output to release // hardware resources as soon as possible // no delay on outputs with HW A/V sync if (usesHwAvSync()) { mStandbyDelayNs = 0; } else if ((mType == OFFLOAD) && !audio_is_linear_pcm(mFormat)) { mStandbyDelayNs = kOffloadStandbyDelayNs; } else { mStandbyDelayNs = microseconds(mActiveSleepTimeUs*2); } } void AudioFlinger::DirectOutputThread::flushHw_l() { mOutput->flush(); mHwPaused = false; mFlushPending = false; } // ---------------------------------------------------------------------------- AudioFlinger::AsyncCallbackThread::AsyncCallbackThread( const wp& playbackThread) : Thread(false /*canCallJava*/), mPlaybackThread(playbackThread), mWriteAckSequence(0), mDrainSequence(0) { } AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread() { } void AudioFlinger::AsyncCallbackThread::onFirstRef() { run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO); } bool AudioFlinger::AsyncCallbackThread::threadLoop() { while (!exitPending()) { uint32_t writeAckSequence; uint32_t drainSequence; { Mutex::Autolock _l(mLock); while (!((mWriteAckSequence & 1) || (mDrainSequence & 1) || exitPending())) { mWaitWorkCV.wait(mLock); } if (exitPending()) { break; } ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d", mWriteAckSequence, mDrainSequence); writeAckSequence = mWriteAckSequence; mWriteAckSequence &= ~1; drainSequence = mDrainSequence; mDrainSequence &= ~1; } { sp playbackThread = mPlaybackThread.promote(); if (playbackThread != 0) { if (writeAckSequence & 1) { playbackThread->resetWriteBlocked(writeAckSequence >> 1); } if (drainSequence & 1) { playbackThread->resetDraining(drainSequence >> 1); } } } } return false; } void AudioFlinger::AsyncCallbackThread::exit() { ALOGV("AsyncCallbackThread::exit"); Mutex::Autolock _l(mLock); requestExit(); mWaitWorkCV.broadcast(); } void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence) { Mutex::Autolock _l(mLock); // bit 0 is cleared mWriteAckSequence = sequence << 1; } void AudioFlinger::AsyncCallbackThread::resetWriteBlocked() { Mutex::Autolock _l(mLock); // ignore unexpected callbacks if (mWriteAckSequence & 2) { mWriteAckSequence |= 1; mWaitWorkCV.signal(); } } void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence) { Mutex::Autolock _l(mLock); // bit 0 is cleared mDrainSequence = sequence << 1; } void AudioFlinger::AsyncCallbackThread::resetDraining() { Mutex::Autolock _l(mLock); // ignore unexpected callbacks if (mDrainSequence & 2) { mDrainSequence |= 1; mWaitWorkCV.signal(); } } // ---------------------------------------------------------------------------- AudioFlinger::OffloadThread::OffloadThread(const sp& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady) : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD, systemReady), mPausedBytesRemaining(0) { //FIXME: mStandby should be set to true by ThreadBase constructor mStandby = true; } void AudioFlinger::OffloadThread::threadLoop_exit() { if (mFlushPending || mHwPaused) { // If a flush is pending or track was paused, just discard buffered data flushHw_l(); } else { mMixerStatus = MIXER_DRAIN_ALL; threadLoop_drain(); } if (mUseAsyncWrite) { ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->exit(); } PlaybackThread::threadLoop_exit(); } AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l( Vector< sp > *tracksToRemove ) { size_t count = mActiveTracks.size(); mixer_state mixerStatus = MIXER_IDLE; bool doHwPause = false; bool doHwResume = false; ALOGV("OffloadThread::prepareTracks_l active tracks %d", count); // find out which tracks need to be processed for (size_t i = 0; i < count; i++) { sp t = mActiveTracks[i].promote(); // The track died recently if (t == 0) { continue; } Track* const track = t.get(); audio_track_cblk_t* cblk = track->cblk(); // Only consider last track started for volume and mixer state control. // In theory an older track could underrun and restart after the new one starts // but as we only care about the transition phase between two tracks on a // direct output, it is not a problem to ignore the underrun case. sp l = mLatestActiveTrack.promote(); bool last = l.get() == track; if (track->isInvalid()) { ALOGW("An invalidated track shouldn't be in active list"); tracksToRemove->add(track); continue; } if (track->mState == TrackBase::IDLE) { ALOGW("An idle track shouldn't be in active list"); continue; } if (track->isPausing()) { track->setPaused(); if (last) { if (mHwSupportsPause && !mHwPaused) { doHwPause = true; mHwPaused = true; } // If we were part way through writing the mixbuffer to // the HAL we must save this until we resume // BUG - this will be wrong if a different track is made active, // in that case we want to discard the pending data in the // mixbuffer and tell the client to present it again when the // track is resumed mPausedWriteLength = mCurrentWriteLength; mPausedBytesRemaining = mBytesRemaining; mBytesRemaining = 0; // stop writing } tracksToRemove->add(track); } else if (track->isFlushPending()) { track->flushAck(); if (last) { mFlushPending = true; } } else if (track->isResumePending()){ track->resumeAck(); if (last) { if (mPausedBytesRemaining) { // Need to continue write that was interrupted mCurrentWriteLength = mPausedWriteLength; mBytesRemaining = mPausedBytesRemaining; mPausedBytesRemaining = 0; } if (mHwPaused) { doHwResume = true; mHwPaused = false; // threadLoop_mix() will handle the case that we need to // resume an interrupted write } // enable write to audio HAL mSleepTimeUs = 0; // Do not handle new data in this iteration even if track->framesReady() mixerStatus = MIXER_TRACKS_ENABLED; } } else if (track->framesReady() && track->isReady() && !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) { ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer); if (track->mFillingUpStatus == Track::FS_FILLED) { track->mFillingUpStatus = Track::FS_ACTIVE; // make sure processVolume_l() will apply new volume even if 0 mLeftVolFloat = mRightVolFloat = -1.0; } if (last) { sp previousTrack = mPreviousTrack.promote(); if (previousTrack != 0) { if (track != previousTrack.get()) { // Flush any data still being written from last track mBytesRemaining = 0; if (mPausedBytesRemaining) { // Last track was paused so we also need to flush saved // mixbuffer state and invalidate track so that it will // re-submit that unwritten data when it is next resumed mPausedBytesRemaining = 0; // Invalidate is a bit drastic - would be more efficient // to have a flag to tell client that some of the // previously written data was lost previousTrack->invalidate(); } // flush data already sent to the DSP if changing audio session as audio // comes from a different source. Also invalidate previous track to force a // seek when resuming. if (previousTrack->sessionId() != track->sessionId()) { previousTrack->invalidate(); } } } mPreviousTrack = track; // reset retry count track->mRetryCount = kMaxTrackRetriesOffload; mActiveTrack = t; mixerStatus = MIXER_TRACKS_READY; } } else { ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer); if (track->isStopping_1()) { // Hardware buffer can hold a large amount of audio so we must // wait for all current track's data to drain before we say // that the track is stopped. if (mBytesRemaining == 0) { // Only start draining when all data in mixbuffer // has been written ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2"); track->mState = TrackBase::STOPPING_2; // so presentation completes after drain // do not drain if no data was ever sent to HAL (mStandby == true) if (last && !mStandby) { // do not modify drain sequence if we are already draining. This happens // when resuming from pause after drain. if ((mDrainSequence & 1) == 0) { mSleepTimeUs = 0; mStandbyTimeNs = systemTime() + mStandbyDelayNs; mixerStatus = MIXER_DRAIN_TRACK; mDrainSequence += 2; } if (mHwPaused) { // It is possible to move from PAUSED to STOPPING_1 without // a resume so we must ensure hardware is running doHwResume = true; mHwPaused = false; } } } } else if (track->isStopping_2()) { // Drain has completed or we are in standby, signal presentation complete if (!(mDrainSequence & 1) || !last || mStandby) { track->mState = TrackBase::STOPPED; size_t audioHALFrames = (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000; size_t framesWritten = mBytesWritten / mOutput->getFrameSize(); track->presentationComplete(framesWritten, audioHALFrames); track->reset(); tracksToRemove->add(track); } } else { // No buffers for this track. Give it a few chances to // fill a buffer, then remove it from active list. if (--(track->mRetryCount) <= 0) { ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list", track->name()); tracksToRemove->add(track); // indicate to client process that the track was disabled because of underrun; // it will then automatically call start() when data is available android_atomic_or(CBLK_DISABLED, &cblk->mFlags); } else if (last){ mixerStatus = MIXER_TRACKS_ENABLED; } } } // compute volume for this track processVolume_l(track, last); } // make sure the pause/flush/resume sequence is executed in the right order. // If a flush is pending and a track is active but the HW is not paused, force a HW pause // before flush and then resume HW. This can happen in case of pause/flush/resume // if resume is received before pause is executed. if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) { mOutput->stream->pause(mOutput->stream); } if (mFlushPending) { flushHw_l(); } if (!mStandby && doHwResume) { mOutput->stream->resume(mOutput->stream); } // remove all the tracks that need to be... removeTracks_l(*tracksToRemove); return mixerStatus; } // must be called with thread mutex locked bool AudioFlinger::OffloadThread::waitingAsyncCallback_l() { ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d", mWriteAckSequence, mDrainSequence); if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) { return true; } return false; } bool AudioFlinger::OffloadThread::waitingAsyncCallback() { Mutex::Autolock _l(mLock); return waitingAsyncCallback_l(); } void AudioFlinger::OffloadThread::flushHw_l() { DirectOutputThread::flushHw_l(); // Flush anything still waiting in the mixbuffer mCurrentWriteLength = 0; mBytesRemaining = 0; mPausedWriteLength = 0; mPausedBytesRemaining = 0; if (mUseAsyncWrite) { // discard any pending drain or write ack by incrementing sequence mWriteAckSequence = (mWriteAckSequence + 2) & ~1; mDrainSequence = (mDrainSequence + 2) & ~1; ALOG_ASSERT(mCallbackThread != 0); mCallbackThread->setWriteBlocked(mWriteAckSequence); mCallbackThread->setDraining(mDrainSequence); } } // ---------------------------------------------------------------------------- AudioFlinger::DuplicatingThread::DuplicatingThread(const sp& audioFlinger, AudioFlinger::MixerThread* mainThread, audio_io_handle_t id, bool systemReady) : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(), systemReady, DUPLICATING), mWaitTimeMs(UINT_MAX) { addOutputTrack(mainThread); } AudioFlinger::DuplicatingThread::~DuplicatingThread() { for (size_t i = 0; i < mOutputTracks.size(); i++) { mOutputTracks[i]->destroy(); } } void AudioFlinger::DuplicatingThread::threadLoop_mix() { // mix buffers... if (outputsReady(outputTracks)) { mAudioMixer->process(AudioBufferProvider::kInvalidPTS); } else { if (mMixerBufferValid) { memset(mMixerBuffer, 0, mMixerBufferSize); } else if (mEffectBufferValid) { memset(mEffectBuffer, 0, mEffectBufferSize); } else { memset(mSinkBuffer, 0, mSinkBufferSize); } } mSleepTimeUs = 0; writeFrames = mNormalFrameCount; mCurrentWriteLength = mSinkBufferSize; mStandbyTimeNs = systemTime() + mStandbyDelayNs; } void AudioFlinger::DuplicatingThread::threadLoop_sleepTime() { if (mSleepTimeUs == 0) { if (mMixerStatus == MIXER_TRACKS_ENABLED) { mSleepTimeUs = mActiveSleepTimeUs; } else { mSleepTimeUs = mIdleSleepTimeUs; } } else if (mBytesWritten != 0) { if (mMixerStatus == MIXER_TRACKS_ENABLED) { writeFrames = mNormalFrameCount; if (mMixerBufferValid) { memset(mMixerBuffer, 0, mMixerBufferSize); } else { memset(mSinkBuffer, 0, mSinkBufferSize); } } else { // flush remaining overflow buffers in output tracks writeFrames = 0; } mSleepTimeUs = 0; } } ssize_t AudioFlinger::DuplicatingThread::threadLoop_write() { for (size_t i = 0; i < outputTracks.size(); i++) { outputTracks[i]->write(mSinkBuffer, writeFrames); } mStandby = false; return (ssize_t)mSinkBufferSize; } void AudioFlinger::DuplicatingThread::threadLoop_standby() { // DuplicatingThread implements standby by stopping all tracks for (size_t i = 0; i < outputTracks.size(); i++) { outputTracks[i]->stop(); } } void AudioFlinger::DuplicatingThread::saveOutputTracks() { outputTracks = mOutputTracks; } void AudioFlinger::DuplicatingThread::clearOutputTracks() { outputTracks.clear(); } void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread) { Mutex::Autolock _l(mLock); // The downstream MixerThread consumes thread->frameCount() amount of frames per mix pass. // Adjust for thread->sampleRate() to determine minimum buffer frame count. // Then triple buffer because Threads do not run synchronously and may not be clock locked. const size_t frameCount = 3 * sourceFramesNeeded(mSampleRate, thread->frameCount(), thread->sampleRate()); // TODO: Consider asynchronous sample rate conversion to handle clock disparity // from different OutputTracks and their associated MixerThreads (e.g. one may // nearly empty and the other may be dropping data). sp outputTrack = new OutputTrack(thread, this, mSampleRate, mFormat, mChannelMask, frameCount, IPCThreadState::self()->getCallingUid()); if (outputTrack->cblk() != NULL) { thread->setStreamVolume(AUDIO_STREAM_PATCH, 1.0f); mOutputTracks.add(outputTrack); ALOGV("addOutputTrack() track %p, on thread %p", outputTrack.get(), thread); updateWaitTime_l(); } } void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread) { Mutex::Autolock _l(mLock); for (size_t i = 0; i < mOutputTracks.size(); i++) { if (mOutputTracks[i]->thread() == thread) { mOutputTracks[i]->destroy(); mOutputTracks.removeAt(i); updateWaitTime_l(); if (thread->getOutput() == mOutput) { mOutput = NULL; } return; } } ALOGV("removeOutputTrack(): unknown thread: %p", thread); } // caller must hold mLock void AudioFlinger::DuplicatingThread::updateWaitTime_l() { mWaitTimeMs = UINT_MAX; for (size_t i = 0; i < mOutputTracks.size(); i++) { sp strong = mOutputTracks[i]->thread().promote(); if (strong != 0) { uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate(); if (waitTimeMs < mWaitTimeMs) { mWaitTimeMs = waitTimeMs; } } } } bool AudioFlinger::DuplicatingThread::outputsReady( const SortedVector< sp > &outputTracks) { for (size_t i = 0; i < outputTracks.size(); i++) { sp thread = outputTracks[i]->thread().promote(); if (thread == 0) { ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p", outputTracks[i].get()); return false; } PlaybackThread *playbackThread = (PlaybackThread *)thread.get(); // see note at standby() declaration if (playbackThread->standby() && !playbackThread->isSuspended()) { ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(), thread.get()); return false; } } return true; } uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const { return (mWaitTimeMs * 1000) / 2; } void AudioFlinger::DuplicatingThread::cacheParameters_l() { // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first updateWaitTime_l(); MixerThread::cacheParameters_l(); } // ---------------------------------------------------------------------------- // Record // ---------------------------------------------------------------------------- AudioFlinger::RecordThread::RecordThread(const sp& audioFlinger, AudioStreamIn *input, audio_io_handle_t id, audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady #ifdef TEE_SINK , const sp& teeSink #endif ) : ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD, systemReady), mInput(input), mActiveTracksGen(0), mRsmpInBuffer(NULL), // mRsmpInFrames and mRsmpInFramesP2 are set by readInputParameters_l() mRsmpInRear(0) #ifdef TEE_SINK , mTeeSink(teeSink) #endif , mReadOnlyHeap(new MemoryDealer(kRecordThreadReadOnlyHeapSize, "RecordThreadRO", MemoryHeapBase::READ_ONLY)) // mFastCapture below , mFastCaptureFutex(0) // mInputSource // mPipeSink // mPipeSource , mPipeFramesP2(0) // mPipeMemory // mFastCaptureNBLogWriter , mFastTrackAvail(false) { snprintf(mThreadName, kThreadNameLength, "AudioIn_%X", id); mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mThreadName); readInputParameters_l(); // create an NBAIO source for the HAL input stream, and negotiate mInputSource = new AudioStreamInSource(input->stream); size_t numCounterOffers = 0; const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount, mFormat)}; ssize_t index = mInputSource->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); // initialize fast capture depending on configuration bool initFastCapture; switch (kUseFastCapture) { case FastCapture_Never: initFastCapture = false; break; case FastCapture_Always: initFastCapture = true; break; case FastCapture_Static: initFastCapture = (mFrameCount * 1000) / mSampleRate < kMinNormalCaptureBufferSizeMs; break; // case FastCapture_Dynamic: } if (initFastCapture) { // create a Pipe for FastCapture to write to, and for us and fast tracks to read from NBAIO_Format format = mInputSource->format(); size_t pipeFramesP2 = roundup(mSampleRate / 25); // double-buffering of 20 ms each size_t pipeSize = pipeFramesP2 * Format_frameSize(format); void *pipeBuffer; const sp roHeap(readOnlyHeap()); sp pipeMemory; if ((roHeap == 0) || (pipeMemory = roHeap->allocate(pipeSize)) == 0 || (pipeBuffer = pipeMemory->pointer()) == NULL) { ALOGE("not enough memory for pipe buffer size=%zu", pipeSize); goto failed; } // pipe will be shared directly with fast clients, so clear to avoid leaking old information memset(pipeBuffer, 0, pipeSize); Pipe *pipe = new Pipe(pipeFramesP2, format, pipeBuffer); const NBAIO_Format offers[1] = {format}; size_t numCounterOffers = 0; ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); mPipeSink = pipe; PipeReader *pipeReader = new PipeReader(*pipe); numCounterOffers = 0; index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); mPipeSource = pipeReader; mPipeFramesP2 = pipeFramesP2; mPipeMemory = pipeMemory; // create fast capture mFastCapture = new FastCapture(); FastCaptureStateQueue *sq = mFastCapture->sq(); #ifdef STATE_QUEUE_DUMP // FIXME #endif FastCaptureState *state = sq->begin(); state->mCblk = NULL; state->mInputSource = mInputSource.get(); state->mInputSourceGen++; state->mPipeSink = pipe; state->mPipeSinkGen++; state->mFrameCount = mFrameCount; state->mCommand = FastCaptureState::COLD_IDLE; // already done in constructor initialization list //mFastCaptureFutex = 0; state->mColdFutexAddr = &mFastCaptureFutex; state->mColdGen++; state->mDumpState = &mFastCaptureDumpState; #ifdef TEE_SINK // FIXME #endif mFastCaptureNBLogWriter = audioFlinger->newWriter_l(kFastCaptureLogSize, "FastCapture"); state->mNBLogWriter = mFastCaptureNBLogWriter.get(); sq->end(); sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED); // start the fast capture mFastCapture->run("FastCapture", ANDROID_PRIORITY_URGENT_AUDIO); pid_t tid = mFastCapture->getTid(); sendPrioConfigEvent(getpid_cached, tid, kPriorityFastMixer); #ifdef AUDIO_WATCHDOG // FIXME #endif mFastTrackAvail = true; } failed: ; // FIXME mNormalSource } AudioFlinger::RecordThread::~RecordThread() { if (mFastCapture != 0) { FastCaptureStateQueue *sq = mFastCapture->sq(); FastCaptureState *state = sq->begin(); if (state->mCommand == FastCaptureState::COLD_IDLE) { int32_t old = android_atomic_inc(&mFastCaptureFutex); if (old == -1) { (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1); } } state->mCommand = FastCaptureState::EXIT; sq->end(); sq->push(FastCaptureStateQueue::BLOCK_UNTIL_PUSHED); mFastCapture->join(); mFastCapture.clear(); } mAudioFlinger->unregisterWriter(mFastCaptureNBLogWriter); mAudioFlinger->unregisterWriter(mNBLogWriter); free(mRsmpInBuffer); } void AudioFlinger::RecordThread::onFirstRef() { run(mThreadName, PRIORITY_URGENT_AUDIO); } bool AudioFlinger::RecordThread::threadLoop() { nsecs_t lastWarning = 0; inputStandBy(); reacquire_wakelock: sp activeTrack; int activeTracksGen; { Mutex::Autolock _l(mLock); size_t size = mActiveTracks.size(); activeTracksGen = mActiveTracksGen; if (size > 0) { // FIXME an arbitrary choice activeTrack = mActiveTracks[0]; acquireWakeLock_l(activeTrack->uid()); if (size > 1) { SortedVector tmp; for (size_t i = 0; i < size; i++) { tmp.add(mActiveTracks[i]->uid()); } updateWakeLockUids_l(tmp); } } else { acquireWakeLock_l(-1); } } // used to request a deferred sleep, to be executed later while mutex is unlocked uint32_t sleepUs = 0; // loop while there is work to do for (;;) { Vector< sp > effectChains; // sleep with mutex unlocked if (sleepUs > 0) { ATRACE_BEGIN("sleep"); usleep(sleepUs); ATRACE_END(); sleepUs = 0; } // activeTracks accumulates a copy of a subset of mActiveTracks Vector< sp > activeTracks; // reference to the (first and only) active fast track sp fastTrack; // reference to a fast track which is about to be removed sp fastTrackToRemove; { // scope for mLock Mutex::Autolock _l(mLock); processConfigEvents_l(); // check exitPending here because checkForNewParameters_l() and // checkForNewParameters_l() can temporarily release mLock if (exitPending()) { break; } // if no active track(s), then standby and release wakelock size_t size = mActiveTracks.size(); if (size == 0) { standbyIfNotAlreadyInStandby(); // exitPending() can't become true here releaseWakeLock_l(); ALOGV("RecordThread: loop stopping"); // go to sleep mWaitWorkCV.wait(mLock); ALOGV("RecordThread: loop starting"); goto reacquire_wakelock; } if (mActiveTracksGen != activeTracksGen) { activeTracksGen = mActiveTracksGen; SortedVector tmp; for (size_t i = 0; i < size; i++) { tmp.add(mActiveTracks[i]->uid()); } updateWakeLockUids_l(tmp); } bool doBroadcast = false; for (size_t i = 0; i < size; ) { activeTrack = mActiveTracks[i]; if (activeTrack->isTerminated()) { if (activeTrack->isFastTrack()) { ALOG_ASSERT(fastTrackToRemove == 0); fastTrackToRemove = activeTrack; } removeTrack_l(activeTrack); mActiveTracks.remove(activeTrack); mActiveTracksGen++; size--; continue; } TrackBase::track_state activeTrackState = activeTrack->mState; switch (activeTrackState) { case TrackBase::PAUSING: mActiveTracks.remove(activeTrack); mActiveTracksGen++; doBroadcast = true; size--; continue; case TrackBase::STARTING_1: sleepUs = 10000; i++; continue; case TrackBase::STARTING_2: doBroadcast = true; mStandby = false; activeTrack->mState = TrackBase::ACTIVE; break; case TrackBase::ACTIVE: break; case TrackBase::IDLE: i++; continue; default: LOG_ALWAYS_FATAL("Unexpected activeTrackState %d", activeTrackState); } activeTracks.add(activeTrack); i++; if (activeTrack->isFastTrack()) { ALOG_ASSERT(!mFastTrackAvail); ALOG_ASSERT(fastTrack == 0); fastTrack = activeTrack; } } if (doBroadcast) { mStartStopCond.broadcast(); } // sleep if there are no active tracks to process if (activeTracks.size() == 0) { if (sleepUs == 0) { sleepUs = kRecordThreadSleepUs; } continue; } sleepUs = 0; lockEffectChains_l(effectChains); } // thread mutex is now unlocked, mActiveTracks unknown, activeTracks.size() > 0 size_t size = effectChains.size(); for (size_t i = 0; i < size; i++) { // thread mutex is not locked, but effect chain is locked effectChains[i]->process_l(); } // Push a new fast capture state if fast capture is not already running, or cblk change if (mFastCapture != 0) { FastCaptureStateQueue *sq = mFastCapture->sq(); FastCaptureState *state = sq->begin(); bool didModify = false; FastCaptureStateQueue::block_t block = FastCaptureStateQueue::BLOCK_UNTIL_PUSHED; if (state->mCommand != FastCaptureState::READ_WRITE /* FIXME && (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)*/) { if (state->mCommand == FastCaptureState::COLD_IDLE) { int32_t old = android_atomic_inc(&mFastCaptureFutex); if (old == -1) { (void) syscall(__NR_futex, &mFastCaptureFutex, FUTEX_WAKE_PRIVATE, 1); } } state->mCommand = FastCaptureState::READ_WRITE; #if 0 // FIXME mFastCaptureDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ? FastThreadDumpState::kSamplingNforLowRamDevice : FastThreadDumpState::kSamplingN); #endif didModify = true; } audio_track_cblk_t *cblkOld = state->mCblk; audio_track_cblk_t *cblkNew = fastTrack != 0 ? fastTrack->cblk() : NULL; if (cblkNew != cblkOld) { state->mCblk = cblkNew; // block until acked if removing a fast track if (cblkOld != NULL) { block = FastCaptureStateQueue::BLOCK_UNTIL_ACKED; } didModify = true; } sq->end(didModify); if (didModify) { sq->push(block); #if 0 if (kUseFastCapture == FastCapture_Dynamic) { mNormalSource = mPipeSource; } #endif } } // now run the fast track destructor with thread mutex unlocked fastTrackToRemove.clear(); // Read from HAL to keep up with fastest client if multiple active tracks, not slowest one. // Only the client(s) that are too slow will overrun. But if even the fastest client is too // slow, then this RecordThread will overrun by not calling HAL read often enough. // If destination is non-contiguous, first read past the nominal end of buffer, then // copy to the right place. Permitted because mRsmpInBuffer was over-allocated. int32_t rear = mRsmpInRear & (mRsmpInFramesP2 - 1); ssize_t framesRead; // If an NBAIO source is present, use it to read the normal capture's data if (mPipeSource != 0) { size_t framesToRead = mBufferSize / mFrameSize; framesRead = mPipeSource->read((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesToRead, AudioBufferProvider::kInvalidPTS); if (framesRead == 0) { // since pipe is non-blocking, simulate blocking input sleepUs = (framesToRead * 1000000LL) / mSampleRate; } // otherwise use the HAL / AudioStreamIn directly } else { ssize_t bytesRead = mInput->stream->read(mInput->stream, (uint8_t*)mRsmpInBuffer + rear * mFrameSize, mBufferSize); if (bytesRead < 0) { framesRead = bytesRead; } else { framesRead = bytesRead / mFrameSize; } } if (framesRead < 0 || (framesRead == 0 && mPipeSource == 0)) { ALOGE("read failed: framesRead=%d", framesRead); // Force input into standby so that it tries to recover at next read attempt inputStandBy(); sleepUs = kRecordThreadSleepUs; } if (framesRead <= 0) { goto unlock; } ALOG_ASSERT(framesRead > 0); if (mTeeSink != 0) { (void) mTeeSink->write((uint8_t*)mRsmpInBuffer + rear * mFrameSize, framesRead); } // If destination is non-contiguous, we now correct for reading past end of buffer. { size_t part1 = mRsmpInFramesP2 - rear; if ((size_t) framesRead > part1) { memcpy(mRsmpInBuffer, (uint8_t*)mRsmpInBuffer + mRsmpInFramesP2 * mFrameSize, (framesRead - part1) * mFrameSize); } } rear = mRsmpInRear += framesRead; size = activeTracks.size(); // loop over each active track for (size_t i = 0; i < size; i++) { activeTrack = activeTracks[i]; // skip fast tracks, as those are handled directly by FastCapture if (activeTrack->isFastTrack()) { continue; } // TODO: This code probably should be moved to RecordTrack. // TODO: Update the activeTrack buffer converter in case of reconfigure. enum { OVERRUN_UNKNOWN, OVERRUN_TRUE, OVERRUN_FALSE } overrun = OVERRUN_UNKNOWN; // loop over getNextBuffer to handle circular sink for (;;) { activeTrack->mSink.frameCount = ~0; status_t status = activeTrack->getNextBuffer(&activeTrack->mSink); size_t framesOut = activeTrack->mSink.frameCount; LOG_ALWAYS_FATAL_IF((status == OK) != (framesOut > 0)); // check available frames and handle overrun conditions // if the record track isn't draining fast enough. bool hasOverrun; size_t framesIn; activeTrack->mResamplerBufferProvider->sync(&framesIn, &hasOverrun); if (hasOverrun) { overrun = OVERRUN_TRUE; } if (framesOut == 0 || framesIn == 0) { break; } // Don't allow framesOut to be larger than what is possible with resampling // from framesIn. // This isn't strictly necessary but helps limit buffer resizing in // RecordBufferConverter. TODO: remove when no longer needed. framesOut = min(framesOut, destinationFramesPossible( framesIn, mSampleRate, activeTrack->mSampleRate)); // process frames from the RecordThread buffer provider to the RecordTrack buffer framesOut = activeTrack->mRecordBufferConverter->convert( activeTrack->mSink.raw, activeTrack->mResamplerBufferProvider, framesOut); if (framesOut > 0 && (overrun == OVERRUN_UNKNOWN)) { overrun = OVERRUN_FALSE; } if (activeTrack->mFramesToDrop == 0) { if (framesOut > 0) { activeTrack->mSink.frameCount = framesOut; activeTrack->releaseBuffer(&activeTrack->mSink); } } else { // FIXME could do a partial drop of framesOut if (activeTrack->mFramesToDrop > 0) { activeTrack->mFramesToDrop -= framesOut; if (activeTrack->mFramesToDrop <= 0) { activeTrack->clearSyncStartEvent(); } } else { activeTrack->mFramesToDrop += framesOut; if (activeTrack->mFramesToDrop >= 0 || activeTrack->mSyncStartEvent == 0 || activeTrack->mSyncStartEvent->isCancelled()) { ALOGW("Synced record %s, session %d, trigger session %d", (activeTrack->mFramesToDrop >= 0) ? "timed out" : "cancelled", activeTrack->sessionId(), (activeTrack->mSyncStartEvent != 0) ? activeTrack->mSyncStartEvent->triggerSession() : 0); activeTrack->clearSyncStartEvent(); } } } if (framesOut == 0) { break; } } switch (overrun) { case OVERRUN_TRUE: // client isn't retrieving buffers fast enough if (!activeTrack->setOverflow()) { nsecs_t now = systemTime(); // FIXME should lastWarning per track? if ((now - lastWarning) > kWarningThrottleNs) { ALOGW("RecordThread: buffer overflow"); lastWarning = now; } } break; case OVERRUN_FALSE: activeTrack->clearOverflow(); break; case OVERRUN_UNKNOWN: break; } } unlock: // enable changes in effect chain unlockEffectChains(effectChains); // effectChains doesn't need to be cleared, since it is cleared by destructor at scope end } standbyIfNotAlreadyInStandby(); { Mutex::Autolock _l(mLock); for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; track->invalidate(); } mActiveTracks.clear(); mActiveTracksGen++; mStartStopCond.broadcast(); } releaseWakeLock(); ALOGV("RecordThread %p exiting", this); return false; } void AudioFlinger::RecordThread::standbyIfNotAlreadyInStandby() { if (!mStandby) { inputStandBy(); mStandby = true; } } void AudioFlinger::RecordThread::inputStandBy() { // Idle the fast capture if it's currently running if (mFastCapture != 0) { FastCaptureStateQueue *sq = mFastCapture->sq(); FastCaptureState *state = sq->begin(); if (!(state->mCommand & FastCaptureState::IDLE)) { state->mCommand = FastCaptureState::COLD_IDLE; state->mColdFutexAddr = &mFastCaptureFutex; state->mColdGen++; mFastCaptureFutex = 0; sq->end(); // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now sq->push(FastCaptureStateQueue::BLOCK_UNTIL_ACKED); #if 0 if (kUseFastCapture == FastCapture_Dynamic) { // FIXME } #endif #ifdef AUDIO_WATCHDOG // FIXME #endif } else { sq->end(false /*didModify*/); } } mInput->stream->common.standby(&mInput->stream->common); } // RecordThread::createRecordTrack_l() must be called with AudioFlinger::mLock held sp AudioFlinger::RecordThread::createRecordTrack_l( const sp& client, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t *pFrameCount, int sessionId, size_t *notificationFrames, int uid, IAudioFlinger::track_flags_t *flags, pid_t tid, status_t *status) { size_t frameCount = *pFrameCount; sp track; status_t lStatus; // client expresses a preference for FAST, but we get the final say if (*flags & IAudioFlinger::TRACK_FAST) { if ( // we formerly checked for a callback handler (non-0 tid), // but that is no longer required for TRANSFER_OBTAIN mode // // frame count is not specified, or is exactly the pipe depth ((frameCount == 0) || (frameCount == mPipeFramesP2)) && // PCM data audio_is_linear_pcm(format) && // native format (format == mFormat) && // native channel mask (channelMask == mChannelMask) && // native hardware sample rate (sampleRate == mSampleRate) && // record thread has an associated fast capture hasFastCapture() && // there are sufficient fast track slots available mFastTrackAvail ) { ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%u mFrameCount=%u", frameCount, mFrameCount); } else { ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%u mFrameCount=%u mPipeFramesP2=%u " "format=%#x isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u " "hasFastCapture=%d tid=%d mFastTrackAvail=%d", frameCount, mFrameCount, mPipeFramesP2, format, audio_is_linear_pcm(format), channelMask, sampleRate, mSampleRate, hasFastCapture(), tid, mFastTrackAvail); *flags &= ~IAudioFlinger::TRACK_FAST; } } // compute track buffer size in frames, and suggest the notification frame count if (*flags & IAudioFlinger::TRACK_FAST) { // fast track: frame count is exactly the pipe depth frameCount = mPipeFramesP2; // ignore requested notificationFrames, and always notify exactly once every HAL buffer *notificationFrames = mFrameCount; } else { // not fast track: max notification period is resampled equivalent of one HAL buffer time // or 20 ms if there is a fast capture // TODO This could be a roundupRatio inline, and const size_t maxNotificationFrames = ((int64_t) (hasFastCapture() ? mSampleRate/50 : mFrameCount) * sampleRate + mSampleRate - 1) / mSampleRate; // minimum number of notification periods is at least kMinNotifications, // and at least kMinMs rounded up to a whole notification period (minNotificationsByMs) static const size_t kMinNotifications = 3; static const uint32_t kMinMs = 30; // TODO This could be a roundupRatio inline const size_t minFramesByMs = (sampleRate * kMinMs + 1000 - 1) / 1000; // TODO This could be a roundupRatio inline const size_t minNotificationsByMs = (minFramesByMs + maxNotificationFrames - 1) / maxNotificationFrames; const size_t minFrameCount = maxNotificationFrames * max(kMinNotifications, minNotificationsByMs); frameCount = max(frameCount, minFrameCount); if (*notificationFrames == 0 || *notificationFrames > maxNotificationFrames) { *notificationFrames = maxNotificationFrames; } } *pFrameCount = frameCount; lStatus = initCheck(); if (lStatus != NO_ERROR) { ALOGE("createRecordTrack_l() audio driver not initialized"); goto Exit; } { // scope for mLock Mutex::Autolock _l(mLock); track = new RecordTrack(this, client, sampleRate, format, channelMask, frameCount, NULL, sessionId, uid, *flags, TrackBase::TYPE_DEFAULT); lStatus = track->initCheck(); if (lStatus != NO_ERROR) { ALOGE("createRecordTrack_l() initCheck failed %d; no control block?", lStatus); // track must be cleared from the caller as the caller has the AF lock goto Exit; } mTracks.add(track); // disable AEC and NS if the device is a BT SCO headset supporting those pre processings bool suspend = audio_is_bluetooth_sco_device(mInDevice) && mAudioFlinger->btNrecIsOff(); setEffectSuspended_l(FX_IID_AEC, suspend, sessionId); setEffectSuspended_l(FX_IID_NS, suspend, sessionId); if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) { pid_t callingPid = IPCThreadState::self()->getCallingPid(); // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful, // so ask activity manager to do this on our behalf sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp); } } lStatus = NO_ERROR; Exit: *status = lStatus; return track; } status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack, AudioSystem::sync_event_t event, int triggerSession) { ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession); sp strongMe = this; status_t status = NO_ERROR; if (event == AudioSystem::SYNC_EVENT_NONE) { recordTrack->clearSyncStartEvent(); } else if (event != AudioSystem::SYNC_EVENT_SAME) { recordTrack->mSyncStartEvent = mAudioFlinger->createSyncEvent(event, triggerSession, recordTrack->sessionId(), syncStartEventCallback, recordTrack); // Sync event can be cancelled by the trigger session if the track is not in a // compatible state in which case we start record immediately if (recordTrack->mSyncStartEvent->isCancelled()) { recordTrack->clearSyncStartEvent(); } else { // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs recordTrack->mFramesToDrop = - ((AudioSystem::kSyncRecordStartTimeOutMs * recordTrack->mSampleRate) / 1000); } } { // This section is a rendezvous between binder thread executing start() and RecordThread AutoMutex lock(mLock); if (mActiveTracks.indexOf(recordTrack) >= 0) { if (recordTrack->mState == TrackBase::PAUSING) { ALOGV("active record track PAUSING -> ACTIVE"); recordTrack->mState = TrackBase::ACTIVE; } else { ALOGV("active record track state %d", recordTrack->mState); } return status; } // TODO consider other ways of handling this, such as changing the state to :STARTING and // adding the track to mActiveTracks after returning from AudioSystem::startInput(), // or using a separate command thread recordTrack->mState = TrackBase::STARTING_1; mActiveTracks.add(recordTrack); mActiveTracksGen++; status_t status = NO_ERROR; if (recordTrack->isExternalTrack()) { mLock.unlock(); status = AudioSystem::startInput(mId, (audio_session_t)recordTrack->sessionId()); mLock.lock(); // FIXME should verify that recordTrack is still in mActiveTracks if (status != NO_ERROR) { mActiveTracks.remove(recordTrack); mActiveTracksGen++; recordTrack->clearSyncStartEvent(); ALOGV("RecordThread::start error %d", status); return status; } } // Catch up with current buffer indices if thread is already running. // This is what makes a new client discard all buffered data. If the track's mRsmpInFront // was initialized to some value closer to the thread's mRsmpInFront, then the track could // see previously buffered data before it called start(), but with greater risk of overrun. recordTrack->mResamplerBufferProvider->reset(); // clear any converter state as new data will be discontinuous recordTrack->mRecordBufferConverter->reset(); recordTrack->mState = TrackBase::STARTING_2; // signal thread to start mWaitWorkCV.broadcast(); if (mActiveTracks.indexOf(recordTrack) < 0) { ALOGV("Record failed to start"); status = BAD_VALUE; goto startError; } return status; } startError: if (recordTrack->isExternalTrack()) { AudioSystem::stopInput(mId, (audio_session_t)recordTrack->sessionId()); } recordTrack->clearSyncStartEvent(); // FIXME I wonder why we do not reset the state here? return status; } void AudioFlinger::RecordThread::syncStartEventCallback(const wp& event) { sp strongEvent = event.promote(); if (strongEvent != 0) { sp ptr = strongEvent->cookie().promote(); if (ptr != 0) { RecordTrack *recordTrack = (RecordTrack *)ptr.get(); recordTrack->handleSyncStartEvent(strongEvent); } } } bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) { ALOGV("RecordThread::stop"); AutoMutex _l(mLock); if (mActiveTracks.indexOf(recordTrack) != 0 || recordTrack->mState == TrackBase::PAUSING) { return false; } // note that threadLoop may still be processing the track at this point [without lock] recordTrack->mState = TrackBase::PAUSING; // do not wait for mStartStopCond if exiting if (exitPending()) { return true; } // FIXME incorrect usage of wait: no explicit predicate or loop mStartStopCond.wait(mLock); // if we have been restarted, recordTrack is in mActiveTracks here if (exitPending() || mActiveTracks.indexOf(recordTrack) != 0) { ALOGV("Record stopped OK"); return true; } return false; } bool AudioFlinger::RecordThread::isValidSyncEvent(const sp& event __unused) const { return false; } status_t AudioFlinger::RecordThread::setSyncEvent(const sp& event __unused) { #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future if (!isValidSyncEvent(event)) { return BAD_VALUE; } int eventSession = event->triggerSession(); status_t ret = NAME_NOT_FOUND; Mutex::Autolock _l(mLock); for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; if (eventSession == track->sessionId()) { (void) track->setSyncEvent(event); ret = NO_ERROR; } } return ret; #else return BAD_VALUE; #endif } // destroyTrack_l() must be called with ThreadBase::mLock held void AudioFlinger::RecordThread::destroyTrack_l(const sp& track) { track->terminate(); track->mState = TrackBase::STOPPED; // active tracks are removed by threadLoop() if (mActiveTracks.indexOf(track) < 0) { removeTrack_l(track); } } void AudioFlinger::RecordThread::removeTrack_l(const sp& track) { mTracks.remove(track); // need anything related to effects here? if (track->isFastTrack()) { ALOG_ASSERT(!mFastTrackAvail); mFastTrackAvail = true; } } void AudioFlinger::RecordThread::dump(int fd, const Vector& args) { dumpInternals(fd, args); dumpTracks(fd, args); dumpEffectChains(fd, args); } void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector& args) { dprintf(fd, "\nInput thread %p:\n", this); dumpBase(fd, args); if (mActiveTracks.size() == 0) { dprintf(fd, " No active record clients\n"); } dprintf(fd, " Fast capture thread: %s\n", hasFastCapture() ? "yes" : "no"); dprintf(fd, " Fast track available: %s\n", mFastTrackAvail ? "yes" : "no"); // Make a non-atomic copy of fast capture dump state so it won't change underneath us const FastCaptureDumpState copy(mFastCaptureDumpState); copy.dump(fd); } void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector& args __unused) { const size_t SIZE = 256; char buffer[SIZE]; String8 result; size_t numtracks = mTracks.size(); size_t numactive = mActiveTracks.size(); size_t numactiveseen = 0; dprintf(fd, " %d Tracks", numtracks); if (numtracks) { dprintf(fd, " of which %d are active\n", numactive); RecordTrack::appendDumpHeader(result); for (size_t i = 0; i < numtracks ; ++i) { sp track = mTracks[i]; if (track != 0) { bool active = mActiveTracks.indexOf(track) >= 0; if (active) { numactiveseen++; } track->dump(buffer, SIZE, active); result.append(buffer); } } } else { dprintf(fd, "\n"); } if (numactiveseen != numactive) { snprintf(buffer, SIZE, " The following tracks are in the active list but" " not in the track list\n"); result.append(buffer); RecordTrack::appendDumpHeader(result); for (size_t i = 0; i < numactive; ++i) { sp track = mActiveTracks[i]; if (mTracks.indexOf(track) < 0) { track->dump(buffer, SIZE, true); result.append(buffer); } } } write(fd, result.string(), result.size()); } void AudioFlinger::RecordThread::ResamplerBufferProvider::reset() { sp threadBase = mRecordTrack->mThread.promote(); RecordThread *recordThread = (RecordThread *) threadBase.get(); mRsmpInFront = recordThread->mRsmpInRear; mRsmpInUnrel = 0; } void AudioFlinger::RecordThread::ResamplerBufferProvider::sync( size_t *framesAvailable, bool *hasOverrun) { sp threadBase = mRecordTrack->mThread.promote(); RecordThread *recordThread = (RecordThread *) threadBase.get(); const int32_t rear = recordThread->mRsmpInRear; const int32_t front = mRsmpInFront; const ssize_t filled = rear - front; size_t framesIn; bool overrun = false; if (filled < 0) { // should not happen, but treat like a massive overrun and re-sync framesIn = 0; mRsmpInFront = rear; overrun = true; } else if ((size_t) filled <= recordThread->mRsmpInFrames) { framesIn = (size_t) filled; } else { // client is not keeping up with server, but give it latest data framesIn = recordThread->mRsmpInFrames; mRsmpInFront = /* front = */ rear - framesIn; overrun = true; } if (framesAvailable != NULL) { *framesAvailable = framesIn; } if (hasOverrun != NULL) { *hasOverrun = overrun; } } // AudioBufferProvider interface status_t AudioFlinger::RecordThread::ResamplerBufferProvider::getNextBuffer( AudioBufferProvider::Buffer* buffer, int64_t pts __unused) { sp threadBase = mRecordTrack->mThread.promote(); if (threadBase == 0) { buffer->frameCount = 0; buffer->raw = NULL; return NOT_ENOUGH_DATA; } RecordThread *recordThread = (RecordThread *) threadBase.get(); int32_t rear = recordThread->mRsmpInRear; int32_t front = mRsmpInFront; ssize_t filled = rear - front; // FIXME should not be P2 (don't want to increase latency) // FIXME if client not keeping up, discard LOG_ALWAYS_FATAL_IF(!(0 <= filled && (size_t) filled <= recordThread->mRsmpInFrames)); // 'filled' may be non-contiguous, so return only the first contiguous chunk front &= recordThread->mRsmpInFramesP2 - 1; size_t part1 = recordThread->mRsmpInFramesP2 - front; if (part1 > (size_t) filled) { part1 = filled; } size_t ask = buffer->frameCount; ALOG_ASSERT(ask > 0); if (part1 > ask) { part1 = ask; } if (part1 == 0) { // out of data is fine since the resampler will return a short-count. buffer->raw = NULL; buffer->frameCount = 0; mRsmpInUnrel = 0; return NOT_ENOUGH_DATA; } buffer->raw = (uint8_t*)recordThread->mRsmpInBuffer + front * recordThread->mFrameSize; buffer->frameCount = part1; mRsmpInUnrel = part1; return NO_ERROR; } // AudioBufferProvider interface void AudioFlinger::RecordThread::ResamplerBufferProvider::releaseBuffer( AudioBufferProvider::Buffer* buffer) { size_t stepCount = buffer->frameCount; if (stepCount == 0) { return; } ALOG_ASSERT(stepCount <= mRsmpInUnrel); mRsmpInUnrel -= stepCount; mRsmpInFront += stepCount; buffer->raw = NULL; buffer->frameCount = 0; } AudioFlinger::RecordThread::RecordBufferConverter::RecordBufferConverter( audio_channel_mask_t srcChannelMask, audio_format_t srcFormat, uint32_t srcSampleRate, audio_channel_mask_t dstChannelMask, audio_format_t dstFormat, uint32_t dstSampleRate) : mSrcChannelMask(AUDIO_CHANNEL_INVALID), // updateParameters will set following vars // mSrcFormat // mSrcSampleRate // mDstChannelMask // mDstFormat // mDstSampleRate // mSrcChannelCount // mDstChannelCount // mDstFrameSize mBuf(NULL), mBufFrames(0), mBufFrameSize(0), mResampler(NULL), mIsLegacyDownmix(false), mIsLegacyUpmix(false), mRequiresFloat(false), mInputConverterProvider(NULL) { (void)updateParameters(srcChannelMask, srcFormat, srcSampleRate, dstChannelMask, dstFormat, dstSampleRate); } AudioFlinger::RecordThread::RecordBufferConverter::~RecordBufferConverter() { free(mBuf); delete mResampler; delete mInputConverterProvider; } size_t AudioFlinger::RecordThread::RecordBufferConverter::convert(void *dst, AudioBufferProvider *provider, size_t frames) { if (mInputConverterProvider != NULL) { mInputConverterProvider->setBufferProvider(provider); provider = mInputConverterProvider; } if (mResampler == NULL) { ALOGVV("NO RESAMPLING sampleRate:%u mSrcFormat:%#x mDstFormat:%#x", mSrcSampleRate, mSrcFormat, mDstFormat); AudioBufferProvider::Buffer buffer; for (size_t i = frames; i > 0; ) { buffer.frameCount = i; status_t status = provider->getNextBuffer(&buffer, 0); if (status != OK || buffer.frameCount == 0) { frames -= i; // cannot fill request. break; } // format convert to destination buffer #ifdef LEGACY_ALSA_AUDIO convert(dst, buffer.raw, buffer.frameCount); #else convertNoResampler(dst, buffer.raw, buffer.frameCount); #endif dst = (int8_t*)dst + buffer.frameCount * mDstFrameSize; i -= buffer.frameCount; provider->releaseBuffer(&buffer); } } else { ALOGVV("RESAMPLING mSrcSampleRate:%u mDstSampleRate:%u mSrcFormat:%#x mDstFormat:%#x", mSrcSampleRate, mDstSampleRate, mSrcFormat, mDstFormat); // reallocate buffer if needed if (mBufFrameSize != 0 && mBufFrames < frames) { free(mBuf); mBufFrames = frames; (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize); } // resampler accumulates, but we only have one source track memset(mBuf, 0, frames * mBufFrameSize); frames = mResampler->resample((int32_t*)mBuf, frames, provider); // format convert to destination buffer #ifdef LEGACY_ALSA_AUDIO convert(dst, mBuf, frames); #else convertResampler(dst, mBuf, frames); #endif } return frames; } status_t AudioFlinger::RecordThread::RecordBufferConverter::updateParameters( audio_channel_mask_t srcChannelMask, audio_format_t srcFormat, uint32_t srcSampleRate, audio_channel_mask_t dstChannelMask, audio_format_t dstFormat, uint32_t dstSampleRate) { // quick evaluation if there is any change. if (mSrcFormat == srcFormat && mSrcChannelMask == srcChannelMask && mSrcSampleRate == srcSampleRate && mDstFormat == dstFormat && mDstChannelMask == dstChannelMask && mDstSampleRate == dstSampleRate) { return NO_ERROR; } ALOGV("RecordBufferConverter updateParameters srcMask:%#x dstMask:%#x" " srcFormat:%#x dstFormat:%#x srcRate:%u dstRate:%u", srcChannelMask, dstChannelMask, srcFormat, dstFormat, srcSampleRate, dstSampleRate); const bool valid = audio_is_input_channel(srcChannelMask) && audio_is_input_channel(dstChannelMask) && audio_is_valid_format(srcFormat) && audio_is_linear_pcm(srcFormat) && audio_is_valid_format(dstFormat) && audio_is_linear_pcm(dstFormat) && (srcSampleRate <= dstSampleRate * AUDIO_RESAMPLER_DOWN_RATIO_MAX) ; // no upsampling checks for now if (!valid) { return BAD_VALUE; } mSrcFormat = srcFormat; mSrcChannelMask = srcChannelMask; mSrcSampleRate = srcSampleRate; mDstFormat = dstFormat; mDstChannelMask = dstChannelMask; mDstSampleRate = dstSampleRate; // compute derived parameters mSrcChannelCount = audio_channel_count_from_in_mask(srcChannelMask); mDstChannelCount = audio_channel_count_from_in_mask(dstChannelMask); mDstFrameSize = mDstChannelCount * audio_bytes_per_sample(mDstFormat); // do we need to resample? delete mResampler; mResampler = NULL; if (mSrcSampleRate != mDstSampleRate) { mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_FLOAT, mSrcChannelCount, mDstSampleRate); mResampler->setSampleRate(mSrcSampleRate); mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT); } // are we running legacy channel conversion modes? mIsLegacyDownmix = (mSrcChannelMask == AUDIO_CHANNEL_IN_STEREO || mSrcChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK) && mDstChannelMask == AUDIO_CHANNEL_IN_MONO; mIsLegacyUpmix = mSrcChannelMask == AUDIO_CHANNEL_IN_MONO && (mDstChannelMask == AUDIO_CHANNEL_IN_STEREO || mDstChannelMask == AUDIO_CHANNEL_IN_FRONT_BACK); // do we need to process in float? mRequiresFloat = mResampler != NULL || mIsLegacyDownmix || mIsLegacyUpmix; // do we need a staging buffer to convert for destination (we can still optimize this)? // we use mBufFrameSize > 0 to indicate both frame size as well as buffer necessity if (mResampler != NULL) { mBufFrameSize = max(mSrcChannelCount, FCC_2) * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT); } else if (mIsLegacyUpmix || mIsLegacyDownmix) { // legacy modes always float mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(AUDIO_FORMAT_PCM_FLOAT); } else if (mSrcChannelMask != mDstChannelMask && mDstFormat != mSrcFormat) { mBufFrameSize = mDstChannelCount * audio_bytes_per_sample(mSrcFormat); } else { mBufFrameSize = 0; } mBufFrames = 0; // force the buffer to be resized. // do we need an input converter buffer provider to give us float? delete mInputConverterProvider; mInputConverterProvider = NULL; if (mRequiresFloat && mSrcFormat != AUDIO_FORMAT_PCM_FLOAT) { mInputConverterProvider = new ReformatBufferProvider( audio_channel_count_from_in_mask(mSrcChannelMask), mSrcFormat, AUDIO_FORMAT_PCM_FLOAT, 256 /* provider buffer frame count */); } // do we need a remixer to do channel mask conversion if (!mIsLegacyDownmix && !mIsLegacyUpmix && mSrcChannelMask != mDstChannelMask) { (void) memcpy_by_index_array_initialization_from_channel_mask( mIdxAry, ARRAY_SIZE(mIdxAry), mDstChannelMask, mSrcChannelMask); } return NO_ERROR; } #ifdef LEGACY_ALSA_AUDIO void AudioFlinger::RecordThread::RecordBufferConverter::convert( void *dst, /*const*/ void *src, size_t frames) { // check if a memcpy will do if (mResampler == NULL && mSrcChannelCount == mDstChannelCount && mSrcFormat == mDstFormat) { memcpy(dst, src, frames * mDstChannelCount * audio_bytes_per_sample(mDstFormat)); return; } // reallocate buffer if needed if (mBufFrameSize != 0 && mBufFrames < frames) { free(mBuf); mBufFrames = frames; (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize); } // do processing if (mResampler != NULL) { // src channel count is always >= 2. void *dstBuf = mBuf != NULL ? mBuf : dst; // ditherAndClamp() works as long as all buffers returned by // activeTrack->getNextBuffer() are 32 bit aligned which should be always true. if (mDstChannelCount == 1) { // the resampler always outputs stereo samples. // FIXME: this rewrites back into src ditherAndClamp((int32_t *)src, (const int32_t *)src, frames); downmix_to_mono_i16_from_stereo_i16((int16_t *)dstBuf, (const int16_t *)src, frames); } else { ditherAndClamp((int32_t *)dstBuf, (const int32_t *)src, frames); } } else if (mSrcChannelCount != mDstChannelCount) { void *dstBuf = mBuf != NULL ? mBuf : dst; if (mSrcChannelCount == 1) { upmix_to_stereo_i16_from_mono_i16((int16_t *)dstBuf, (const int16_t *)src, frames); } else { downmix_to_mono_i16_from_stereo_i16((int16_t *)dstBuf, (const int16_t *)src, frames); } } if (mSrcFormat != mDstFormat) { void *srcBuf = mBuf != NULL ? mBuf : src; memcpy_by_audio_format(dst, mDstFormat, srcBuf, mSrcFormat, frames * mDstChannelCount); } } #else void AudioFlinger::RecordThread::RecordBufferConverter::convertNoResampler( void *dst, const void *src, size_t frames) { // src is native type unless there is legacy upmix or downmix, whereupon it is float. if (mBufFrameSize != 0 && mBufFrames < frames) { free(mBuf); mBufFrames = frames; (void)posix_memalign(&mBuf, 32, mBufFrames * mBufFrameSize); } // do we need to do legacy upmix and downmix? if (mIsLegacyUpmix || mIsLegacyDownmix) { void *dstBuf = mBuf != NULL ? mBuf : dst; if (mIsLegacyUpmix) { upmix_to_stereo_float_from_mono_float((float *)dstBuf, (const float *)src, frames); } else /*mIsLegacyDownmix */ { downmix_to_mono_float_from_stereo_float((float *)dstBuf, (const float *)src, frames); } if (mBuf != NULL) { memcpy_by_audio_format(dst, mDstFormat, mBuf, AUDIO_FORMAT_PCM_FLOAT, frames * mDstChannelCount); } return; } // do we need to do channel mask conversion? if (mSrcChannelMask != mDstChannelMask) { void *dstBuf = mBuf != NULL ? mBuf : dst; memcpy_by_index_array(dstBuf, mDstChannelCount, src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mSrcFormat), frames); if (dstBuf == dst) { return; // format is the same } } // convert to destination buffer const void *convertBuf = mBuf != NULL ? mBuf : src; memcpy_by_audio_format(dst, mDstFormat, convertBuf, mSrcFormat, frames * mDstChannelCount); } void AudioFlinger::RecordThread::RecordBufferConverter::convertResampler( void *dst, /*not-a-const*/ void *src, size_t frames) { // src buffer format is ALWAYS float when entering this routine if (mIsLegacyUpmix) { ; // mono to stereo already handled by resampler } else if (mIsLegacyDownmix || (mSrcChannelMask == mDstChannelMask && mSrcChannelCount == 1)) { // the resampler outputs stereo for mono input channel (a feature?) // must convert to mono downmix_to_mono_float_from_stereo_float((float *)src, (const float *)src, frames); } else if (mSrcChannelMask != mDstChannelMask) { // convert to mono channel again for channel mask conversion (could be skipped // with further optimization). if (mSrcChannelCount == 1) { downmix_to_mono_float_from_stereo_float((float *)src, (const float *)src, frames); } // convert to destination format (in place, OK as float is larger than other types) if (mDstFormat != AUDIO_FORMAT_PCM_FLOAT) { memcpy_by_audio_format(src, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT, frames * mSrcChannelCount); } // channel convert and save to dst memcpy_by_index_array(dst, mDstChannelCount, src, mSrcChannelCount, mIdxAry, audio_bytes_per_sample(mDstFormat), frames); return; } // convert to destination format and save to dst memcpy_by_audio_format(dst, mDstFormat, src, AUDIO_FORMAT_PCM_FLOAT, frames * mDstChannelCount); } #endif bool AudioFlinger::RecordThread::checkForNewParameter_l(const String8& keyValuePair, status_t& status) { bool reconfig = false; status = NO_ERROR; audio_format_t reqFormat = mFormat; uint32_t samplingRate = mSampleRate; // TODO this may change if we want to support capture from HDMI PCM multi channel (e.g on TVs). audio_channel_mask_t channelMask = audio_channel_in_mask_from_count(mChannelCount); AudioParameter param = AudioParameter(keyValuePair); int value; // TODO Investigate when this code runs. Check with audio policy when a sample rate and // channel count change can be requested. Do we mandate the first client defines the // HAL sampling rate and channel count or do we allow changes on the fly? if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) { samplingRate = value; reconfig = true; } if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) { if (!audio_is_linear_pcm((audio_format_t) value)) { status = BAD_VALUE; } else { reqFormat = (audio_format_t) value; reconfig = true; } } if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) { audio_channel_mask_t mask = (audio_channel_mask_t) value; if (!audio_is_input_channel(mask) || audio_channel_count_from_in_mask(mask) > FCC_8) { status = BAD_VALUE; } else { channelMask = mask; reconfig = true; } } if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) { // do not accept frame count changes if tracks are open as the track buffer // size depends on frame count and correct behavior would not be guaranteed // if frame count is changed after track creation if (mActiveTracks.size() > 0) { status = INVALID_OPERATION; } else { reconfig = true; } } if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) { // forward device change to effects that have requested to be // aware of attached audio device. for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setDevice_l(value); } // store input device and output device but do not forward output device to audio HAL. // Note that status is ignored by the caller for output device // (see AudioFlinger::setParameters() if (audio_is_output_devices(value)) { mOutDevice = value; status = BAD_VALUE; } else { mInDevice = value; if (value != AUDIO_DEVICE_NONE) { mPrevInDevice = value; } // disable AEC and NS if the device is a BT SCO headset supporting those // pre processings if (mTracks.size() > 0) { bool suspend = audio_is_bluetooth_sco_device(mInDevice) && mAudioFlinger->btNrecIsOff(); for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId()); setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId()); } } } } if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR && mAudioSource != (audio_source_t)value) { // forward device change to effects that have requested to be // aware of attached audio device. for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setAudioSource_l((audio_source_t)value); } mAudioSource = (audio_source_t)value; } if (status == NO_ERROR) { status = mInput->stream->common.set_parameters(&mInput->stream->common, keyValuePair.string()); if (status == INVALID_OPERATION) { inputStandBy(); status = mInput->stream->common.set_parameters(&mInput->stream->common, keyValuePair.string()); } if (reconfig) { if (status == BAD_VALUE && audio_is_linear_pcm(mInput->stream->common.get_format(&mInput->stream->common)) && audio_is_linear_pcm(reqFormat) && (mInput->stream->common.get_sample_rate(&mInput->stream->common) <= (AUDIO_RESAMPLER_DOWN_RATIO_MAX * samplingRate)) && audio_channel_count_from_in_mask( mInput->stream->common.get_channels(&mInput->stream->common)) <= FCC_8) { status = NO_ERROR; } if (status == NO_ERROR) { readInputParameters_l(); sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED); } } } return reconfig; } String8 AudioFlinger::RecordThread::getParameters(const String8& keys) { Mutex::Autolock _l(mLock); if (initCheck() != NO_ERROR) { return String8(); } char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string()); const String8 out_s8(s); free(s); return out_s8; } void AudioFlinger::RecordThread::ioConfigChanged(audio_io_config_event event, pid_t pid) { sp desc = new AudioIoDescriptor(); desc->mIoHandle = mId; switch (event) { case AUDIO_INPUT_OPENED: case AUDIO_INPUT_CONFIG_CHANGED: desc->mPatch = mPatch; desc->mChannelMask = mChannelMask; desc->mSamplingRate = mSampleRate; desc->mFormat = mFormat; desc->mFrameCount = mFrameCount; desc->mLatency = 0; break; case AUDIO_INPUT_CLOSED: default: break; } mAudioFlinger->ioConfigChanged(event, desc, pid); } void AudioFlinger::RecordThread::readInputParameters_l() { mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common); mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common); mChannelCount = audio_channel_count_from_in_mask(mChannelMask); if (mChannelCount > FCC_8) { ALOGE("HAL channel count %d > %d", mChannelCount, FCC_8); } mHALFormat = mInput->stream->common.get_format(&mInput->stream->common); mFormat = mHALFormat; if (!audio_is_linear_pcm(mFormat)) { ALOGE("HAL format %#x is not linear pcm", mFormat); } mFrameSize = audio_stream_in_frame_size(mInput->stream); mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common); mFrameCount = mBufferSize / mFrameSize; // This is the formula for calculating the temporary buffer size. // With 7 HAL buffers, we can guarantee ability to down-sample the input by ratio of 6:1 to // 1 full output buffer, regardless of the alignment of the available input. // The value is somewhat arbitrary, and could probably be even larger. // A larger value should allow more old data to be read after a track calls start(), // without increasing latency. // // Note this is independent of the maximum downsampling ratio permitted for capture. mRsmpInFrames = mFrameCount * 7; mRsmpInFramesP2 = roundup(mRsmpInFrames); free(mRsmpInBuffer); mRsmpInBuffer = NULL; // TODO optimize audio capture buffer sizes ... // Here we calculate the size of the sliding buffer used as a source // for resampling. mRsmpInFramesP2 is currently roundup(mFrameCount * 7). // For current HAL frame counts, this is usually 2048 = 40 ms. It would // be better to have it derived from the pipe depth in the long term. // The current value is higher than necessary. However it should not add to latency. // Over-allocate beyond mRsmpInFramesP2 to permit a HAL read past end of buffer size_t bufferSize = (mRsmpInFramesP2 + mFrameCount - 1) * mFrameSize; (void)posix_memalign(&mRsmpInBuffer, 32, bufferSize); memset(mRsmpInBuffer, 0, bufferSize); // if posix_memalign fails, will segv here. // AudioRecord mSampleRate and mChannelCount are constant due to AudioRecord API constraints. // But if thread's mSampleRate or mChannelCount changes, how will that affect active tracks? } uint32_t AudioFlinger::RecordThread::getInputFramesLost() { Mutex::Autolock _l(mLock); if (initCheck() != NO_ERROR) { return 0; } return mInput->stream->get_input_frames_lost(mInput->stream); } uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const { Mutex::Autolock _l(mLock); uint32_t result = 0; if (getEffectChain_l(sessionId) != 0) { result = EFFECT_SESSION; } for (size_t i = 0; i < mTracks.size(); ++i) { if (sessionId == mTracks[i]->sessionId()) { result |= TRACK_SESSION; break; } } return result; } KeyedVector AudioFlinger::RecordThread::sessionIds() const { KeyedVector ids; Mutex::Autolock _l(mLock); for (size_t j = 0; j < mTracks.size(); ++j) { sp track = mTracks[j]; int sessionId = track->sessionId(); if (ids.indexOfKey(sessionId) < 0) { ids.add(sessionId, true); } } return ids; } AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput() { Mutex::Autolock _l(mLock); AudioStreamIn *input = mInput; mInput = NULL; return input; } // this method must always be called either with ThreadBase mLock held or inside the thread loop audio_stream_t* AudioFlinger::RecordThread::stream() const { if (mInput == NULL) { return NULL; } return &mInput->stream->common; } status_t AudioFlinger::RecordThread::addEffectChain_l(const sp& chain) { // only one chain per input thread if (mEffectChains.size() != 0) { ALOGW("addEffectChain_l() already one chain %p on thread %p", chain.get(), this); return INVALID_OPERATION; } ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this); chain->setThread(this); chain->setInBuffer(NULL); chain->setOutBuffer(NULL); checkSuspendOnAddEffectChain_l(chain); // make sure enabled pre processing effects state is communicated to the HAL as we // just moved them to a new input stream. chain->syncHalEffectsState(); mEffectChains.add(chain); return NO_ERROR; } size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp& chain) { ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this); ALOGW_IF(mEffectChains.size() != 1, "removeEffectChain_l() %p invalid chain size %d on thread %p", chain.get(), mEffectChains.size(), this); if (mEffectChains.size() == 1) { mEffectChains.removeAt(0); } return 0; } status_t AudioFlinger::RecordThread::createAudioPatch_l(const struct audio_patch *patch, audio_patch_handle_t *handle) { status_t status = NO_ERROR; // store new device and send to effects mInDevice = patch->sources[0].ext.device.type; mPatch = *patch; for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setDevice_l(mInDevice); } // disable AEC and NS if the device is a BT SCO headset supporting those // pre processings if (mTracks.size() > 0) { bool suspend = audio_is_bluetooth_sco_device(mInDevice) && mAudioFlinger->btNrecIsOff(); for (size_t i = 0; i < mTracks.size(); i++) { sp track = mTracks[i]; setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId()); setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId()); } } // store new source and send to effects if (mAudioSource != patch->sinks[0].ext.mix.usecase.source) { mAudioSource = patch->sinks[0].ext.mix.usecase.source; for (size_t i = 0; i < mEffectChains.size(); i++) { mEffectChains[i]->setAudioSource_l(mAudioSource); } } if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) { audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice(); status = hwDevice->create_audio_patch(hwDevice, patch->num_sources, patch->sources, patch->num_sinks, patch->sinks, handle); } else { char *address; if (strcmp(patch->sources[0].ext.device.address, "") != 0) { address = audio_device_address_to_parameter( patch->sources[0].ext.device.type, patch->sources[0].ext.device.address); } else { address = (char *)calloc(1, 1); } AudioParameter param = AudioParameter(String8(address)); free(address); param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), (int)patch->sources[0].ext.device.type); param.addInt(String8(AUDIO_PARAMETER_STREAM_INPUT_SOURCE), (int)patch->sinks[0].ext.mix.usecase.source); status = mInput->stream->common.set_parameters(&mInput->stream->common, param.toString().string()); *handle = AUDIO_PATCH_HANDLE_NONE; } if (mInDevice != mPrevInDevice) { sendIoConfigEvent_l(AUDIO_INPUT_CONFIG_CHANGED); mPrevInDevice = mInDevice; } return status; } status_t AudioFlinger::RecordThread::releaseAudioPatch_l(const audio_patch_handle_t handle) { status_t status = NO_ERROR; mInDevice = AUDIO_DEVICE_NONE; if (mInput->audioHwDev->version() >= AUDIO_DEVICE_API_VERSION_3_0) { audio_hw_device_t *hwDevice = mInput->audioHwDev->hwDevice(); status = hwDevice->release_audio_patch(hwDevice, handle); } else { AudioParameter param; param.addInt(String8(AUDIO_PARAMETER_STREAM_ROUTING), 0); status = mInput->stream->common.set_parameters(&mInput->stream->common, param.toString().string()); } return status; } void AudioFlinger::RecordThread::addPatchRecord(const sp& record) { Mutex::Autolock _l(mLock); mTracks.add(record); } void AudioFlinger::RecordThread::deletePatchRecord(const sp& record) { Mutex::Autolock _l(mLock); destroyTrack_l(record); } void AudioFlinger::RecordThread::getAudioPortConfig(struct audio_port_config *config) { ThreadBase::getAudioPortConfig(config); config->role = AUDIO_PORT_ROLE_SINK; config->ext.mix.hw_module = mInput->audioHwDev->handle(); config->ext.mix.usecase.source = mAudioSource; } } // namespace android