/* ** ** Copyright 2012, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. ** ** This file was modified by DTS, Inc. The portions of the ** code that are surrounded by "DTS..." are copyrighted and ** licensed separately, as follows: ** ** (C) 2015 DTS, Inc. ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #ifndef INCLUDING_FROM_AUDIOFLINGER_H #error This header file should only be included from AudioFlinger.h #endif class ThreadBase : public Thread { public: #include "TrackBase.h" enum type_t { MIXER, // Thread class is MixerThread DIRECT, // Thread class is DirectOutputThread DUPLICATING, // Thread class is DuplicatingThread RECORD, // Thread class is RecordThread OFFLOAD // Thread class is OffloadThread }; static const char *threadTypeToString(type_t type); ThreadBase(const sp& audioFlinger, audio_io_handle_t id, audio_devices_t outDevice, audio_devices_t inDevice, type_t type, bool systemReady); virtual ~ThreadBase(); virtual status_t readyToRun(); void dumpBase(int fd, const Vector& args); void dumpEffectChains(int fd, const Vector& args); void clearPowerManager(); // base for record and playback enum { CFG_EVENT_IO, CFG_EVENT_PRIO, CFG_EVENT_SET_PARAMETER, CFG_EVENT_CREATE_AUDIO_PATCH, CFG_EVENT_RELEASE_AUDIO_PATCH, }; class ConfigEventData: public RefBase { public: virtual ~ConfigEventData() {} virtual void dump(char *buffer, size_t size) = 0; protected: ConfigEventData() {} }; // Config event sequence by client if status needed (e.g binder thread calling setParameters()): // 1. create SetParameterConfigEvent. This sets mWaitStatus in config event // 2. Lock mLock // 3. Call sendConfigEvent_l(): Append to mConfigEvents and mWaitWorkCV.signal // 4. sendConfigEvent_l() reads status from event->mStatus; // 5. sendConfigEvent_l() returns status // 6. Unlock // // Parameter sequence by server: threadLoop calling processConfigEvents_l(): // 1. Lock mLock // 2. If there is an entry in mConfigEvents proceed ... // 3. Read first entry in mConfigEvents // 4. Remove first entry from mConfigEvents // 5. Process // 6. Set event->mStatus // 7. event->mCond.signal // 8. Unlock class ConfigEvent: public RefBase { public: virtual ~ConfigEvent() {} void dump(char *buffer, size_t size) { mData->dump(buffer, size); } const int mType; // event type e.g. CFG_EVENT_IO Mutex mLock; // mutex associated with mCond Condition mCond; // condition for status return status_t mStatus; // status communicated to sender bool mWaitStatus; // true if sender is waiting for status bool mRequiresSystemReady; // true if must wait for system ready to enter event queue sp mData; // event specific parameter data protected: ConfigEvent(int type, bool requiresSystemReady = false) : mType(type), mStatus(NO_ERROR), mWaitStatus(false), mRequiresSystemReady(requiresSystemReady), mData(NULL) {} }; class IoConfigEventData : public ConfigEventData { public: IoConfigEventData(audio_io_config_event event, pid_t pid) : mEvent(event), mPid(pid) {} virtual void dump(char *buffer, size_t size) { snprintf(buffer, size, "IO event: event %d\n", mEvent); } const audio_io_config_event mEvent; const pid_t mPid; }; class IoConfigEvent : public ConfigEvent { public: IoConfigEvent(audio_io_config_event event, pid_t pid) : ConfigEvent(CFG_EVENT_IO) { mData = new IoConfigEventData(event, pid); } virtual ~IoConfigEvent() {} }; class PrioConfigEventData : public ConfigEventData { public: PrioConfigEventData(pid_t pid, pid_t tid, int32_t prio) : mPid(pid), mTid(tid), mPrio(prio) {} virtual void dump(char *buffer, size_t size) { snprintf(buffer, size, "Prio event: pid %d, tid %d, prio %d\n", mPid, mTid, mPrio); } const pid_t mPid; const pid_t mTid; const int32_t mPrio; }; class PrioConfigEvent : public ConfigEvent { public: PrioConfigEvent(pid_t pid, pid_t tid, int32_t prio) : ConfigEvent(CFG_EVENT_PRIO, true) { mData = new PrioConfigEventData(pid, tid, prio); } virtual ~PrioConfigEvent() {} }; class SetParameterConfigEventData : public ConfigEventData { public: SetParameterConfigEventData(String8 keyValuePairs) : mKeyValuePairs(keyValuePairs) {} virtual void dump(char *buffer, size_t size) { snprintf(buffer, size, "KeyValue: %s\n", mKeyValuePairs.string()); } const String8 mKeyValuePairs; }; class SetParameterConfigEvent : public ConfigEvent { public: SetParameterConfigEvent(String8 keyValuePairs) : ConfigEvent(CFG_EVENT_SET_PARAMETER) { mData = new SetParameterConfigEventData(keyValuePairs); mWaitStatus = true; } virtual ~SetParameterConfigEvent() {} }; class CreateAudioPatchConfigEventData : public ConfigEventData { public: CreateAudioPatchConfigEventData(const struct audio_patch patch, audio_patch_handle_t handle) : mPatch(patch), mHandle(handle) {} virtual void dump(char *buffer, size_t size) { snprintf(buffer, size, "Patch handle: %u\n", mHandle); } const struct audio_patch mPatch; audio_patch_handle_t mHandle; }; class CreateAudioPatchConfigEvent : public ConfigEvent { public: CreateAudioPatchConfigEvent(const struct audio_patch patch, audio_patch_handle_t handle) : ConfigEvent(CFG_EVENT_CREATE_AUDIO_PATCH) { mData = new CreateAudioPatchConfigEventData(patch, handle); mWaitStatus = true; } virtual ~CreateAudioPatchConfigEvent() {} }; class ReleaseAudioPatchConfigEventData : public ConfigEventData { public: ReleaseAudioPatchConfigEventData(const audio_patch_handle_t handle) : mHandle(handle) {} virtual void dump(char *buffer, size_t size) { snprintf(buffer, size, "Patch handle: %u\n", mHandle); } audio_patch_handle_t mHandle; }; class ReleaseAudioPatchConfigEvent : public ConfigEvent { public: ReleaseAudioPatchConfigEvent(const audio_patch_handle_t handle) : ConfigEvent(CFG_EVENT_RELEASE_AUDIO_PATCH) { mData = new ReleaseAudioPatchConfigEventData(handle); mWaitStatus = true; } virtual ~ReleaseAudioPatchConfigEvent() {} }; class PMDeathRecipient : public IBinder::DeathRecipient { public: PMDeathRecipient(const wp& thread) : mThread(thread) {} virtual ~PMDeathRecipient() {} // IBinder::DeathRecipient virtual void binderDied(const wp& who); private: PMDeathRecipient(const PMDeathRecipient&); PMDeathRecipient& operator = (const PMDeathRecipient&); wp mThread; }; virtual status_t initCheck() const = 0; // static externally-visible type_t type() const { return mType; } bool isDuplicating() const { return (mType == DUPLICATING); } audio_io_handle_t id() const { return mId;} // dynamic externally-visible uint32_t sampleRate() const { return mSampleRate; } audio_channel_mask_t channelMask() const { return mChannelMask; } audio_format_t format() const { return mHALFormat; } uint32_t channelCount() const { return mChannelCount; } // Called by AudioFlinger::frameCount(audio_io_handle_t output) and effects, // and returns the [normal mix] buffer's frame count. virtual size_t frameCount() const = 0; size_t frameSize() const { return mFrameSize; } // Should be "virtual status_t requestExitAndWait()" and override same // method in Thread, but Thread::requestExitAndWait() is not yet virtual. void exit(); virtual bool checkForNewParameter_l(const String8& keyValuePair, status_t& status) = 0; virtual status_t setParameters(const String8& keyValuePairs); virtual String8 getParameters(const String8& keys) = 0; virtual void ioConfigChanged(audio_io_config_event event, pid_t pid = 0) = 0; // sendConfigEvent_l() must be called with ThreadBase::mLock held // Can temporarily release the lock if waiting for a reply from // processConfigEvents_l(). status_t sendConfigEvent_l(sp& event); void sendIoConfigEvent(audio_io_config_event event, pid_t pid = 0); void sendIoConfigEvent_l(audio_io_config_event event, pid_t pid = 0); void sendPrioConfigEvent(pid_t pid, pid_t tid, int32_t prio); void sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio); status_t sendSetParameterConfigEvent_l(const String8& keyValuePair); status_t sendCreateAudioPatchConfigEvent(const struct audio_patch *patch, audio_patch_handle_t *handle); status_t sendReleaseAudioPatchConfigEvent(audio_patch_handle_t handle); void processConfigEvents_l(); virtual void cacheParameters_l() = 0; virtual status_t createAudioPatch_l(const struct audio_patch *patch, audio_patch_handle_t *handle) = 0; virtual status_t releaseAudioPatch_l(const audio_patch_handle_t handle) = 0; virtual void getAudioPortConfig(struct audio_port_config *config) = 0; // see note at declaration of mStandby, mOutDevice and mInDevice bool standby() const { return mStandby; } audio_devices_t outDevice() const { return mOutDevice; } audio_devices_t inDevice() const { return mInDevice; } virtual audio_stream_t* stream() const = 0; sp createEffect_l( const sp& client, const sp& effectClient, int32_t priority, int sessionId, effect_descriptor_t *desc, int *enabled, status_t *status /*non-NULL*/); // return values for hasAudioSession (bit field) enum effect_state { EFFECT_SESSION = 0x1, // the audio session corresponds to at least one // effect TRACK_SESSION = 0x2 // the audio session corresponds to at least one // track }; // get effect chain corresponding to session Id. sp getEffectChain(int sessionId); // same as getEffectChain() but must be called with ThreadBase mutex locked sp getEffectChain_l(int sessionId) const; // add an effect chain to the chain list (mEffectChains) virtual status_t addEffectChain_l(const sp& chain) = 0; // remove an effect chain from the chain list (mEffectChains) virtual size_t removeEffectChain_l(const sp& chain) = 0; // lock all effect chains Mutexes. Must be called before releasing the // ThreadBase mutex before processing the mixer and effects. This guarantees the // integrity of the chains during the process. // Also sets the parameter 'effectChains' to current value of mEffectChains. void lockEffectChains_l(Vector< sp >& effectChains); // unlock effect chains after process void unlockEffectChains(const Vector< sp >& effectChains); // get a copy of mEffectChains vector Vector< sp > getEffectChains_l() const { return mEffectChains; }; // set audio mode to all effect chains void setMode(audio_mode_t mode); // get effect module with corresponding ID on specified audio session sp getEffect(int sessionId, int effectId); sp getEffect_l(int sessionId, int effectId); // add and effect module. Also creates the effect chain is none exists for // the effects audio session status_t addEffect_l(const sp< EffectModule>& effect); // remove and effect module. Also removes the effect chain is this was the last // effect void removeEffect_l(const sp< EffectModule>& effect); // detach all tracks connected to an auxiliary effect virtual void detachAuxEffect_l(int effectId __unused) {} // returns either EFFECT_SESSION if effects on this audio session exist in one // chain, or TRACK_SESSION if tracks on this audio session exist, or both virtual uint32_t hasAudioSession(int sessionId) const = 0; // the value returned by default implementation is not important as the // strategy is only meaningful for PlaybackThread which implements this method virtual uint32_t getStrategyForSession_l(int sessionId __unused) { return 0; } // suspend or restore effect according to the type of effect passed. a NULL // type pointer means suspend all effects in the session void setEffectSuspended(const effect_uuid_t *type, bool suspend, int sessionId = AUDIO_SESSION_OUTPUT_MIX); // check if some effects must be suspended/restored when an effect is enabled // or disabled void checkSuspendOnEffectEnabled(const sp& effect, bool enabled, int sessionId = AUDIO_SESSION_OUTPUT_MIX); void checkSuspendOnEffectEnabled_l(const sp& effect, bool enabled, int sessionId = AUDIO_SESSION_OUTPUT_MIX); virtual status_t setSyncEvent(const sp& event) = 0; virtual bool isValidSyncEvent(const sp& event) const = 0; // Return a reference to a per-thread heap which can be used to allocate IMemory // objects that will be read-only to client processes, read/write to mediaserver, // and shared by all client processes of the thread. // The heap is per-thread rather than common across all threads, because // clients can't be trusted not to modify the offset of the IMemory they receive. // If a thread does not have such a heap, this method returns 0. virtual sp readOnlyHeap() const { return 0; } virtual sp pipeMemory() const { return 0; } void systemReady(); mutable Mutex mLock; protected: // entry describing an effect being suspended in mSuspendedSessions keyed vector class SuspendedSessionDesc : public RefBase { public: SuspendedSessionDesc() : mRefCount(0) {} int mRefCount; // number of active suspend requests effect_uuid_t mType; // effect type UUID }; void acquireWakeLock(int uid = -1); void acquireWakeLock_l(int uid = -1); void releaseWakeLock(); void releaseWakeLock_l(); void updateWakeLockUids(const SortedVector &uids); void updateWakeLockUids_l(const SortedVector &uids); void getPowerManager_l(); void setEffectSuspended_l(const effect_uuid_t *type, bool suspend, int sessionId); // updated mSuspendedSessions when an effect suspended or restored void updateSuspendedSessions_l(const effect_uuid_t *type, bool suspend, int sessionId); // check if some effects must be suspended when an effect chain is added void checkSuspendOnAddEffectChain_l(const sp& chain); String16 getWakeLockTag(); virtual void preExit() { } friend class AudioFlinger; // for mEffectChains const type_t mType; // Used by parameters, config events, addTrack_l, exit Condition mWaitWorkCV; const sp mAudioFlinger; // updated by PlaybackThread::readOutputParameters_l() or // RecordThread::readInputParameters_l() uint32_t mSampleRate; size_t mFrameCount; // output HAL, direct output, record audio_channel_mask_t mChannelMask; uint32_t mChannelCount; size_t mFrameSize; // not HAL frame size, this is for output sink (to pipe to fast mixer) audio_format_t mFormat; // Source format for Recording and // Sink format for Playback. // Sink format may be different than // HAL format if Fastmixer is used. audio_format_t mHALFormat; size_t mBufferSize; // HAL buffer size for read() or write() Vector< sp > mConfigEvents; Vector< sp > mPendingConfigEvents; // events awaiting system ready // These fields are written and read by thread itself without lock or barrier, // and read by other threads without lock or barrier via standby(), outDevice() // and inDevice(). // Because of the absence of a lock or barrier, any other thread that reads // these fields must use the information in isolation, or be prepared to deal // with possibility that it might be inconsistent with other information. bool mStandby; // Whether thread is currently in standby. audio_devices_t mOutDevice; // output device audio_devices_t mInDevice; // input device audio_devices_t mPrevOutDevice; // previous output device audio_devices_t mPrevInDevice; // previous input device struct audio_patch mPatch; audio_source_t mAudioSource; const audio_io_handle_t mId; Vector< sp > mEffectChains; static const int kThreadNameLength = 16; // prctl(PR_SET_NAME) limit char mThreadName[kThreadNameLength]; // guaranteed NUL-terminated sp mPowerManager; sp mWakeLockToken; const sp mDeathRecipient; // list of suspended effects per session and per type. The first vector is // keyed by session ID, the second by type UUID timeLow field KeyedVector< int, KeyedVector< int, sp > > mSuspendedSessions; static const size_t kLogSize = 4 * 1024; sp mNBLogWriter; bool mSystemReady; bool mIsDirectPcm; // flag to indicate unique Direct thread }; // --- PlaybackThread --- class PlaybackThread : public ThreadBase { public: #include "PlaybackTracks.h" enum mixer_state { MIXER_IDLE, // no active tracks MIXER_TRACKS_ENABLED, // at least one active track, but no track has any data ready MIXER_TRACKS_READY, // at least one active track, and at least one track has data MIXER_DRAIN_TRACK, // drain currently playing track MIXER_DRAIN_ALL, // fully drain the hardware // standby mode does not have an enum value // suspend by audio policy manager is orthogonal to mixer state }; // retry count before removing active track in case of underrun on offloaded thread: // we need to make sure that AudioTrack client has enough time to send large buffers //FIXME may be more appropriate if expressed in time units. Need to revise how underrun is handled // for offloaded tracks static const int8_t kMaxTrackRetriesOffload = 20; PlaybackThread(const sp& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, type_t type, bool systemReady); virtual ~PlaybackThread(); void dump(int fd, const Vector& args); // Thread virtuals virtual bool threadLoop(); // RefBase virtual void onFirstRef(); protected: // Code snippets that were lifted up out of threadLoop() virtual void threadLoop_mix() = 0; virtual void threadLoop_sleepTime() = 0; virtual ssize_t threadLoop_write(); virtual void threadLoop_drain(); virtual void threadLoop_standby(); virtual void threadLoop_exit(); virtual void threadLoop_removeTracks(const Vector< sp >& tracksToRemove); // prepareTracks_l reads and writes mActiveTracks, and returns // the pending set of tracks to remove via Vector 'tracksToRemove'. The caller // is responsible for clearing or destroying this Vector later on, when it // is safe to do so. That will drop the final ref count and destroy the tracks. virtual mixer_state prepareTracks_l(Vector< sp > *tracksToRemove) = 0; void removeTracks_l(const Vector< sp >& tracksToRemove); void writeCallback(); void resetWriteBlocked(uint32_t sequence); void drainCallback(); void resetDraining(uint32_t sequence); static int asyncCallback(stream_callback_event_t event, void *param, void *cookie); virtual bool waitingAsyncCallback(); virtual bool waitingAsyncCallback_l(); virtual bool shouldStandby_l(); virtual void onAddNewTrack_l(); // ThreadBase virtuals virtual void preExit(); public: virtual status_t initCheck() const { return (mOutput == NULL) ? NO_INIT : NO_ERROR; } // return estimated latency in milliseconds, as reported by HAL uint32_t latency() const; // same, but lock must already be held uint32_t latency_l() const; void setMasterVolume(float value); void setMasterMute(bool muted); void setPostPro(); void setStreamVolume(audio_stream_type_t stream, float value); void setStreamMute(audio_stream_type_t stream, bool muted); float streamVolume(audio_stream_type_t stream) const; sp createTrack_l( const sp& client, audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t *pFrameCount, const sp& sharedBuffer, int sessionId, IAudioFlinger::track_flags_t *flags, pid_t tid, int uid, status_t *status /*non-NULL*/); AudioStreamOut* getOutput() const; AudioStreamOut* clearOutput(); virtual audio_stream_t* stream() const; // a very large number of suspend() will eventually wraparound, but unlikely void suspend() { (void) android_atomic_inc(&mSuspended); } void restore() { // if restore() is done without suspend(), get back into // range so that the next suspend() will operate correctly if (android_atomic_dec(&mSuspended) <= 0) { android_atomic_release_store(0, &mSuspended); } } bool isSuspended() const { return android_atomic_acquire_load(&mSuspended) > 0; } virtual String8 getParameters(const String8& keys); virtual void ioConfigChanged(audio_io_config_event event, pid_t pid = 0); status_t getRenderPosition(uint32_t *halFrames, uint32_t *dspFrames); // FIXME rename mixBuffer() to sinkBuffer() and remove int16_t* dependency. // Consider also removing and passing an explicit mMainBuffer initialization // parameter to AF::PlaybackThread::Track::Track(). int16_t *mixBuffer() const { return reinterpret_cast(mSinkBuffer); }; virtual void detachAuxEffect_l(int effectId); status_t attachAuxEffect(const sp track, int EffectId); status_t attachAuxEffect_l(const sp track, int EffectId); virtual status_t addEffectChain_l(const sp& chain); virtual size_t removeEffectChain_l(const sp& chain); virtual uint32_t hasAudioSession(int sessionId) const; virtual uint32_t getStrategyForSession_l(int sessionId); virtual status_t setSyncEvent(const sp& event); virtual bool isValidSyncEvent(const sp& event) const; // called with AudioFlinger lock held void invalidateTracks_l(audio_stream_type_t streamType); virtual void invalidateTracks(audio_stream_type_t streamType); virtual size_t frameCount() const { return mNormalFrameCount; } // Return's the HAL's frame count i.e. fast mixer buffer size. size_t frameCountHAL() const { return mFrameCount; } status_t getTimestamp_l(AudioTimestamp& timestamp); void addPatchTrack(const sp& track); void deletePatchTrack(const sp& track); virtual void getAudioPortConfig(struct audio_port_config *config); protected: // updated by readOutputParameters_l() size_t mNormalFrameCount; // normal mixer and effects bool mThreadThrottle; // throttle the thread processing uint32_t mThreadThrottleTimeMs; // throttle time for MIXER threads uint32_t mThreadThrottleEndMs; // notify once per throttling uint32_t mHalfBufferMs; // half the buffer size in milliseconds void* mSinkBuffer; // frame size aligned sink buffer // TODO: // Rearrange the buffer info into a struct/class with // clear, copy, construction, destruction methods. // // mSinkBuffer also has associated with it: // // mSinkBufferSize: Sink Buffer Size // mFormat: Sink Buffer Format // Mixer Buffer (mMixerBuffer*) // // In the case of floating point or multichannel data, which is not in the // sink format, it is required to accumulate in a higher precision or greater channel count // buffer before downmixing or data conversion to the sink buffer. // Set to "true" to enable the Mixer Buffer otherwise mixer output goes to sink buffer. bool mMixerBufferEnabled; // Storage, 32 byte aligned (may make this alignment a requirement later). // Due to constraints on mNormalFrameCount, the buffer size is a multiple of 16 frames. void* mMixerBuffer; // Size of mMixerBuffer in bytes: mNormalFrameCount * #channels * sampsize. size_t mMixerBufferSize; // The audio format of mMixerBuffer. Set to AUDIO_FORMAT_PCM_(FLOAT|16_BIT) only. audio_format_t mMixerBufferFormat; // An internal flag set to true by MixerThread::prepareTracks_l() // when mMixerBuffer contains valid data after mixing. bool mMixerBufferValid; // Effects Buffer (mEffectsBuffer*) // // In the case of effects data, which is not in the sink format, // it is required to accumulate in a different buffer before data conversion // to the sink buffer. // Set to "true" to enable the Effects Buffer otherwise effects output goes to sink buffer. bool mEffectBufferEnabled; // Storage, 32 byte aligned (may make this alignment a requirement later). // Due to constraints on mNormalFrameCount, the buffer size is a multiple of 16 frames. void* mEffectBuffer; // Size of mEffectsBuffer in bytes: mNormalFrameCount * #channels * sampsize. size_t mEffectBufferSize; // The audio format of mEffectsBuffer. Set to AUDIO_FORMAT_PCM_16_BIT only. audio_format_t mEffectBufferFormat; // An internal flag set to true by MixerThread::prepareTracks_l() // when mEffectsBuffer contains valid data after mixing. // // When this is set, all mixer data is routed into the effects buffer // for any processing (including output processing). bool mEffectBufferValid; // suspend count, > 0 means suspended. While suspended, the thread continues to pull from // tracks and mix, but doesn't write to HAL. A2DP and SCO HAL implementations can't handle // concurrent use of both of them, so Audio Policy Service suspends one of the threads to // workaround that restriction. // 'volatile' means accessed via atomic operations and no lock. volatile int32_t mSuspended; // FIXME overflows every 6+ hours at 44.1 kHz stereo 16-bit samples // mFramesWritten would be better, or 64-bit even better size_t mBytesWritten; private: // mMasterMute is in both PlaybackThread and in AudioFlinger. When a // PlaybackThread needs to find out if master-muted, it checks it's local // copy rather than the one in AudioFlinger. This optimization saves a lock. bool mMasterMute; void setMasterMute_l(bool muted) { mMasterMute = muted; } protected: SortedVector< wp > mActiveTracks; // FIXME check if this could be sp<> SortedVector mWakeLockUids; int mActiveTracksGeneration; wp mLatestActiveTrack; // latest track added to mActiveTracks // Allocate a track name for a given channel mask. // Returns name >= 0 if successful, -1 on failure. virtual int getTrackName_l(audio_channel_mask_t channelMask, audio_format_t format, int sessionId) = 0; virtual void deleteTrackName_l(int name) = 0; // Time to sleep between cycles when: virtual uint32_t activeSleepTimeUs() const; // mixer state MIXER_TRACKS_ENABLED virtual uint32_t idleSleepTimeUs() const = 0; // mixer state MIXER_IDLE virtual uint32_t suspendSleepTimeUs() const = 0; // audio policy manager suspended us // No sleep when mixer state == MIXER_TRACKS_READY; relies on audio HAL stream->write() // No sleep in standby mode; waits on a condition // Code snippets that are temporarily lifted up out of threadLoop() until the merge void checkSilentMode_l(); // Non-trivial for DUPLICATING only virtual void saveOutputTracks() { } virtual void clearOutputTracks() { } // Cache various calculated values, at threadLoop() entry and after a parameter change virtual void cacheParameters_l(); virtual uint32_t correctLatency_l(uint32_t latency) const; virtual status_t createAudioPatch_l(const struct audio_patch *patch, audio_patch_handle_t *handle); virtual status_t releaseAudioPatch_l(const audio_patch_handle_t handle); bool usesHwAvSync() const { return (mType == DIRECT) && (mOutput != NULL) && mHwSupportsPause && (mOutput->flags & AUDIO_OUTPUT_FLAG_HW_AV_SYNC); } private: friend class AudioFlinger; // for numerous PlaybackThread& operator = (const PlaybackThread&); status_t addTrack_l(const sp& track); bool destroyTrack_l(const sp& track); void removeTrack_l(const sp& track); void broadcast_l(); void readOutputParameters_l(); virtual void dumpInternals(int fd, const Vector& args); void dumpTracks(int fd, const Vector& args); SortedVector< sp > mTracks; stream_type_t mStreamTypes[AUDIO_STREAM_CNT]; AudioStreamOut *mOutput; float mMasterVolume; nsecs_t mLastWriteTime; int mNumWrites; int mNumDelayedWrites; bool mInWrite; // FIXME rename these former local variables of threadLoop to standard "m" names nsecs_t mStandbyTimeNs; size_t mSinkBufferSize; // cached copies of activeSleepTimeUs() and idleSleepTimeUs() made by cacheParameters_l() uint32_t mActiveSleepTimeUs; uint32_t mIdleSleepTimeUs; uint32_t mSleepTimeUs; // mixer status returned by prepareTracks_l() mixer_state mMixerStatus; // current cycle // previous cycle when in prepareTracks_l() mixer_state mMixerStatusIgnoringFastTracks; // FIXME or a separate ready state per track // FIXME move these declarations into the specific sub-class that needs them // MIXER only uint32_t sleepTimeShift; // same as AudioFlinger::mStandbyTimeInNsecs except for DIRECT which uses a shorter value nsecs_t mStandbyDelayNs; // MIXER only nsecs_t maxPeriod; // DUPLICATING only uint32_t writeFrames; size_t mBytesRemaining; size_t mCurrentWriteLength; bool mUseAsyncWrite; // mWriteAckSequence contains current write sequence on bits 31-1. The write sequence is // incremented each time a write(), a flush() or a standby() occurs. // Bit 0 is set when a write blocks and indicates a callback is expected. // Bit 0 is reset by the async callback thread calling resetWriteBlocked(). Out of sequence // callbacks are ignored. uint32_t mWriteAckSequence; // mDrainSequence contains current drain sequence on bits 31-1. The drain sequence is // incremented each time a drain is requested or a flush() or standby() occurs. // Bit 0 is set when the drain() command is called at the HAL and indicates a callback is // expected. // Bit 0 is reset by the async callback thread calling resetDraining(). Out of sequence // callbacks are ignored. uint32_t mDrainSequence; // A condition that must be evaluated by prepareTrack_l() has changed and we must not wait // for async write callback in the thread loop before evaluating it bool mSignalPending; sp mCallbackThread; private: // The HAL output sink is treated as non-blocking, but current implementation is blocking sp mOutputSink; // If a fast mixer is present, the blocking pipe sink, otherwise clear sp mPipeSink; // The current sink for the normal mixer to write it's (sub)mix, mOutputSink or mPipeSink sp mNormalSink; #ifdef TEE_SINK // For dumpsys sp mTeeSink; sp mTeeSource; #endif uint32_t mScreenState; // cached copy of gScreenState static const size_t kFastMixerLogSize = 4 * 1024; sp mFastMixerNBLogWriter; public: virtual bool hasFastMixer() const = 0; virtual FastTrackUnderruns getFastTrackUnderruns(size_t fastIndex __unused) const { FastTrackUnderruns dummy; return dummy; } protected: // accessed by both binder threads and within threadLoop(), lock on mutex needed unsigned mFastTrackAvailMask; // bit i set if fast track [i] is available bool mHwSupportsPause; bool mHwPaused; bool mFlushPending; private: // timestamp latch: // D input is written by threadLoop_write while mutex is unlocked, and read while locked // Q output is written while locked, and read while locked struct { AudioTimestamp mTimestamp; uint32_t mUnpresentedFrames; KeyedVector mFramesReleased; } mLatchD, mLatchQ; bool mLatchDValid; // true means mLatchD is valid // (except for mFramesReleased which is filled in later), // and clock it into latch at next opportunity bool mLatchQValid; // true means mLatchQ is valid }; class MixerThread : public PlaybackThread { public: MixerThread(const sp& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady, type_t type = MIXER); virtual ~MixerThread(); // Thread virtuals virtual bool checkForNewParameter_l(const String8& keyValuePair, status_t& status); virtual void dumpInternals(int fd, const Vector& args); protected: virtual mixer_state prepareTracks_l(Vector< sp > *tracksToRemove); virtual int getTrackName_l(audio_channel_mask_t channelMask, audio_format_t format, int sessionId); virtual void deleteTrackName_l(int name); virtual uint32_t idleSleepTimeUs() const; virtual uint32_t suspendSleepTimeUs() const; virtual void cacheParameters_l(); // threadLoop snippets virtual ssize_t threadLoop_write(); virtual void threadLoop_standby(); virtual void threadLoop_mix(); virtual void threadLoop_sleepTime(); virtual void threadLoop_removeTracks(const Vector< sp >& tracksToRemove); virtual uint32_t correctLatency_l(uint32_t latency) const; virtual status_t createAudioPatch_l(const struct audio_patch *patch, audio_patch_handle_t *handle); virtual status_t releaseAudioPatch_l(const audio_patch_handle_t handle); AudioMixer* mAudioMixer; // normal mixer private: // one-time initialization, no locks required sp mFastMixer; // non-0 if there is also a fast mixer sp mAudioWatchdog; // non-0 if there is an audio watchdog thread // contents are not guaranteed to be consistent, no locks required FastMixerDumpState mFastMixerDumpState; #ifdef STATE_QUEUE_DUMP StateQueueObserverDump mStateQueueObserverDump; StateQueueMutatorDump mStateQueueMutatorDump; #endif AudioWatchdogDump mAudioWatchdogDump; // accessible only within the threadLoop(), no locks required // mFastMixer->sq() // for mutating and pushing state int32_t mFastMixerFutex; // for cold idle public: virtual bool hasFastMixer() const { return mFastMixer != 0; } virtual FastTrackUnderruns getFastTrackUnderruns(size_t fastIndex) const { ALOG_ASSERT(fastIndex < FastMixerState::kMaxFastTracks); return mFastMixerDumpState.mTracks[fastIndex].mUnderruns; } }; class DirectOutputThread : public PlaybackThread { public: DirectOutputThread(const sp& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device, bool systemReady); virtual ~DirectOutputThread(); // Thread virtuals virtual bool checkForNewParameter_l(const String8& keyValuePair, status_t& status); virtual void flushHw_l(); protected: virtual int getTrackName_l(audio_channel_mask_t channelMask, audio_format_t format, int sessionId); virtual void deleteTrackName_l(int name); virtual uint32_t activeSleepTimeUs() const; virtual uint32_t idleSleepTimeUs() const; virtual uint32_t suspendSleepTimeUs() const; virtual void cacheParameters_l(); // threadLoop snippets virtual mixer_state prepareTracks_l(Vector< sp > *tracksToRemove); virtual void threadLoop_mix(); virtual void threadLoop_sleepTime(); virtual void threadLoop_exit(); virtual bool shouldStandby_l(); virtual void onAddNewTrack_l(); // volumes last sent to audio HAL with stream->set_volume() float mLeftVolFloat; float mRightVolFloat; DirectOutputThread(const sp& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, uint32_t device, ThreadBase::type_t type, bool systemReady); void processVolume_l(Track *track, bool lastTrack); // prepareTracks_l() tells threadLoop_mix() the name of the single active track sp mActiveTrack; wp mPreviousTrack; // used to detect track switch public: virtual bool hasFastMixer() const { return false; } }; class OffloadThread : public DirectOutputThread { public: OffloadThread(const sp& audioFlinger, AudioStreamOut* output, audio_io_handle_t id, uint32_t device, bool systemReady); virtual ~OffloadThread() {}; virtual void flushHw_l(); protected: // threadLoop snippets virtual mixer_state prepareTracks_l(Vector< sp > *tracksToRemove); virtual void threadLoop_exit(); virtual bool waitingAsyncCallback(); virtual bool waitingAsyncCallback_l(); virtual void invalidateTracks(audio_stream_type_t streamType); private: size_t mPausedWriteLength; // length in bytes of write interrupted by pause size_t mPausedBytesRemaining; // bytes still waiting in mixbuffer after resume }; class AsyncCallbackThread : public Thread { public: AsyncCallbackThread(const wp& playbackThread); virtual ~AsyncCallbackThread(); // Thread virtuals virtual bool threadLoop(); // RefBase virtual void onFirstRef(); void exit(); void setWriteBlocked(uint32_t sequence); void resetWriteBlocked(); void setDraining(uint32_t sequence); void resetDraining(); private: const wp mPlaybackThread; // mWriteAckSequence corresponds to the last write sequence passed by the offload thread via // setWriteBlocked(). The sequence is shifted one bit to the left and the lsb is used // to indicate that the callback has been received via resetWriteBlocked() uint32_t mWriteAckSequence; // mDrainSequence corresponds to the last drain sequence passed by the offload thread via // setDraining(). The sequence is shifted one bit to the left and the lsb is used // to indicate that the callback has been received via resetDraining() uint32_t mDrainSequence; Condition mWaitWorkCV; Mutex mLock; }; class DuplicatingThread : public MixerThread { public: DuplicatingThread(const sp& audioFlinger, MixerThread* mainThread, audio_io_handle_t id, bool systemReady); virtual ~DuplicatingThread(); // Thread virtuals void addOutputTrack(MixerThread* thread); void removeOutputTrack(MixerThread* thread); uint32_t waitTimeMs() const { return mWaitTimeMs; } protected: virtual uint32_t activeSleepTimeUs() const; private: bool outputsReady(const SortedVector< sp > &outputTracks); protected: // threadLoop snippets virtual void threadLoop_mix(); virtual void threadLoop_sleepTime(); virtual ssize_t threadLoop_write(); virtual void threadLoop_standby(); virtual void cacheParameters_l(); private: // called from threadLoop, addOutputTrack, removeOutputTrack virtual void updateWaitTime_l(); protected: virtual void saveOutputTracks(); virtual void clearOutputTracks(); private: uint32_t mWaitTimeMs; SortedVector < sp > outputTracks; SortedVector < sp > mOutputTracks; public: virtual bool hasFastMixer() const { return false; } }; // record thread class RecordThread : public ThreadBase { public: class RecordTrack; /* The ResamplerBufferProvider is used to retrieve recorded input data from the * RecordThread. It maintains local state on the relative position of the read * position of the RecordTrack compared with the RecordThread. */ class ResamplerBufferProvider : public AudioBufferProvider { public: ResamplerBufferProvider(RecordTrack* recordTrack) : mRecordTrack(recordTrack), mRsmpInUnrel(0), mRsmpInFront(0) { } virtual ~ResamplerBufferProvider() { } // called to set the ResamplerBufferProvider to head of the RecordThread data buffer, // skipping any previous data read from the hal. virtual void reset(); /* Synchronizes RecordTrack position with the RecordThread. * Calculates available frames and handle overruns if the RecordThread * has advanced faster than the ResamplerBufferProvider has retrieved data. * TODO: why not do this for every getNextBuffer? * * Parameters * framesAvailable: pointer to optional output size_t to store record track * frames available. * hasOverrun: pointer to optional boolean, returns true if track has overrun. */ virtual void sync(size_t *framesAvailable = NULL, bool *hasOverrun = NULL); // AudioBufferProvider interface virtual status_t getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts); virtual void releaseBuffer(AudioBufferProvider::Buffer* buffer); private: RecordTrack * const mRecordTrack; size_t mRsmpInUnrel; // unreleased frames remaining from // most recent getNextBuffer // for debug only int32_t mRsmpInFront; // next available frame // rolling counter that is never cleared }; /* The RecordBufferConverter is used for format, channel, and sample rate * conversion for a RecordTrack. * * TODO: Self contained, so move to a separate file later. * * RecordBufferConverter uses the convert() method rather than exposing a * buffer provider interface; this is to save a memory copy. */ class RecordBufferConverter { public: RecordBufferConverter( audio_channel_mask_t srcChannelMask, audio_format_t srcFormat, uint32_t srcSampleRate, audio_channel_mask_t dstChannelMask, audio_format_t dstFormat, uint32_t dstSampleRate); ~RecordBufferConverter(); /* Converts input data from an AudioBufferProvider by format, channelMask, * and sampleRate to a destination buffer. * * Parameters * dst: buffer to place the converted data. * provider: buffer provider to obtain source data. * frames: number of frames to convert * * Returns the number of frames converted. */ size_t convert(void *dst, AudioBufferProvider *provider, size_t frames); // returns NO_ERROR if constructor was successful status_t initCheck() const { // mSrcChannelMask set on successful updateParameters return mSrcChannelMask != AUDIO_CHANNEL_INVALID ? NO_ERROR : NO_INIT; } // allows dynamic reconfigure of all parameters status_t updateParameters( audio_channel_mask_t srcChannelMask, audio_format_t srcFormat, uint32_t srcSampleRate, audio_channel_mask_t dstChannelMask, audio_format_t dstFormat, uint32_t dstSampleRate); // called to reset resampler buffers on record track discontinuity void reset() { if (mResampler != NULL) { mResampler->reset(); } } private: #ifdef LEGACY_ALSA_AUDIO // internal convert function for format and channel mask. void convert(void *dst, /*const*/ void *src, size_t frames); #else // format conversion when not using resampler void convertNoResampler(void *dst, const void *src, size_t frames); // format conversion when using resampler; modifies src in-place void convertResampler(void *dst, /*not-a-const*/ void *src, size_t frames); #endif // user provided information audio_channel_mask_t mSrcChannelMask; audio_format_t mSrcFormat; uint32_t mSrcSampleRate; audio_channel_mask_t mDstChannelMask; audio_format_t mDstFormat; uint32_t mDstSampleRate; // derived information uint32_t mSrcChannelCount; uint32_t mDstChannelCount; size_t mDstFrameSize; // format conversion buffer void *mBuf; size_t mBufFrames; size_t mBufFrameSize; // resampler info AudioResampler *mResampler; bool mIsLegacyDownmix; // legacy stereo to mono conversion needed bool mIsLegacyUpmix; // legacy mono to stereo conversion needed bool mRequiresFloat; // data processing requires float (e.g. resampler) PassthruBufferProvider *mInputConverterProvider; // converts input to float int8_t mIdxAry[sizeof(uint32_t) * 8]; // used for channel mask conversion }; #include "RecordTracks.h" RecordThread(const sp& audioFlinger, AudioStreamIn *input, audio_io_handle_t id, audio_devices_t outDevice, audio_devices_t inDevice, bool systemReady #ifdef TEE_SINK , const sp& teeSink #endif ); virtual ~RecordThread(); // no addTrack_l ? void destroyTrack_l(const sp& track); void removeTrack_l(const sp& track); void dumpInternals(int fd, const Vector& args); void dumpTracks(int fd, const Vector& args); // Thread virtuals virtual bool threadLoop(); // RefBase virtual void onFirstRef(); virtual status_t initCheck() const { return (mInput == NULL) ? NO_INIT : NO_ERROR; } virtual sp readOnlyHeap() const { return mReadOnlyHeap; } virtual sp pipeMemory() const { return mPipeMemory; } sp createRecordTrack_l( const sp& client, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t *pFrameCount, int sessionId, size_t *notificationFrames, int uid, IAudioFlinger::track_flags_t *flags, pid_t tid, status_t *status /*non-NULL*/); status_t start(RecordTrack* recordTrack, AudioSystem::sync_event_t event, int triggerSession); // ask the thread to stop the specified track, and // return true if the caller should then do it's part of the stopping process bool stop(RecordTrack* recordTrack); void dump(int fd, const Vector& args); AudioStreamIn* clearInput(); virtual audio_stream_t* stream() const; virtual bool checkForNewParameter_l(const String8& keyValuePair, status_t& status); virtual void cacheParameters_l() {} virtual String8 getParameters(const String8& keys); virtual void ioConfigChanged(audio_io_config_event event, pid_t pid = 0); virtual status_t createAudioPatch_l(const struct audio_patch *patch, audio_patch_handle_t *handle); virtual status_t releaseAudioPatch_l(const audio_patch_handle_t handle); void addPatchRecord(const sp& record); void deletePatchRecord(const sp& record); void readInputParameters_l(); virtual uint32_t getInputFramesLost(); virtual status_t addEffectChain_l(const sp& chain); virtual size_t removeEffectChain_l(const sp& chain); virtual uint32_t hasAudioSession(int sessionId) const; // Return the set of unique session IDs across all tracks. // The keys are the session IDs, and the associated values are meaningless. // FIXME replace by Set [and implement Bag/Multiset for other uses]. KeyedVector sessionIds() const; virtual status_t setSyncEvent(const sp& event); virtual bool isValidSyncEvent(const sp& event) const; static void syncStartEventCallback(const wp& event); virtual size_t frameCount() const { return mFrameCount; } bool hasFastCapture() const { return mFastCapture != 0; } virtual void getAudioPortConfig(struct audio_port_config *config); private: // Enter standby if not already in standby, and set mStandby flag void standbyIfNotAlreadyInStandby(); // Call the HAL standby method unconditionally, and don't change mStandby flag void inputStandBy(); AudioStreamIn *mInput; SortedVector < sp > mTracks; // mActiveTracks has dual roles: it indicates the current active track(s), and // is used together with mStartStopCond to indicate start()/stop() progress SortedVector< sp > mActiveTracks; // generation counter for mActiveTracks int mActiveTracksGen; Condition mStartStopCond; // resampler converts input at HAL Hz to output at AudioRecord client Hz void *mRsmpInBuffer; // size_t mRsmpInFrames; // size of resampler input in frames size_t mRsmpInFramesP2;// size rounded up to a power-of-2 // rolling index that is never cleared int32_t mRsmpInRear; // last filled frame + 1 // For dumpsys const sp mTeeSink; const sp mReadOnlyHeap; // one-time initialization, no locks required sp mFastCapture; // non-0 if there is also // a fast capture // FIXME audio watchdog thread // contents are not guaranteed to be consistent, no locks required FastCaptureDumpState mFastCaptureDumpState; #ifdef STATE_QUEUE_DUMP // FIXME StateQueue observer and mutator dump fields #endif // FIXME audio watchdog dump // accessible only within the threadLoop(), no locks required // mFastCapture->sq() // for mutating and pushing state int32_t mFastCaptureFutex; // for cold idle // The HAL input source is treated as non-blocking, // but current implementation is blocking sp mInputSource; // The source for the normal capture thread to read from: mInputSource or mPipeSource sp mNormalSource; // If a fast capture is present, the non-blocking pipe sink written to by fast capture, // otherwise clear sp mPipeSink; // If a fast capture is present, the non-blocking pipe source read by normal thread, // otherwise clear sp mPipeSource; // Depth of pipe from fast capture to normal thread and fast clients, always power of 2 size_t mPipeFramesP2; // If a fast capture is present, the Pipe as IMemory, otherwise clear sp mPipeMemory; static const size_t kFastCaptureLogSize = 4 * 1024; sp mFastCaptureNBLogWriter; bool mFastTrackAvail; // true if fast track available };