/* * Copyright (C) 2007 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include static double sinc(double x) { if (fabs(x) == 0.0f) return 1.0f; return sin(x) / x; } static double sqr(double x) { return x*x; } static double I0(double x) { // from the Numerical Recipes in C p. 237 double ax,ans,y; ax=fabs(x); if (ax < 3.75) { y=x/3.75; y*=y; ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492 +y*(0.2659732+y*(0.360768e-1+y*0.45813e-2))))); } else { y=3.75/ax; ans=(exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1 +y*(0.225319e-2+y*(-0.157565e-2+y*(0.916281e-2 +y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1 +y*0.392377e-2)))))))); } return ans; } static double kaiser(int k, int N, double alpha) { if (k < 0 || k > N) return 0; return I0(M_PI*alpha * sqrt(1.0 - sqr((2.0*k)/N - 1.0))) / I0(M_PI*alpha); } int main(int argc, char** argv) { // nc is the number of bits to store the coefficients int nc = 32; // ni is the minimum number of bits needed for interpolation // (not used for generating the coefficients) const int ni = nc / 2; // cut off frequency ratio Fc/Fs // The bigger the stop-band, the less coefficients we'll need. double Fcr = 20000.0 / 48000.0; // nzc is the number of zero-crossing on one half of the filter int nzc = 8; // alpha parameter of the kaiser window // Larger numbers reduce ripples in the rejection band but increase // the width of the transition band. // the table below gives some value of alpha for a given // stop-band attenuation. // 30 dB 2.210 // 40 dB 3.384 // 50 dB 4.538 // 60 dB 5.658 // 70 dB 6.764 // 80 dB 7.865 // 90 dB 8.960 // 100 dB 10.056 double alpha = 7.865; // -80dB stop-band attenuation // 2^nz is the number coefficients per zero-crossing // (int theory this should be 1<<(nc/2)) const int nz = 4; // total number of coefficients const int N = (1 << nz) * nzc; // generate the right half of the filter printf("const int32_t RESAMPLE_FIR_SIZE = %d;\n", N); printf("const int32_t RESAMPLE_FIR_NUM_COEF = %d;\n", nzc); printf("const int32_t RESAMPLE_FIR_COEF_BITS = %d;\n", nc); printf("const int32_t RESAMPLE_FIR_LERP_FRAC_BITS = %d;\n", ni); printf("const int32_t RESAMPLE_FIR_LERP_INT_BITS = %d;\n", nz); printf("\n"); printf("static int16_t resampleFIR[%d] = {", N); for (int i=0 ; i= (1LL<<(nc-1))) yi = (1LL<<(nc-1))-1; if ((i % (1 << 4)) == 0) printf("\n "); if (nc > 16) printf("0x%08x, ", int(yi)); else printf("0x%04x, ", int(yi)&0xFFFF); } printf("\n};\n"); return 0; } // http://www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html // http://www.csee.umbc.edu/help/sound/AFsp-V2R1/html/audio/ResampAudio.html