/* ** ** Copyright 2012, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "AudioFlinger" //#define LOG_NDEBUG 0 #include "Configuration.h" #include #include #include #include #include #include #include "AudioMixer.h" #include "AudioFlinger.h" #include "ServiceUtilities.h" #include #include #include // ---------------------------------------------------------------------------- // Note: the following macro is used for extremely verbose logging message. In // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to // 0; but one side effect of this is to turn all LOGV's as well. Some messages // are so verbose that we want to suppress them even when we have ALOG_ASSERT // turned on. Do not uncomment the #def below unless you really know what you // are doing and want to see all of the extremely verbose messages. //#define VERY_VERY_VERBOSE_LOGGING #ifdef VERY_VERY_VERBOSE_LOGGING #define ALOGVV ALOGV #else #define ALOGVV(a...) do { } while(0) #endif namespace android { // ---------------------------------------------------------------------------- // TrackBase // ---------------------------------------------------------------------------- static volatile int32_t nextTrackId = 55; // TrackBase constructor must be called with AudioFlinger::mLock held AudioFlinger::ThreadBase::TrackBase::TrackBase( ThreadBase *thread, const sp& client, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, void *buffer, int sessionId, int clientUid, IAudioFlinger::track_flags_t flags, bool isOut, alloc_type alloc, track_type type) : RefBase(), mThread(thread), mClient(client), mCblk(NULL), // mBuffer mState(IDLE), mSampleRate(sampleRate), mFormat(format), mChannelMask(channelMask), mChannelCount(isOut ? audio_channel_count_from_out_mask(channelMask) : audio_channel_count_from_in_mask(channelMask)), mFrameSize(audio_is_linear_pcm(format) ? mChannelCount * audio_bytes_per_sample(format) : sizeof(int8_t)), mFrameCount(frameCount), mSessionId(sessionId), mFlags(flags), mIsOut(isOut), mServerProxy(NULL), mId(android_atomic_inc(&nextTrackId)), mTerminated(false), mType(type), mThreadIoHandle(thread->id()) { // if the caller is us, trust the specified uid if (IPCThreadState::self()->getCallingPid() != getpid_cached || clientUid == -1) { int newclientUid = IPCThreadState::self()->getCallingUid(); if (clientUid != -1 && clientUid != newclientUid) { ALOGW("uid %d tried to pass itself off as %d", newclientUid, clientUid); } clientUid = newclientUid; } // clientUid contains the uid of the app that is responsible for this track, so we can blame // battery usage on it. mUid = clientUid; // ALOGD("Creating track with %d buffers @ %d bytes", bufferCount, bufferSize); size_t size = sizeof(audio_track_cblk_t); size_t bufferSize = (buffer == NULL ? roundup(frameCount) : frameCount) * mFrameSize; if (buffer == NULL && alloc == ALLOC_CBLK) { size += bufferSize; } if (client != 0) { mCblkMemory = client->heap()->allocate(size); if (mCblkMemory == 0 || (mCblk = static_cast(mCblkMemory->pointer())) == NULL) { ALOGE("not enough memory for AudioTrack size=%u", size); client->heap()->dump("AudioTrack"); mCblkMemory.clear(); return; } } else { // this syntax avoids calling the audio_track_cblk_t constructor twice mCblk = (audio_track_cblk_t *) new uint8_t[size]; // assume mCblk != NULL } // construct the shared structure in-place. if (mCblk != NULL) { new(mCblk) audio_track_cblk_t(); switch (alloc) { case ALLOC_READONLY: { const sp roHeap(thread->readOnlyHeap()); if (roHeap == 0 || (mBufferMemory = roHeap->allocate(bufferSize)) == 0 || (mBuffer = mBufferMemory->pointer()) == NULL) { ALOGE("not enough memory for read-only buffer size=%zu", bufferSize); if (roHeap != 0) { roHeap->dump("buffer"); } mCblkMemory.clear(); mBufferMemory.clear(); return; } memset(mBuffer, 0, bufferSize); } break; case ALLOC_PIPE: mBufferMemory = thread->pipeMemory(); // mBuffer is the virtual address as seen from current process (mediaserver), // and should normally be coming from mBufferMemory->pointer(). // However in this case the TrackBase does not reference the buffer directly. // It should references the buffer via the pipe. // Therefore, to detect incorrect usage of the buffer, we set mBuffer to NULL. mBuffer = NULL; break; case ALLOC_CBLK: // clear all buffers if (buffer == NULL) { mBuffer = (char*)mCblk + sizeof(audio_track_cblk_t); memset(mBuffer, 0, bufferSize); } else { mBuffer = buffer; #if 0 mCblk->mFlags = CBLK_FORCEREADY; // FIXME hack, need to fix the track ready logic #endif } break; case ALLOC_LOCAL: mBuffer = calloc(1, bufferSize); break; case ALLOC_NONE: mBuffer = buffer; break; } #ifdef TEE_SINK if (mTeeSinkTrackEnabled) { NBAIO_Format pipeFormat = Format_from_SR_C(mSampleRate, mChannelCount, mFormat); if (Format_isValid(pipeFormat)) { Pipe *pipe = new Pipe(mTeeSinkTrackFrames, pipeFormat); size_t numCounterOffers = 0; const NBAIO_Format offers[1] = {pipeFormat}; ssize_t index = pipe->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); PipeReader *pipeReader = new PipeReader(*pipe); numCounterOffers = 0; index = pipeReader->negotiate(offers, 1, NULL, numCounterOffers); ALOG_ASSERT(index == 0); mTeeSink = pipe; mTeeSource = pipeReader; } } #endif } } status_t AudioFlinger::ThreadBase::TrackBase::initCheck() const { status_t status; if (mType == TYPE_OUTPUT || mType == TYPE_PATCH) { status = cblk() != NULL ? NO_ERROR : NO_MEMORY; } else { status = getCblk() != 0 ? NO_ERROR : NO_MEMORY; } return status; } AudioFlinger::ThreadBase::TrackBase::~TrackBase() { #ifdef TEE_SINK dumpTee(-1, mTeeSource, mId); #endif // delete the proxy before deleting the shared memory it refers to, to avoid dangling reference delete mServerProxy; if (mCblk != NULL) { if (mClient == 0) { delete mCblk; } else { mCblk->~audio_track_cblk_t(); // destroy our shared-structure. } } mCblkMemory.clear(); // free the shared memory before releasing the heap it belongs to if (mClient != 0) { // Client destructor must run with AudioFlinger client mutex locked Mutex::Autolock _l(mClient->audioFlinger()->mClientLock); // If the client's reference count drops to zero, the associated destructor // must run with AudioFlinger lock held. Thus the explicit clear() rather than // relying on the automatic clear() at end of scope. mClient.clear(); } // flush the binder command buffer IPCThreadState::self()->flushCommands(); } // AudioBufferProvider interface // getNextBuffer() = 0; // This implementation of releaseBuffer() is used by Track and RecordTrack, but not TimedTrack void AudioFlinger::ThreadBase::TrackBase::releaseBuffer(AudioBufferProvider::Buffer* buffer) { #ifdef TEE_SINK if (mTeeSink != 0) { (void) mTeeSink->write(buffer->raw, buffer->frameCount); } #endif ServerProxy::Buffer buf; buf.mFrameCount = buffer->frameCount; buf.mRaw = buffer->raw; buffer->frameCount = 0; buffer->raw = NULL; mServerProxy->releaseBuffer(&buf); } status_t AudioFlinger::ThreadBase::TrackBase::setSyncEvent(const sp& event) { mSyncEvents.add(event); return NO_ERROR; } // ---------------------------------------------------------------------------- // Playback // ---------------------------------------------------------------------------- AudioFlinger::TrackHandle::TrackHandle(const sp& track) : BnAudioTrack(), mTrack(track) { } AudioFlinger::TrackHandle::~TrackHandle() { // just stop the track on deletion, associated resources // will be freed from the main thread once all pending buffers have // been played. Unless it's not in the active track list, in which // case we free everything now... mTrack->destroy(); } sp AudioFlinger::TrackHandle::getCblk() const { return mTrack->getCblk(); } status_t AudioFlinger::TrackHandle::start() { return mTrack->start(); } void AudioFlinger::TrackHandle::stop() { mTrack->stop(); } void AudioFlinger::TrackHandle::flush() { mTrack->flush(); } void AudioFlinger::TrackHandle::pause() { mTrack->pause(); } status_t AudioFlinger::TrackHandle::attachAuxEffect(int EffectId) { return mTrack->attachAuxEffect(EffectId); } status_t AudioFlinger::TrackHandle::allocateTimedBuffer(size_t size, sp* buffer) { if (!mTrack->isTimedTrack()) return INVALID_OPERATION; PlaybackThread::TimedTrack* tt = reinterpret_cast(mTrack.get()); return tt->allocateTimedBuffer(size, buffer); } status_t AudioFlinger::TrackHandle::queueTimedBuffer(const sp& buffer, int64_t pts) { if (!mTrack->isTimedTrack()) return INVALID_OPERATION; if (buffer == 0 || buffer->pointer() == NULL) { ALOGE("queueTimedBuffer() buffer is 0 or has NULL pointer()"); return BAD_VALUE; } PlaybackThread::TimedTrack* tt = reinterpret_cast(mTrack.get()); return tt->queueTimedBuffer(buffer, pts); } status_t AudioFlinger::TrackHandle::setMediaTimeTransform( const LinearTransform& xform, int target) { if (!mTrack->isTimedTrack()) return INVALID_OPERATION; PlaybackThread::TimedTrack* tt = reinterpret_cast(mTrack.get()); return tt->setMediaTimeTransform( xform, static_cast(target)); } status_t AudioFlinger::TrackHandle::setParameters(const String8& keyValuePairs) { return mTrack->setParameters(keyValuePairs); } status_t AudioFlinger::TrackHandle::getTimestamp(AudioTimestamp& timestamp) { return mTrack->getTimestamp(timestamp); } void AudioFlinger::TrackHandle::signal() { return mTrack->signal(); } status_t AudioFlinger::TrackHandle::onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { return BnAudioTrack::onTransact(code, data, reply, flags); } // ---------------------------------------------------------------------------- // Track constructor must be called with AudioFlinger::mLock and ThreadBase::mLock held AudioFlinger::PlaybackThread::Track::Track( PlaybackThread *thread, const sp& client, audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, void *buffer, const sp& sharedBuffer, int sessionId, int uid, IAudioFlinger::track_flags_t flags, track_type type) : TrackBase(thread, client, sampleRate, format, channelMask, frameCount, (sharedBuffer != 0) ? sharedBuffer->pointer() : buffer, sessionId, uid, flags, true /*isOut*/, (type == TYPE_PATCH) ? ( buffer == NULL ? ALLOC_LOCAL : ALLOC_NONE) : ALLOC_CBLK, type), mFillingUpStatus(FS_INVALID), // mRetryCount initialized later when needed mSharedBuffer(sharedBuffer), mStreamType(streamType), mName(-1), // see note below mMainBuffer(thread->mixBuffer()), mAuxBuffer(NULL), mAuxEffectId(0), mHasVolumeController(false), mPresentationCompleteFrames(0), mFastIndex(-1), mCachedVolume(1.0), mIsInvalid(false), mAudioTrackServerProxy(NULL), mResumeToStopping(false), mFlushHwPending(false), mPreviousValid(false), mPreviousFramesWritten(0) // mPreviousTimestamp { // client == 0 implies sharedBuffer == 0 ALOG_ASSERT(!(client == 0 && sharedBuffer != 0)); ALOGV_IF(sharedBuffer != 0, "sharedBuffer: %p, size: %d", sharedBuffer->pointer(), sharedBuffer->size()); if (mCblk == NULL) { return; } if (sharedBuffer == 0) { mAudioTrackServerProxy = new AudioTrackServerProxy(mCblk, mBuffer, frameCount, mFrameSize, !isExternalTrack(), sampleRate); } else { mAudioTrackServerProxy = new StaticAudioTrackServerProxy(mCblk, mBuffer, frameCount, mFrameSize); } mServerProxy = mAudioTrackServerProxy; mName = thread->getTrackName_l(channelMask, format, sessionId); if (mName < 0) { ALOGE("no more track names available"); return; } // only allocate a fast track index if we were able to allocate a normal track name if (flags & IAudioFlinger::TRACK_FAST) { mAudioTrackServerProxy->framesReadyIsCalledByMultipleThreads(); ALOG_ASSERT(thread->mFastTrackAvailMask != 0); int i = __builtin_ctz(thread->mFastTrackAvailMask); ALOG_ASSERT(0 < i && i < (int)FastMixerState::kMaxFastTracks); // FIXME This is too eager. We allocate a fast track index before the // fast track becomes active. Since fast tracks are a scarce resource, // this means we are potentially denying other more important fast tracks from // being created. It would be better to allocate the index dynamically. mFastIndex = i; // Read the initial underruns because this field is never cleared by the fast mixer mObservedUnderruns = thread->getFastTrackUnderruns(i); thread->mFastTrackAvailMask &= ~(1 << i); } } AudioFlinger::PlaybackThread::Track::~Track() { ALOGV("PlaybackThread::Track destructor"); // The destructor would clear mSharedBuffer, // but it will not push the decremented reference count, // leaving the client's IMemory dangling indefinitely. // This prevents that leak. if (mSharedBuffer != 0) { mSharedBuffer.clear(); } } status_t AudioFlinger::PlaybackThread::Track::initCheck() const { status_t status = TrackBase::initCheck(); if (status == NO_ERROR && mName < 0) { status = NO_MEMORY; } return status; } void AudioFlinger::PlaybackThread::Track::destroy() { // NOTE: destroyTrack_l() can remove a strong reference to this Track // by removing it from mTracks vector, so there is a risk that this Tracks's // destructor is called. As the destructor needs to lock mLock, // we must acquire a strong reference on this Track before locking mLock // here so that the destructor is called only when exiting this function. // On the other hand, as long as Track::destroy() is only called by // TrackHandle destructor, the TrackHandle still holds a strong ref on // this Track with its member mTrack. sp keep(this); { // scope for mLock bool wasActive = false; sp thread = mThread.promote(); if (thread != 0) { Mutex::Autolock _l(thread->mLock); PlaybackThread *playbackThread = (PlaybackThread *)thread.get(); wasActive = playbackThread->destroyTrack_l(this); } if (isExternalTrack() && !wasActive) { AudioSystem::releaseOutput(mThreadIoHandle, mStreamType, (audio_session_t)mSessionId); } } } /*static*/ void AudioFlinger::PlaybackThread::Track::appendDumpHeader(String8& result) { result.append(" Name Active Client Type Fmt Chn mask Session fCount S F SRate " "L dB R dB Server Main buf Aux Buf Flags UndFrmCnt\n"); } void AudioFlinger::PlaybackThread::Track::dump(char* buffer, size_t size, bool active) { gain_minifloat_packed_t vlr = mAudioTrackServerProxy->getVolumeLR(); if (isFastTrack()) { sprintf(buffer, " F %2d", mFastIndex); } else if (mName >= AudioMixer::TRACK0) { sprintf(buffer, " %4d", mName - AudioMixer::TRACK0); } else { sprintf(buffer, " none"); } track_state state = mState; char stateChar; if (isTerminated()) { stateChar = 'T'; } else { switch (state) { case IDLE: stateChar = 'I'; break; case STOPPING_1: stateChar = 's'; break; case STOPPING_2: stateChar = '5'; break; case STOPPED: stateChar = 'S'; break; case RESUMING: stateChar = 'R'; break; case ACTIVE: stateChar = 'A'; break; case PAUSING: stateChar = 'p'; break; case PAUSED: stateChar = 'P'; break; case FLUSHED: stateChar = 'F'; break; default: stateChar = '?'; break; } } char nowInUnderrun; switch (mObservedUnderruns.mBitFields.mMostRecent) { case UNDERRUN_FULL: nowInUnderrun = ' '; break; case UNDERRUN_PARTIAL: nowInUnderrun = '<'; break; case UNDERRUN_EMPTY: nowInUnderrun = '*'; break; default: nowInUnderrun = '?'; break; } snprintf(&buffer[8], size-8, " %6s %6u %4u %08X %08X %7u %6zu %1c %1d %5u %5.2g %5.2g " "%08X %p %p 0x%03X %9u%c\n", active ? "yes" : "no", (mClient == 0) ? getpid_cached : mClient->pid(), mStreamType, mFormat, mChannelMask, mSessionId, mFrameCount, stateChar, mFillingUpStatus, mAudioTrackServerProxy->getSampleRate(), 20.0 * log10(float_from_gain(gain_minifloat_unpack_left(vlr))), 20.0 * log10(float_from_gain(gain_minifloat_unpack_right(vlr))), mCblk->mServer, mMainBuffer, mAuxBuffer, mCblk->mFlags, mAudioTrackServerProxy->getUnderrunFrames(), nowInUnderrun); } uint32_t AudioFlinger::PlaybackThread::Track::sampleRate() const { return mAudioTrackServerProxy->getSampleRate(); } // AudioBufferProvider interface status_t AudioFlinger::PlaybackThread::Track::getNextBuffer( AudioBufferProvider::Buffer* buffer, int64_t pts __unused) { ServerProxy::Buffer buf; size_t desiredFrames = buffer->frameCount; buf.mFrameCount = desiredFrames; status_t status = mServerProxy->obtainBuffer(&buf); buffer->frameCount = buf.mFrameCount; buffer->raw = buf.mRaw; if (buf.mFrameCount == 0) { mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames); } return status; } // releaseBuffer() is not overridden // ExtendedAudioBufferProvider interface // framesReady() may return an approximation of the number of frames if called // from a different thread than the one calling Proxy->obtainBuffer() and // Proxy->releaseBuffer(). Also note there is no mutual exclusion in the // AudioTrackServerProxy so be especially careful calling with FastTracks. size_t AudioFlinger::PlaybackThread::Track::framesReady() const { if (mSharedBuffer != 0 && (isStopped() || isStopping())) { // Static tracks return zero frames immediately upon stopping (for FastTracks). // The remainder of the buffer is not drained. return 0; } return mAudioTrackServerProxy->framesReady(); } size_t AudioFlinger::PlaybackThread::Track::framesReleased() const { return mAudioTrackServerProxy->framesReleased(); } // Don't call for fast tracks; the framesReady() could result in priority inversion bool AudioFlinger::PlaybackThread::Track::isReady() const { if (mFillingUpStatus != FS_FILLING || isStopped() || isPausing()) { return true; } if (isStopping()) { if (framesReady() > 0) { mFillingUpStatus = FS_FILLED; } return true; } if (framesReady() >= mFrameCount || (mCblk->mFlags & CBLK_FORCEREADY)) { mFillingUpStatus = FS_FILLED; android_atomic_and(~CBLK_FORCEREADY, &mCblk->mFlags); return true; } return false; } status_t AudioFlinger::PlaybackThread::Track::start(AudioSystem::sync_event_t event __unused, int triggerSession __unused) { status_t status = NO_ERROR; ALOGV("start(%d), calling pid %d session %d", mName, IPCThreadState::self()->getCallingPid(), mSessionId); sp thread = mThread.promote(); if (thread != 0) { if (isOffloaded()) { Mutex::Autolock _laf(thread->mAudioFlinger->mLock); Mutex::Autolock _lth(thread->mLock); sp ec = thread->getEffectChain_l(mSessionId); if (thread->mAudioFlinger->isNonOffloadableGlobalEffectEnabled_l() || (ec != 0 && ec->isNonOffloadableEnabled())) { invalidate(); return PERMISSION_DENIED; } } Mutex::Autolock _lth(thread->mLock); track_state state = mState; // here the track could be either new, or restarted // in both cases "unstop" the track // initial state-stopping. next state-pausing. // What if resume is called ? if (state == PAUSED || state == PAUSING) { if (mResumeToStopping) { // happened we need to resume to STOPPING_1 mState = TrackBase::STOPPING_1; ALOGV("PAUSED => STOPPING_1 (%d) on thread %p", mName, this); } else { mState = TrackBase::RESUMING; ALOGV("PAUSED => RESUMING (%d) on thread %p", mName, this); } } else { mState = TrackBase::ACTIVE; ALOGV("? => ACTIVE (%d) on thread %p", mName, this); } PlaybackThread *playbackThread = (PlaybackThread *)thread.get(); status = playbackThread->addTrack_l(this); if (status == INVALID_OPERATION || status == PERMISSION_DENIED) { triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE); // restore previous state if start was rejected by policy manager if (status == PERMISSION_DENIED) { mState = state; } } // track was already in the active list, not a problem if (status == ALREADY_EXISTS) { status = NO_ERROR; } else { // Acknowledge any pending flush(), so that subsequent new data isn't discarded. // It is usually unsafe to access the server proxy from a binder thread. // But in this case we know the mixer thread (whether normal mixer or fast mixer) // isn't looking at this track yet: we still hold the normal mixer thread lock, // and for fast tracks the track is not yet in the fast mixer thread's active set. ServerProxy::Buffer buffer; buffer.mFrameCount = 1; (void) mAudioTrackServerProxy->obtainBuffer(&buffer, true /*ackFlush*/); } } else { status = BAD_VALUE; } return status; } void AudioFlinger::PlaybackThread::Track::stop() { ALOGV("stop(%d), calling pid %d", mName, IPCThreadState::self()->getCallingPid()); sp thread = mThread.promote(); if (thread != 0) { Mutex::Autolock _l(thread->mLock); track_state state = mState; if (state == RESUMING || state == ACTIVE || state == PAUSING || state == PAUSED) { // If the track is not active (PAUSED and buffers full), flush buffers PlaybackThread *playbackThread = (PlaybackThread *)thread.get(); if (playbackThread->mActiveTracks.indexOf(this) < 0) { reset(); mState = STOPPED; } else if (!isFastTrack() && !isOffloaded() && !isDirect()) { mState = STOPPED; } else { // For fast tracks prepareTracks_l() will set state to STOPPING_2 // presentation is complete // For an offloaded track this starts a drain and state will // move to STOPPING_2 when drain completes and then STOPPED mState = STOPPING_1; } ALOGV("not stopping/stopped => stopping/stopped (%d) on thread %p", mName, playbackThread); } } } void AudioFlinger::PlaybackThread::Track::pause() { ALOGV("pause(%d), calling pid %d", mName, IPCThreadState::self()->getCallingPid()); sp thread = mThread.promote(); if (thread != 0) { Mutex::Autolock _l(thread->mLock); PlaybackThread *playbackThread = (PlaybackThread *)thread.get(); switch (mState) { case STOPPING_1: case STOPPING_2: if (!isOffloaded()) { /* nothing to do if track is not offloaded */ break; } // Offloaded track was draining, we need to carry on draining when resumed mResumeToStopping = true; // fall through... case ACTIVE: case RESUMING: mState = PAUSING; ALOGV("ACTIVE/RESUMING => PAUSING (%d) on thread %p", mName, thread.get()); playbackThread->broadcast_l(); break; default: break; } } } void AudioFlinger::PlaybackThread::Track::flush() { ALOGV("flush(%d)", mName); sp thread = mThread.promote(); if (thread != 0) { Mutex::Autolock _l(thread->mLock); PlaybackThread *playbackThread = (PlaybackThread *)thread.get(); if (isOffloaded()) { // If offloaded we allow flush during any state except terminated // and keep the track active to avoid problems if user is seeking // rapidly and underlying hardware has a significant delay handling // a pause if (isTerminated()) { return; } ALOGV("flush: offload flush"); reset(); if (mState == STOPPING_1 || mState == STOPPING_2) { ALOGV("flushed in STOPPING_1 or 2 state, change state to ACTIVE"); mState = ACTIVE; } if (mState == ACTIVE) { ALOGV("flush called in active state, resetting buffer time out retry count"); mRetryCount = PlaybackThread::kMaxTrackRetriesOffload; } mFlushHwPending = true; mResumeToStopping = false; } else { if (mState != STOPPING_1 && mState != STOPPING_2 && mState != STOPPED && mState != PAUSED && mState != PAUSING && mState != IDLE && mState != FLUSHED) { return; } // No point remaining in PAUSED state after a flush => go to // FLUSHED state mState = FLUSHED; // do not reset the track if it is still in the process of being stopped or paused. // this will be done by prepareTracks_l() when the track is stopped. // prepareTracks_l() will see mState == FLUSHED, then // remove from active track list, reset(), and trigger presentation complete if (isDirect()) { mFlushHwPending = true; } if (playbackThread->mActiveTracks.indexOf(this) < 0) { reset(); } } // Prevent flush being lost if the track is flushed and then resumed // before mixer thread can run. This is important when offloading // because the hardware buffer could hold a large amount of audio playbackThread->broadcast_l(); } } // must be called with thread lock held void AudioFlinger::PlaybackThread::Track::flushAck() { if (!isOffloaded() && !isDirect()) return; mFlushHwPending = false; } void AudioFlinger::PlaybackThread::Track::reset() { // Do not reset twice to avoid discarding data written just after a flush and before // the audioflinger thread detects the track is stopped. if (!mResetDone) { // Force underrun condition to avoid false underrun callback until first data is // written to buffer android_atomic_and(~CBLK_FORCEREADY, &mCblk->mFlags); mFillingUpStatus = FS_FILLING; mResetDone = true; if (mState == FLUSHED) { mState = IDLE; } } } status_t AudioFlinger::PlaybackThread::Track::setParameters(const String8& keyValuePairs) { sp thread = mThread.promote(); if (thread == 0) { ALOGE("thread is dead"); return FAILED_TRANSACTION; } else if ((thread->type() == ThreadBase::DIRECT) || (thread->type() == ThreadBase::OFFLOAD)) { return thread->setParameters(keyValuePairs); } else { return PERMISSION_DENIED; } } status_t AudioFlinger::PlaybackThread::Track::getTimestamp(AudioTimestamp& timestamp) { // Client should implement this using SSQ; the unpresented frame count in latch is irrelevant if (isFastTrack()) { // FIXME no lock held to set mPreviousValid = false return INVALID_OPERATION; } sp thread = mThread.promote(); if (thread == 0) { // FIXME no lock held to set mPreviousValid = false return INVALID_OPERATION; } Mutex::Autolock _l(thread->mLock); PlaybackThread *playbackThread = (PlaybackThread *)thread.get(); if (!isOffloaded() && !isDirect()) { if (!playbackThread->mLatchQValid) { mPreviousValid = false; return INVALID_OPERATION; } uint32_t unpresentedFrames = ((int64_t) playbackThread->mLatchQ.mUnpresentedFrames * mSampleRate) / playbackThread->mSampleRate; // FIXME Since we're using a raw pointer as the key, it is theoretically possible // for a brand new track to share the same address as a recently destroyed // track, and thus for us to get the frames released of the wrong track. // It is unlikely that we would be able to call getTimestamp() so quickly // right after creating a new track. Nevertheless, the index here should // be changed to something that is unique. Or use a completely different strategy. ssize_t i = playbackThread->mLatchQ.mFramesReleased.indexOfKey(this); uint32_t framesWritten = i >= 0 ? playbackThread->mLatchQ.mFramesReleased[i] : mAudioTrackServerProxy->framesReleased(); bool checkPreviousTimestamp = mPreviousValid && framesWritten >= mPreviousFramesWritten; if (framesWritten < unpresentedFrames) { mPreviousValid = false; return INVALID_OPERATION; } mPreviousFramesWritten = framesWritten; uint32_t position = framesWritten - unpresentedFrames; struct timespec time = playbackThread->mLatchQ.mTimestamp.mTime; if (checkPreviousTimestamp) { if (time.tv_sec < mPreviousTimestamp.mTime.tv_sec || (time.tv_sec == mPreviousTimestamp.mTime.tv_sec && time.tv_nsec < mPreviousTimestamp.mTime.tv_nsec)) { ALOGW("Time is going backwards"); } // position can bobble slightly as an artifact; this hides the bobble static const uint32_t MINIMUM_POSITION_DELTA = 8u; if ((position <= mPreviousTimestamp.mPosition) || (position - mPreviousTimestamp.mPosition) < MINIMUM_POSITION_DELTA) { position = mPreviousTimestamp.mPosition; time = mPreviousTimestamp.mTime; } } timestamp.mPosition = position; timestamp.mTime = time; mPreviousTimestamp = timestamp; mPreviousValid = true; return NO_ERROR; } return playbackThread->getTimestamp_l(timestamp); } status_t AudioFlinger::PlaybackThread::Track::attachAuxEffect(int EffectId) { status_t status = DEAD_OBJECT; sp thread = mThread.promote(); if (thread != 0) { PlaybackThread *playbackThread = (PlaybackThread *)thread.get(); sp af = mClient->audioFlinger(); Mutex::Autolock _l(af->mLock); sp srcThread = af->getEffectThread_l(AUDIO_SESSION_OUTPUT_MIX, EffectId); if (EffectId != 0 && srcThread != 0 && playbackThread != srcThread.get()) { Mutex::Autolock _dl(playbackThread->mLock); Mutex::Autolock _sl(srcThread->mLock); sp chain = srcThread->getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX); if (chain == 0) { return INVALID_OPERATION; } sp effect = chain->getEffectFromId_l(EffectId); if (effect == 0) { return INVALID_OPERATION; } srcThread->removeEffect_l(effect); status = playbackThread->addEffect_l(effect); if (status != NO_ERROR) { srcThread->addEffect_l(effect); return INVALID_OPERATION; } // removeEffect_l() has stopped the effect if it was active so it must be restarted if (effect->state() == EffectModule::ACTIVE || effect->state() == EffectModule::STOPPING) { effect->start(); } sp dstChain = effect->chain().promote(); if (dstChain == 0) { srcThread->addEffect_l(effect); return INVALID_OPERATION; } AudioSystem::unregisterEffect(effect->id()); AudioSystem::registerEffect(&effect->desc(), srcThread->id(), dstChain->strategy(), AUDIO_SESSION_OUTPUT_MIX, effect->id()); AudioSystem::setEffectEnabled(effect->id(), effect->isEnabled()); } status = playbackThread->attachAuxEffect(this, EffectId); } return status; } void AudioFlinger::PlaybackThread::Track::setAuxBuffer(int EffectId, int32_t *buffer) { mAuxEffectId = EffectId; mAuxBuffer = buffer; } bool AudioFlinger::PlaybackThread::Track::presentationComplete(size_t framesWritten, size_t audioHalFrames) { // a track is considered presented when the total number of frames written to audio HAL // corresponds to the number of frames written when presentationComplete() is called for the // first time (mPresentationCompleteFrames == 0) plus the buffer filling status at that time. // For an offloaded track the HAL+h/w delay is variable so a HAL drain() is used // to detect when all frames have been played. In this case framesWritten isn't // useful because it doesn't always reflect whether there is data in the h/w // buffers, particularly if a track has been paused and resumed during draining ALOGV("presentationComplete() mPresentationCompleteFrames %d framesWritten %d", mPresentationCompleteFrames, framesWritten); if (mPresentationCompleteFrames == 0) { mPresentationCompleteFrames = framesWritten + audioHalFrames; ALOGV("presentationComplete() reset: mPresentationCompleteFrames %d audioHalFrames %d", mPresentationCompleteFrames, audioHalFrames); } if (framesWritten >= mPresentationCompleteFrames || isOffloaded()) { triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE); mAudioTrackServerProxy->setStreamEndDone(); return true; } return false; } void AudioFlinger::PlaybackThread::Track::triggerEvents(AudioSystem::sync_event_t type) { for (size_t i = 0; i < mSyncEvents.size(); i++) { if (mSyncEvents[i]->type() == type) { mSyncEvents[i]->trigger(); mSyncEvents.removeAt(i); i--; } } } // implement VolumeBufferProvider interface gain_minifloat_packed_t AudioFlinger::PlaybackThread::Track::getVolumeLR() { // called by FastMixer, so not allowed to take any locks, block, or do I/O including logs ALOG_ASSERT(isFastTrack() && (mCblk != NULL)); gain_minifloat_packed_t vlr = mAudioTrackServerProxy->getVolumeLR(); float vl = float_from_gain(gain_minifloat_unpack_left(vlr)); float vr = float_from_gain(gain_minifloat_unpack_right(vlr)); // track volumes come from shared memory, so can't be trusted and must be clamped if (vl > GAIN_FLOAT_UNITY) { vl = GAIN_FLOAT_UNITY; } if (vr > GAIN_FLOAT_UNITY) { vr = GAIN_FLOAT_UNITY; } // now apply the cached master volume and stream type volume; // this is trusted but lacks any synchronization or barrier so may be stale float v = mCachedVolume; vl *= v; vr *= v; // re-combine into packed minifloat vlr = gain_minifloat_pack(gain_from_float(vl), gain_from_float(vr)); // FIXME look at mute, pause, and stop flags return vlr; } status_t AudioFlinger::PlaybackThread::Track::setSyncEvent(const sp& event) { if (isTerminated() || mState == PAUSED || ((framesReady() == 0) && ((mSharedBuffer != 0) || (mState == STOPPED)))) { ALOGW("Track::setSyncEvent() in invalid state %d on session %d %s mode, framesReady %d ", mState, mSessionId, (mSharedBuffer != 0) ? "static" : "stream", framesReady()); event->cancel(); return INVALID_OPERATION; } (void) TrackBase::setSyncEvent(event); return NO_ERROR; } void AudioFlinger::PlaybackThread::Track::invalidate() { // FIXME should use proxy, and needs work audio_track_cblk_t* cblk = mCblk; android_atomic_or(CBLK_INVALID, &cblk->mFlags); android_atomic_release_store(0x40000000, &cblk->mFutex); // client is not in server, so FUTEX_WAKE is needed instead of FUTEX_WAKE_PRIVATE (void) syscall(__NR_futex, &cblk->mFutex, FUTEX_WAKE, INT_MAX); mIsInvalid = true; } void AudioFlinger::PlaybackThread::Track::signal() { sp thread = mThread.promote(); if (thread != 0) { PlaybackThread *t = (PlaybackThread *)thread.get(); Mutex::Autolock _l(t->mLock); t->broadcast_l(); } } //To be called with thread lock held bool AudioFlinger::PlaybackThread::Track::isResumePending() { if (mState == RESUMING) return true; /* Resume is pending if track was stopping before pause was called */ if (mState == STOPPING_1 && mResumeToStopping) return true; return false; } //To be called with thread lock held void AudioFlinger::PlaybackThread::Track::resumeAck() { if (mState == RESUMING) mState = ACTIVE; // Other possibility of pending resume is stopping_1 state // Do not update the state from stopping as this prevents // drain being called. if (mState == STOPPING_1) { mResumeToStopping = false; } } // ---------------------------------------------------------------------------- sp AudioFlinger::PlaybackThread::TimedTrack::create( PlaybackThread *thread, const sp& client, audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, const sp& sharedBuffer, int sessionId, int uid) { if (!client->reserveTimedTrack()) return 0; return new TimedTrack( thread, client, streamType, sampleRate, format, channelMask, frameCount, sharedBuffer, sessionId, uid); } AudioFlinger::PlaybackThread::TimedTrack::TimedTrack( PlaybackThread *thread, const sp& client, audio_stream_type_t streamType, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, const sp& sharedBuffer, int sessionId, int uid) : Track(thread, client, streamType, sampleRate, format, channelMask, frameCount, (sharedBuffer != 0) ? sharedBuffer->pointer() : NULL, sharedBuffer, sessionId, uid, IAudioFlinger::TRACK_TIMED, TYPE_TIMED), mQueueHeadInFlight(false), mTrimQueueHeadOnRelease(false), mFramesPendingInQueue(0), mTimedSilenceBuffer(NULL), mTimedSilenceBufferSize(0), mTimedAudioOutputOnTime(false), mMediaTimeTransformValid(false) { LocalClock lc; mLocalTimeFreq = lc.getLocalFreq(); mLocalTimeToSampleTransform.a_zero = 0; mLocalTimeToSampleTransform.b_zero = 0; mLocalTimeToSampleTransform.a_to_b_numer = sampleRate; mLocalTimeToSampleTransform.a_to_b_denom = mLocalTimeFreq; LinearTransform::reduce(&mLocalTimeToSampleTransform.a_to_b_numer, &mLocalTimeToSampleTransform.a_to_b_denom); mMediaTimeToSampleTransform.a_zero = 0; mMediaTimeToSampleTransform.b_zero = 0; mMediaTimeToSampleTransform.a_to_b_numer = sampleRate; mMediaTimeToSampleTransform.a_to_b_denom = 1000000; LinearTransform::reduce(&mMediaTimeToSampleTransform.a_to_b_numer, &mMediaTimeToSampleTransform.a_to_b_denom); } AudioFlinger::PlaybackThread::TimedTrack::~TimedTrack() { mClient->releaseTimedTrack(); delete [] mTimedSilenceBuffer; } status_t AudioFlinger::PlaybackThread::TimedTrack::allocateTimedBuffer( size_t size, sp* buffer) { Mutex::Autolock _l(mTimedBufferQueueLock); trimTimedBufferQueue_l(); // lazily initialize the shared memory heap for timed buffers if (mTimedMemoryDealer == NULL) { const int kTimedBufferHeapSize = 512 << 10; mTimedMemoryDealer = new MemoryDealer(kTimedBufferHeapSize, "AudioFlingerTimed"); if (mTimedMemoryDealer == NULL) { return NO_MEMORY; } } sp newBuffer = mTimedMemoryDealer->allocate(size); if (newBuffer == 0 || newBuffer->pointer() == NULL) { return NO_MEMORY; } *buffer = newBuffer; return NO_ERROR; } // caller must hold mTimedBufferQueueLock void AudioFlinger::PlaybackThread::TimedTrack::trimTimedBufferQueue_l() { int64_t mediaTimeNow; { Mutex::Autolock mttLock(mMediaTimeTransformLock); if (!mMediaTimeTransformValid) return; int64_t targetTimeNow; status_t res = (mMediaTimeTransformTarget == TimedAudioTrack::COMMON_TIME) ? mCCHelper.getCommonTime(&targetTimeNow) : mCCHelper.getLocalTime(&targetTimeNow); if (OK != res) return; if (!mMediaTimeTransform.doReverseTransform(targetTimeNow, &mediaTimeNow)) { return; } } size_t trimEnd; for (trimEnd = 0; trimEnd < mTimedBufferQueue.size(); trimEnd++) { int64_t bufEnd; if ((trimEnd + 1) < mTimedBufferQueue.size()) { // We have a next buffer. Just use its PTS as the PTS of the frame // following the last frame in this buffer. If the stream is sparse // (ie, there are deliberate gaps left in the stream which should be // filled with silence by the TimedAudioTrack), then this can result // in one extra buffer being left un-trimmed when it could have // been. In general, this is not typical, and we would rather // optimized away the TS calculation below for the more common case // where PTSes are contiguous. bufEnd = mTimedBufferQueue[trimEnd + 1].pts(); } else { // We have no next buffer. Compute the PTS of the frame following // the last frame in this buffer by computing the duration of of // this frame in media time units and adding it to the PTS of the // buffer. int64_t frameCount = mTimedBufferQueue[trimEnd].buffer()->size() / mFrameSize; if (!mMediaTimeToSampleTransform.doReverseTransform(frameCount, &bufEnd)) { ALOGE("Failed to convert frame count of %lld to media time" " duration" " (scale factor %d/%u) in %s", frameCount, mMediaTimeToSampleTransform.a_to_b_numer, mMediaTimeToSampleTransform.a_to_b_denom, __PRETTY_FUNCTION__); break; } bufEnd += mTimedBufferQueue[trimEnd].pts(); } if (bufEnd > mediaTimeNow) break; // Is the buffer we want to use in the middle of a mix operation right // now? If so, don't actually trim it. Just wait for the releaseBuffer // from the mixer which should be coming back shortly. if (!trimEnd && mQueueHeadInFlight) { mTrimQueueHeadOnRelease = true; } } size_t trimStart = mTrimQueueHeadOnRelease ? 1 : 0; if (trimStart < trimEnd) { // Update the bookkeeping for framesReady() for (size_t i = trimStart; i < trimEnd; ++i) { updateFramesPendingAfterTrim_l(mTimedBufferQueue[i], "trim"); } // Now actually remove the buffers from the queue. mTimedBufferQueue.removeItemsAt(trimStart, trimEnd); } } void AudioFlinger::PlaybackThread::TimedTrack::trimTimedBufferQueueHead_l( const char* logTag) { ALOG_ASSERT(mTimedBufferQueue.size() > 0, "%s called (reason \"%s\"), but timed buffer queue has no" " elements to trim.", __FUNCTION__, logTag); updateFramesPendingAfterTrim_l(mTimedBufferQueue[0], logTag); mTimedBufferQueue.removeAt(0); } void AudioFlinger::PlaybackThread::TimedTrack::updateFramesPendingAfterTrim_l( const TimedBuffer& buf, const char* logTag __unused) { uint32_t bufBytes = buf.buffer()->size(); uint32_t consumedAlready = buf.position(); ALOG_ASSERT(consumedAlready <= bufBytes, "Bad bookkeeping while updating frames pending. Timed buffer is" " only %u bytes long, but claims to have consumed %u" " bytes. (update reason: \"%s\")", bufBytes, consumedAlready, logTag); uint32_t bufFrames = (bufBytes - consumedAlready) / mFrameSize; ALOG_ASSERT(mFramesPendingInQueue >= bufFrames, "Bad bookkeeping while updating frames pending. Should have at" " least %u queued frames, but we think we have only %u. (update" " reason: \"%s\")", bufFrames, mFramesPendingInQueue, logTag); mFramesPendingInQueue -= bufFrames; } status_t AudioFlinger::PlaybackThread::TimedTrack::queueTimedBuffer( const sp& buffer, int64_t pts) { { Mutex::Autolock mttLock(mMediaTimeTransformLock); if (!mMediaTimeTransformValid) return INVALID_OPERATION; } Mutex::Autolock _l(mTimedBufferQueueLock); uint32_t bufFrames = buffer->size() / mFrameSize; mFramesPendingInQueue += bufFrames; mTimedBufferQueue.add(TimedBuffer(buffer, pts)); return NO_ERROR; } status_t AudioFlinger::PlaybackThread::TimedTrack::setMediaTimeTransform( const LinearTransform& xform, TimedAudioTrack::TargetTimeline target) { ALOGVV("setMediaTimeTransform az=%lld bz=%lld n=%d d=%u tgt=%d", xform.a_zero, xform.b_zero, xform.a_to_b_numer, xform.a_to_b_denom, target); if (!(target == TimedAudioTrack::LOCAL_TIME || target == TimedAudioTrack::COMMON_TIME)) { return BAD_VALUE; } Mutex::Autolock lock(mMediaTimeTransformLock); mMediaTimeTransform = xform; mMediaTimeTransformTarget = target; mMediaTimeTransformValid = true; return NO_ERROR; } #define min(a, b) ((a) < (b) ? (a) : (b)) // implementation of getNextBuffer for tracks whose buffers have timestamps status_t AudioFlinger::PlaybackThread::TimedTrack::getNextBuffer( AudioBufferProvider::Buffer* buffer, int64_t pts) { if (pts == AudioBufferProvider::kInvalidPTS) { buffer->raw = NULL; buffer->frameCount = 0; mTimedAudioOutputOnTime = false; return INVALID_OPERATION; } Mutex::Autolock _l(mTimedBufferQueueLock); ALOG_ASSERT(!mQueueHeadInFlight, "getNextBuffer called without releaseBuffer!"); while (true) { // if we have no timed buffers, then fail if (mTimedBufferQueue.isEmpty()) { buffer->raw = NULL; buffer->frameCount = 0; return NOT_ENOUGH_DATA; } TimedBuffer& head = mTimedBufferQueue.editItemAt(0); // calculate the PTS of the head of the timed buffer queue expressed in // local time int64_t headLocalPTS; { Mutex::Autolock mttLock(mMediaTimeTransformLock); ALOG_ASSERT(mMediaTimeTransformValid, "media time transform invalid"); if (mMediaTimeTransform.a_to_b_denom == 0) { // the transform represents a pause, so yield silence timedYieldSilence_l(buffer->frameCount, buffer); return NO_ERROR; } int64_t transformedPTS; if (!mMediaTimeTransform.doForwardTransform(head.pts(), &transformedPTS)) { // the transform failed. this shouldn't happen, but if it does // then just drop this buffer ALOGW("timedGetNextBuffer transform failed"); buffer->raw = NULL; buffer->frameCount = 0; trimTimedBufferQueueHead_l("getNextBuffer; no transform"); return NO_ERROR; } if (mMediaTimeTransformTarget == TimedAudioTrack::COMMON_TIME) { if (OK != mCCHelper.commonTimeToLocalTime(transformedPTS, &headLocalPTS)) { buffer->raw = NULL; buffer->frameCount = 0; return INVALID_OPERATION; } } else { headLocalPTS = transformedPTS; } } uint32_t sr = sampleRate(); // adjust the head buffer's PTS to reflect the portion of the head buffer // that has already been consumed int64_t effectivePTS = headLocalPTS + ((head.position() / mFrameSize) * mLocalTimeFreq / sr); // Calculate the delta in samples between the head of the input buffer // queue and the start of the next output buffer that will be written. // If the transformation fails because of over or underflow, it means // that the sample's position in the output stream is so far out of // whack that it should just be dropped. int64_t sampleDelta; if (llabs(effectivePTS - pts) >= (static_cast(1) << 31)) { ALOGV("*** head buffer is too far from PTS: dropped buffer"); trimTimedBufferQueueHead_l("getNextBuffer, buf pts too far from" " mix"); continue; } if (!mLocalTimeToSampleTransform.doForwardTransform( (effectivePTS - pts) << 32, &sampleDelta)) { ALOGV("*** too late during sample rate transform: dropped buffer"); trimTimedBufferQueueHead_l("getNextBuffer, bad local to sample"); continue; } ALOGVV("*** getNextBuffer head.pts=%lld head.pos=%d pts=%lld" " sampleDelta=[%d.%08x]", head.pts(), head.position(), pts, static_cast((sampleDelta >= 0 ? 0 : 1) + (sampleDelta >> 32)), static_cast(sampleDelta & 0xFFFFFFFF)); // if the delta between the ideal placement for the next input sample and // the current output position is within this threshold, then we will // concatenate the next input samples to the previous output const int64_t kSampleContinuityThreshold = (static_cast(sr) << 32) / 250; // if this is the first buffer of audio that we're emitting from this track // then it should be almost exactly on time. const int64_t kSampleStartupThreshold = 1LL << 32; if ((mTimedAudioOutputOnTime && llabs(sampleDelta) <= kSampleContinuityThreshold) || (!mTimedAudioOutputOnTime && llabs(sampleDelta) <= kSampleStartupThreshold)) { // the next input is close enough to being on time, so concatenate it // with the last output timedYieldSamples_l(buffer); ALOGVV("*** on time: head.pos=%d frameCount=%u", head.position(), buffer->frameCount); return NO_ERROR; } // Looks like our output is not on time. Reset our on timed status. // Next time we mix samples from our input queue, then should be within // the StartupThreshold. mTimedAudioOutputOnTime = false; if (sampleDelta > 0) { // the gap between the current output position and the proper start of // the next input sample is too big, so fill it with silence uint32_t framesUntilNextInput = (sampleDelta + 0x80000000) >> 32; timedYieldSilence_l(framesUntilNextInput, buffer); ALOGV("*** silence: frameCount=%u", buffer->frameCount); return NO_ERROR; } else { // the next input sample is late uint32_t lateFrames = static_cast(-((sampleDelta + 0x80000000) >> 32)); size_t onTimeSamplePosition = head.position() + lateFrames * mFrameSize; if (onTimeSamplePosition > head.buffer()->size()) { // all the remaining samples in the head are too late, so // drop it and move on ALOGV("*** too late: dropped buffer"); trimTimedBufferQueueHead_l("getNextBuffer, dropped late buffer"); continue; } else { // skip over the late samples head.setPosition(onTimeSamplePosition); // yield the available samples timedYieldSamples_l(buffer); ALOGV("*** late: head.pos=%d frameCount=%u", head.position(), buffer->frameCount); return NO_ERROR; } } } } // Yield samples from the timed buffer queue head up to the given output // buffer's capacity. // // Caller must hold mTimedBufferQueueLock void AudioFlinger::PlaybackThread::TimedTrack::timedYieldSamples_l( AudioBufferProvider::Buffer* buffer) { const TimedBuffer& head = mTimedBufferQueue[0]; buffer->raw = (static_cast(head.buffer()->pointer()) + head.position()); uint32_t framesLeftInHead = ((head.buffer()->size() - head.position()) / mFrameSize); size_t framesRequested = buffer->frameCount; buffer->frameCount = min(framesLeftInHead, framesRequested); mQueueHeadInFlight = true; mTimedAudioOutputOnTime = true; } // Yield samples of silence up to the given output buffer's capacity // // Caller must hold mTimedBufferQueueLock void AudioFlinger::PlaybackThread::TimedTrack::timedYieldSilence_l( uint32_t numFrames, AudioBufferProvider::Buffer* buffer) { // lazily allocate a buffer filled with silence if (mTimedSilenceBufferSize < numFrames * mFrameSize) { delete [] mTimedSilenceBuffer; mTimedSilenceBufferSize = numFrames * mFrameSize; mTimedSilenceBuffer = new uint8_t[mTimedSilenceBufferSize]; memset(mTimedSilenceBuffer, 0, mTimedSilenceBufferSize); } buffer->raw = mTimedSilenceBuffer; size_t framesRequested = buffer->frameCount; buffer->frameCount = min(numFrames, framesRequested); mTimedAudioOutputOnTime = false; } // AudioBufferProvider interface void AudioFlinger::PlaybackThread::TimedTrack::releaseBuffer( AudioBufferProvider::Buffer* buffer) { Mutex::Autolock _l(mTimedBufferQueueLock); // If the buffer which was just released is part of the buffer at the head // of the queue, be sure to update the amt of the buffer which has been // consumed. If the buffer being returned is not part of the head of the // queue, its either because the buffer is part of the silence buffer, or // because the head of the timed queue was trimmed after the mixer called // getNextBuffer but before the mixer called releaseBuffer. if (buffer->raw == mTimedSilenceBuffer) { ALOG_ASSERT(!mQueueHeadInFlight, "Queue head in flight during release of silence buffer!"); goto done; } ALOG_ASSERT(mQueueHeadInFlight, "TimedTrack::releaseBuffer of non-silence buffer, but no queue" " head in flight."); if (mTimedBufferQueue.size()) { TimedBuffer& head = mTimedBufferQueue.editItemAt(0); void* start = head.buffer()->pointer(); void* end = reinterpret_cast( reinterpret_cast(head.buffer()->pointer()) + head.buffer()->size()); ALOG_ASSERT((buffer->raw >= start) && (buffer->raw < end), "released buffer not within the head of the timed buffer" " queue; qHead = [%p, %p], released buffer = %p", start, end, buffer->raw); head.setPosition(head.position() + (buffer->frameCount * mFrameSize)); mQueueHeadInFlight = false; ALOG_ASSERT(mFramesPendingInQueue >= buffer->frameCount, "Bad bookkeeping during releaseBuffer! Should have at" " least %u queued frames, but we think we have only %u", buffer->frameCount, mFramesPendingInQueue); mFramesPendingInQueue -= buffer->frameCount; if ((static_cast(head.position()) >= head.buffer()->size()) || mTrimQueueHeadOnRelease) { trimTimedBufferQueueHead_l("releaseBuffer"); mTrimQueueHeadOnRelease = false; } } else { LOG_ALWAYS_FATAL("TimedTrack::releaseBuffer of non-silence buffer with no" " buffers in the timed buffer queue"); } done: buffer->raw = 0; buffer->frameCount = 0; } size_t AudioFlinger::PlaybackThread::TimedTrack::framesReady() const { Mutex::Autolock _l(mTimedBufferQueueLock); return mFramesPendingInQueue; } AudioFlinger::PlaybackThread::TimedTrack::TimedBuffer::TimedBuffer() : mPTS(0), mPosition(0) {} AudioFlinger::PlaybackThread::TimedTrack::TimedBuffer::TimedBuffer( const sp& buffer, int64_t pts) : mBuffer(buffer), mPTS(pts), mPosition(0) {} // ---------------------------------------------------------------------------- AudioFlinger::PlaybackThread::OutputTrack::OutputTrack( PlaybackThread *playbackThread, DuplicatingThread *sourceThread, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, int uid) : Track(playbackThread, NULL, AUDIO_STREAM_PATCH, sampleRate, format, channelMask, frameCount, NULL, 0, 0, uid, IAudioFlinger::TRACK_DEFAULT, TYPE_OUTPUT), mActive(false), mSourceThread(sourceThread), mClientProxy(NULL) { if (mCblk != NULL) { mOutBuffer.frameCount = 0; playbackThread->mTracks.add(this); ALOGV("OutputTrack constructor mCblk %p, mBuffer %p, " "frameCount %u, mChannelMask 0x%08x", mCblk, mBuffer, frameCount, mChannelMask); // since client and server are in the same process, // the buffer has the same virtual address on both sides mClientProxy = new AudioTrackClientProxy(mCblk, mBuffer, mFrameCount, mFrameSize, true /*clientInServer*/); mClientProxy->setVolumeLR(GAIN_MINIFLOAT_PACKED_UNITY); mClientProxy->setSendLevel(0.0); mClientProxy->setSampleRate(sampleRate); } else { ALOGW("Error creating output track on thread %p", playbackThread); } } AudioFlinger::PlaybackThread::OutputTrack::~OutputTrack() { clearBufferQueue(); delete mClientProxy; // superclass destructor will now delete the server proxy and shared memory both refer to } status_t AudioFlinger::PlaybackThread::OutputTrack::start(AudioSystem::sync_event_t event, int triggerSession) { status_t status = Track::start(event, triggerSession); if (status != NO_ERROR) { return status; } mActive = true; mRetryCount = 127; return status; } void AudioFlinger::PlaybackThread::OutputTrack::stop() { Track::stop(); clearBufferQueue(); mOutBuffer.frameCount = 0; mActive = false; } bool AudioFlinger::PlaybackThread::OutputTrack::write(int16_t* data, uint32_t frames) { Buffer *pInBuffer; Buffer inBuffer; uint32_t channelCount = mChannelCount; bool outputBufferFull = false; inBuffer.frameCount = frames; inBuffer.i16 = data; uint32_t waitTimeLeftMs = mSourceThread->waitTimeMs(); if (!mActive && frames != 0) { start(); sp thread = mThread.promote(); if (thread != 0) { MixerThread *mixerThread = (MixerThread *)thread.get(); if (mFrameCount > frames) { if (mBufferQueue.size() < kMaxOverFlowBuffers) { uint32_t startFrames = (mFrameCount - frames); pInBuffer = new Buffer; pInBuffer->mBuffer = new int16_t[startFrames * channelCount]; pInBuffer->frameCount = startFrames; pInBuffer->i16 = pInBuffer->mBuffer; memset(pInBuffer->raw, 0, startFrames * channelCount * sizeof(int16_t)); mBufferQueue.add(pInBuffer); } else { ALOGW("OutputTrack::write() %p no more buffers in queue", this); } } } } while (waitTimeLeftMs) { // First write pending buffers, then new data if (mBufferQueue.size()) { pInBuffer = mBufferQueue.itemAt(0); } else { pInBuffer = &inBuffer; } if (pInBuffer->frameCount == 0) { break; } if (mOutBuffer.frameCount == 0) { mOutBuffer.frameCount = pInBuffer->frameCount; nsecs_t startTime = systemTime(); status_t status = obtainBuffer(&mOutBuffer, waitTimeLeftMs); if (status != NO_ERROR) { ALOGV("OutputTrack::write() %p thread %p no more output buffers; status %d", this, mThread.unsafe_get(), status); outputBufferFull = true; break; } uint32_t waitTimeMs = (uint32_t)ns2ms(systemTime() - startTime); if (waitTimeLeftMs >= waitTimeMs) { waitTimeLeftMs -= waitTimeMs; } else { waitTimeLeftMs = 0; } } uint32_t outFrames = pInBuffer->frameCount > mOutBuffer.frameCount ? mOutBuffer.frameCount : pInBuffer->frameCount; memcpy(mOutBuffer.raw, pInBuffer->raw, outFrames * channelCount * sizeof(int16_t)); Proxy::Buffer buf; buf.mFrameCount = outFrames; buf.mRaw = NULL; mClientProxy->releaseBuffer(&buf); pInBuffer->frameCount -= outFrames; pInBuffer->i16 += outFrames * channelCount; mOutBuffer.frameCount -= outFrames; mOutBuffer.i16 += outFrames * channelCount; if (pInBuffer->frameCount == 0) { if (mBufferQueue.size()) { mBufferQueue.removeAt(0); delete [] pInBuffer->mBuffer; delete pInBuffer; ALOGV("OutputTrack::write() %p thread %p released overflow buffer %d", this, mThread.unsafe_get(), mBufferQueue.size()); } else { break; } } } // If we could not write all frames, allocate a buffer and queue it for next time. if (inBuffer.frameCount) { sp thread = mThread.promote(); if (thread != 0 && !thread->standby()) { if (mBufferQueue.size() < kMaxOverFlowBuffers) { pInBuffer = new Buffer; pInBuffer->mBuffer = new int16_t[inBuffer.frameCount * channelCount]; pInBuffer->frameCount = inBuffer.frameCount; pInBuffer->i16 = pInBuffer->mBuffer; memcpy(pInBuffer->raw, inBuffer.raw, inBuffer.frameCount * channelCount * sizeof(int16_t)); mBufferQueue.add(pInBuffer); ALOGV("OutputTrack::write() %p thread %p adding overflow buffer %d", this, mThread.unsafe_get(), mBufferQueue.size()); } else { ALOGW("OutputTrack::write() %p thread %p no more overflow buffers", mThread.unsafe_get(), this); } } } // Calling write() with a 0 length buffer, means that no more data will be written: // If no more buffers are pending, fill output track buffer to make sure it is started // by output mixer. if (frames == 0 && mBufferQueue.size() == 0) { // FIXME borken, replace by getting framesReady() from proxy size_t user = 0; // was mCblk->user if (user < mFrameCount) { frames = mFrameCount - user; pInBuffer = new Buffer; pInBuffer->mBuffer = new int16_t[frames * channelCount]; pInBuffer->frameCount = frames; pInBuffer->i16 = pInBuffer->mBuffer; memset(pInBuffer->raw, 0, frames * channelCount * sizeof(int16_t)); mBufferQueue.add(pInBuffer); } else if (mActive) { stop(); } } return outputBufferFull; } status_t AudioFlinger::PlaybackThread::OutputTrack::obtainBuffer( AudioBufferProvider::Buffer* buffer, uint32_t waitTimeMs) { ClientProxy::Buffer buf; buf.mFrameCount = buffer->frameCount; struct timespec timeout; timeout.tv_sec = waitTimeMs / 1000; timeout.tv_nsec = (int) (waitTimeMs % 1000) * 1000000; status_t status = mClientProxy->obtainBuffer(&buf, &timeout); buffer->frameCount = buf.mFrameCount; buffer->raw = buf.mRaw; return status; } void AudioFlinger::PlaybackThread::OutputTrack::clearBufferQueue() { size_t size = mBufferQueue.size(); for (size_t i = 0; i < size; i++) { Buffer *pBuffer = mBufferQueue.itemAt(i); delete [] pBuffer->mBuffer; delete pBuffer; } mBufferQueue.clear(); } AudioFlinger::PlaybackThread::PatchTrack::PatchTrack(PlaybackThread *playbackThread, uint32_t sampleRate, audio_channel_mask_t channelMask, audio_format_t format, size_t frameCount, void *buffer, IAudioFlinger::track_flags_t flags) : Track(playbackThread, NULL, AUDIO_STREAM_PATCH, sampleRate, format, channelMask, frameCount, buffer, 0, 0, getuid(), flags, TYPE_PATCH), mProxy(new ClientProxy(mCblk, mBuffer, frameCount, mFrameSize, true, true)) { uint64_t mixBufferNs = ((uint64_t)2 * playbackThread->frameCount() * 1000000000) / playbackThread->sampleRate(); mPeerTimeout.tv_sec = mixBufferNs / 1000000000; mPeerTimeout.tv_nsec = (int) (mixBufferNs % 1000000000); ALOGV("PatchTrack %p sampleRate %d mPeerTimeout %d.%03d sec", this, sampleRate, (int)mPeerTimeout.tv_sec, (int)(mPeerTimeout.tv_nsec / 1000000)); } AudioFlinger::PlaybackThread::PatchTrack::~PatchTrack() { } // AudioBufferProvider interface status_t AudioFlinger::PlaybackThread::PatchTrack::getNextBuffer( AudioBufferProvider::Buffer* buffer, int64_t pts) { ALOG_ASSERT(mPeerProxy != 0, "PatchTrack::getNextBuffer() called without peer proxy"); Proxy::Buffer buf; buf.mFrameCount = buffer->frameCount; status_t status = mPeerProxy->obtainBuffer(&buf, &mPeerTimeout); ALOGV_IF(status != NO_ERROR, "PatchTrack() %p getNextBuffer status %d", this, status); buffer->frameCount = buf.mFrameCount; if (buf.mFrameCount == 0) { return WOULD_BLOCK; } status = Track::getNextBuffer(buffer, pts); return status; } void AudioFlinger::PlaybackThread::PatchTrack::releaseBuffer(AudioBufferProvider::Buffer* buffer) { ALOG_ASSERT(mPeerProxy != 0, "PatchTrack::releaseBuffer() called without peer proxy"); Proxy::Buffer buf; buf.mFrameCount = buffer->frameCount; buf.mRaw = buffer->raw; mPeerProxy->releaseBuffer(&buf); TrackBase::releaseBuffer(buffer); } status_t AudioFlinger::PlaybackThread::PatchTrack::obtainBuffer(Proxy::Buffer* buffer, const struct timespec *timeOut) { return mProxy->obtainBuffer(buffer, timeOut); } void AudioFlinger::PlaybackThread::PatchTrack::releaseBuffer(Proxy::Buffer* buffer) { mProxy->releaseBuffer(buffer); if (android_atomic_and(~CBLK_DISABLED, &mCblk->mFlags) & CBLK_DISABLED) { ALOGW("PatchTrack::releaseBuffer() disabled due to previous underrun, restarting"); start(); } android_atomic_or(CBLK_FORCEREADY, &mCblk->mFlags); } // ---------------------------------------------------------------------------- // Record // ---------------------------------------------------------------------------- AudioFlinger::RecordHandle::RecordHandle( const sp& recordTrack) : BnAudioRecord(), mRecordTrack(recordTrack) { } AudioFlinger::RecordHandle::~RecordHandle() { stop_nonvirtual(); mRecordTrack->destroy(); } status_t AudioFlinger::RecordHandle::start(int /*AudioSystem::sync_event_t*/ event, int triggerSession) { ALOGV("RecordHandle::start()"); return mRecordTrack->start((AudioSystem::sync_event_t)event, triggerSession); } void AudioFlinger::RecordHandle::stop() { stop_nonvirtual(); } void AudioFlinger::RecordHandle::stop_nonvirtual() { ALOGV("RecordHandle::stop()"); mRecordTrack->stop(); } status_t AudioFlinger::RecordHandle::onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { return BnAudioRecord::onTransact(code, data, reply, flags); } // ---------------------------------------------------------------------------- // RecordTrack constructor must be called with AudioFlinger::mLock and ThreadBase::mLock held AudioFlinger::RecordThread::RecordTrack::RecordTrack( RecordThread *thread, const sp& client, uint32_t sampleRate, audio_format_t format, audio_channel_mask_t channelMask, size_t frameCount, void *buffer, int sessionId, int uid, IAudioFlinger::track_flags_t flags, track_type type) : TrackBase(thread, client, sampleRate, format, channelMask, frameCount, buffer, sessionId, uid, flags, false /*isOut*/, (type == TYPE_DEFAULT) ? ((flags & IAudioFlinger::TRACK_FAST) ? ALLOC_PIPE : ALLOC_CBLK) : ((buffer == NULL) ? ALLOC_LOCAL : ALLOC_NONE), type), mOverflow(false), mResampler(NULL), mRsmpOutBuffer(NULL), mRsmpOutFrameCount(0), // See real initialization of mRsmpInFront at RecordThread::start() mRsmpInUnrel(0), mRsmpInFront(0), mFramesToDrop(0), mResamplerBufferProvider(NULL) { if (mCblk == NULL) { return; } mServerProxy = new AudioRecordServerProxy(mCblk, mBuffer, frameCount, mFrameSize, !isExternalTrack()); uint32_t channelCount = audio_channel_count_from_in_mask(channelMask); // FIXME I don't understand either of the channel count checks if (thread->mSampleRate != sampleRate && thread->mChannelCount <= FCC_2 && channelCount <= FCC_2) { // sink SR mResampler = AudioResampler::create(AUDIO_FORMAT_PCM_16_BIT, thread->mChannelCount, sampleRate); // source SR mResampler->setSampleRate(thread->mSampleRate); mResampler->setVolume(AudioMixer::UNITY_GAIN_FLOAT, AudioMixer::UNITY_GAIN_FLOAT); mResamplerBufferProvider = new ResamplerBufferProvider(this); } if (flags & IAudioFlinger::TRACK_FAST) { ALOG_ASSERT(thread->mFastTrackAvail); thread->mFastTrackAvail = false; } } AudioFlinger::RecordThread::RecordTrack::~RecordTrack() { ALOGV("%s", __func__); delete mResampler; delete[] mRsmpOutBuffer; delete mResamplerBufferProvider; } // AudioBufferProvider interface status_t AudioFlinger::RecordThread::RecordTrack::getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts __unused) { ServerProxy::Buffer buf; buf.mFrameCount = buffer->frameCount; status_t status = mServerProxy->obtainBuffer(&buf); buffer->frameCount = buf.mFrameCount; buffer->raw = buf.mRaw; if (buf.mFrameCount == 0) { // FIXME also wake futex so that overrun is noticed more quickly (void) android_atomic_or(CBLK_OVERRUN, &mCblk->mFlags); } return status; } status_t AudioFlinger::RecordThread::RecordTrack::start(AudioSystem::sync_event_t event, int triggerSession) { sp thread = mThread.promote(); if (thread != 0) { RecordThread *recordThread = (RecordThread *)thread.get(); return recordThread->start(this, event, triggerSession); } else { return BAD_VALUE; } } void AudioFlinger::RecordThread::RecordTrack::stop() { sp thread = mThread.promote(); if (thread != 0) { RecordThread *recordThread = (RecordThread *)thread.get(); if (recordThread->stop(this) && isExternalTrack()) { AudioSystem::stopInput(mThreadIoHandle, (audio_session_t)mSessionId); } } } void AudioFlinger::RecordThread::RecordTrack::destroy() { // see comments at AudioFlinger::PlaybackThread::Track::destroy() sp keep(this); { if (isExternalTrack()) { if (mState == ACTIVE || mState == RESUMING) { AudioSystem::stopInput(mThreadIoHandle, (audio_session_t)mSessionId); } AudioSystem::releaseInput(mThreadIoHandle, (audio_session_t)mSessionId); } sp thread = mThread.promote(); if (thread != 0) { Mutex::Autolock _l(thread->mLock); RecordThread *recordThread = (RecordThread *) thread.get(); recordThread->destroyTrack_l(this); } } } void AudioFlinger::RecordThread::RecordTrack::invalidate() { // FIXME should use proxy, and needs work audio_track_cblk_t* cblk = mCblk; android_atomic_or(CBLK_INVALID, &cblk->mFlags); android_atomic_release_store(0x40000000, &cblk->mFutex); // client is not in server, so FUTEX_WAKE is needed instead of FUTEX_WAKE_PRIVATE (void) syscall(__NR_futex, &cblk->mFutex, FUTEX_WAKE, INT_MAX); } /*static*/ void AudioFlinger::RecordThread::RecordTrack::appendDumpHeader(String8& result) { result.append(" Active Client Fmt Chn mask Session S Server fCount SRate\n"); } void AudioFlinger::RecordThread::RecordTrack::dump(char* buffer, size_t size, bool active) { snprintf(buffer, size, " %6s %6u %3u %08X %7u %1d %08X %6zu %5u\n", active ? "yes" : "no", (mClient == 0) ? getpid_cached : mClient->pid(), mFormat, mChannelMask, mSessionId, mState, mCblk->mServer, mFrameCount, mSampleRate); } void AudioFlinger::RecordThread::RecordTrack::handleSyncStartEvent(const sp& event) { if (event == mSyncStartEvent) { ssize_t framesToDrop = 0; sp threadBase = mThread.promote(); if (threadBase != 0) { // TODO: use actual buffer filling status instead of 2 buffers when info is available // from audio HAL framesToDrop = threadBase->mFrameCount * 2; } mFramesToDrop = framesToDrop; } } void AudioFlinger::RecordThread::RecordTrack::clearSyncStartEvent() { if (mSyncStartEvent != 0) { mSyncStartEvent->cancel(); mSyncStartEvent.clear(); } mFramesToDrop = 0; } AudioFlinger::RecordThread::PatchRecord::PatchRecord(RecordThread *recordThread, uint32_t sampleRate, audio_channel_mask_t channelMask, audio_format_t format, size_t frameCount, void *buffer, IAudioFlinger::track_flags_t flags) : RecordTrack(recordThread, NULL, sampleRate, format, channelMask, frameCount, buffer, 0, getuid(), flags, TYPE_PATCH), mProxy(new ClientProxy(mCblk, mBuffer, frameCount, mFrameSize, false, true)) { uint64_t mixBufferNs = ((uint64_t)2 * recordThread->frameCount() * 1000000000) / recordThread->sampleRate(); mPeerTimeout.tv_sec = mixBufferNs / 1000000000; mPeerTimeout.tv_nsec = (int) (mixBufferNs % 1000000000); ALOGV("PatchRecord %p sampleRate %d mPeerTimeout %d.%03d sec", this, sampleRate, (int)mPeerTimeout.tv_sec, (int)(mPeerTimeout.tv_nsec / 1000000)); } AudioFlinger::RecordThread::PatchRecord::~PatchRecord() { } // AudioBufferProvider interface status_t AudioFlinger::RecordThread::PatchRecord::getNextBuffer( AudioBufferProvider::Buffer* buffer, int64_t pts) { ALOG_ASSERT(mPeerProxy != 0, "PatchRecord::getNextBuffer() called without peer proxy"); Proxy::Buffer buf; buf.mFrameCount = buffer->frameCount; status_t status = mPeerProxy->obtainBuffer(&buf, &mPeerTimeout); ALOGV_IF(status != NO_ERROR, "PatchRecord() %p mPeerProxy->obtainBuffer status %d", this, status); buffer->frameCount = buf.mFrameCount; if (buf.mFrameCount == 0) { return WOULD_BLOCK; } status = RecordTrack::getNextBuffer(buffer, pts); return status; } void AudioFlinger::RecordThread::PatchRecord::releaseBuffer(AudioBufferProvider::Buffer* buffer) { ALOG_ASSERT(mPeerProxy != 0, "PatchRecord::releaseBuffer() called without peer proxy"); Proxy::Buffer buf; buf.mFrameCount = buffer->frameCount; buf.mRaw = buffer->raw; mPeerProxy->releaseBuffer(&buf); TrackBase::releaseBuffer(buffer); } status_t AudioFlinger::RecordThread::PatchRecord::obtainBuffer(Proxy::Buffer* buffer, const struct timespec *timeOut) { return mProxy->obtainBuffer(buffer, timeOut); } void AudioFlinger::RecordThread::PatchRecord::releaseBuffer(Proxy::Buffer* buffer) { mProxy->releaseBuffer(buffer); } }; // namespace android