summaryrefslogtreecommitdiffstats
path: root/services/audioflinger/AudioResamplerFirProcessNeon.h
blob: 3de9edd0a8843fc0d8756ebe232ec9e95a014ee7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_NEON_H
#define ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_NEON_H

namespace android {

// depends on AudioResamplerFirOps.h, AudioResamplerFirProcess.h

#if USE_NEON

// use intrinsics if inline arm32 assembly is not possible
#if !USE_INLINE_ASSEMBLY
#define USE_INTRINSIC
#endif

// following intrinsics available only on ARM 64 bit ACLE
#ifndef __aarch64__
#undef vld1q_f32_x2
#undef vld1q_s32_x2
#endif

#define TO_STRING2(x) #x
#define TO_STRING(x) TO_STRING2(x)
// uncomment to print GCC version, may be relevant for intrinsic optimizations
/* #pragma message ("GCC version: " TO_STRING(__GNUC__) \
        "." TO_STRING(__GNUC_MINOR__) \
        "." TO_STRING(__GNUC_PATCHLEVEL__)) */

//
// NEON specializations are enabled for Process() and ProcessL() in AudioResamplerFirProcess.h
//
// Two variants are presented here:
// ARM NEON inline assembly which appears up to 10-15% faster than intrinsics (gcc 4.9) for arm32.
// ARM NEON intrinsics which can also be used by arm64 and x86/64 with NEON header.
//

// Macros to save a mono/stereo accumulator sample in q0 (and q4) as stereo out.
// These are only used for inline assembly.
#define ASSEMBLY_ACCUMULATE_MONO \
        "vld1.s32       {d2}, [%[vLR]:64]        \n"/* (1) load volumes */\
        "vld1.s32       {d3}, %[out]             \n"/* (2) unaligned load the output */\
        "vpadd.s32      d0, d0, d1               \n"/* (1) add all 4 partial sums */\
        "vpadd.s32      d0, d0, d0               \n"/* (1+4d) and replicate L/R */\
        "vqrdmulh.s32   d0, d0, d2               \n"/* (2+3d) apply volume */\
        "vqadd.s32      d3, d3, d0               \n"/* (1+4d) accumulate result (saturating) */\
        "vst1.s32       {d3}, %[out]             \n"/* (2+2d) store result */

#define ASSEMBLY_ACCUMULATE_STEREO \
        "vld1.s32       {d2}, [%[vLR]:64]        \n"/* (1) load volumes*/\
        "vld1.s32       {d3}, %[out]             \n"/* (2) unaligned load the output*/\
        "vpadd.s32      d0, d0, d1               \n"/* (1) add all 4 partial sums from q0*/\
        "vpadd.s32      d8, d8, d9               \n"/* (1) add all 4 partial sums from q4*/\
        "vpadd.s32      d0, d0, d8               \n"/* (1+4d) combine into L/R*/\
        "vqrdmulh.s32   d0, d0, d2               \n"/* (2+3d) apply volume*/\
        "vqadd.s32      d3, d3, d0               \n"/* (1+4d) accumulate result (saturating)*/\
        "vst1.s32       {d3}, %[out]             \n"/* (2+2d)store result*/

template <int CHANNELS, int STRIDE, bool FIXED>
static inline void ProcessNeonIntrinsic(int32_t* out,
        int count,
        const int16_t* coefsP,
        const int16_t* coefsN,
        const int16_t* sP,
        const int16_t* sN,
        const int32_t* volumeLR,
        uint32_t lerpP,
        const int16_t* coefsP1,
        const int16_t* coefsN1)
{
    ALOG_ASSERT(count > 0 && (count & 7) == 0); // multiple of 8
    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(CHANNELS == 1 || CHANNELS == 2);

    sP -= CHANNELS*((STRIDE>>1)-1);
    coefsP = (const int16_t*)__builtin_assume_aligned(coefsP, 16);
    coefsN = (const int16_t*)__builtin_assume_aligned(coefsN, 16);

    int16x4_t interp;
    if (!FIXED) {
        interp = vdup_n_s16(lerpP);
        //interp = (int16x4_t)vset_lane_s32 ((int32x2_t)lerpP, interp, 0);
        coefsP1 = (const int16_t*)__builtin_assume_aligned(coefsP1, 16);
        coefsN1 = (const int16_t*)__builtin_assume_aligned(coefsN1, 16);
    }
    int32x4_t accum, accum2;
    // warning uninitialized if we use veorq_s32
    // (alternative to below) accum = veorq_s32(accum, accum);
    accum = vdupq_n_s32(0);
    if (CHANNELS == 2) {
        // (alternative to below) accum2 = veorq_s32(accum2, accum2);
        accum2 = vdupq_n_s32(0);
    }
    do {
        int16x8_t posCoef = vld1q_s16(coefsP);
        coefsP += 8;
        int16x8_t negCoef = vld1q_s16(coefsN);
        coefsN += 8;
        if (!FIXED) { // interpolate
            int16x8_t posCoef1 = vld1q_s16(coefsP1);
            coefsP1 += 8;
            int16x8_t negCoef1 = vld1q_s16(coefsN1);
            coefsN1 += 8;

            posCoef1 = vsubq_s16(posCoef1, posCoef);
            negCoef = vsubq_s16(negCoef, negCoef1);

            posCoef1 = vqrdmulhq_lane_s16(posCoef1, interp, 0);
            negCoef = vqrdmulhq_lane_s16(negCoef, interp, 0);

            posCoef = vaddq_s16(posCoef, posCoef1);
            negCoef = vaddq_s16(negCoef, negCoef1);
        }
        switch (CHANNELS) {
        case 1: {
            int16x8_t posSamp = vld1q_s16(sP);
            int16x8_t negSamp = vld1q_s16(sN);
            sN += 8;
            posSamp = vrev64q_s16(posSamp);

            // dot product
            accum = vmlal_s16(accum, vget_low_s16(posSamp), vget_high_s16(posCoef)); // reversed
            accum = vmlal_s16(accum, vget_high_s16(posSamp), vget_low_s16(posCoef)); // reversed
            accum = vmlal_s16(accum, vget_low_s16(negSamp), vget_low_s16(negCoef));
            accum = vmlal_s16(accum, vget_high_s16(negSamp), vget_high_s16(negCoef));
            sP -= 8;
        } break;
        case 2: {
            int16x8x2_t posSamp = vld2q_s16(sP);
            int16x8x2_t negSamp = vld2q_s16(sN);
            sN += 16;
            posSamp.val[0] = vrev64q_s16(posSamp.val[0]);
            posSamp.val[1] = vrev64q_s16(posSamp.val[1]);

            // dot product
            accum = vmlal_s16(accum, vget_low_s16(posSamp.val[0]), vget_high_s16(posCoef)); // r
            accum = vmlal_s16(accum, vget_high_s16(posSamp.val[0]), vget_low_s16(posCoef)); // r
            accum2 = vmlal_s16(accum2, vget_low_s16(posSamp.val[1]), vget_high_s16(posCoef)); // r
            accum2 = vmlal_s16(accum2, vget_high_s16(posSamp.val[1]), vget_low_s16(posCoef)); // r
            accum = vmlal_s16(accum, vget_low_s16(negSamp.val[0]), vget_low_s16(negCoef));
            accum = vmlal_s16(accum, vget_high_s16(negSamp.val[0]), vget_high_s16(negCoef));
            accum2 = vmlal_s16(accum2, vget_low_s16(negSamp.val[1]), vget_low_s16(negCoef));
            accum2 = vmlal_s16(accum2, vget_high_s16(negSamp.val[1]), vget_high_s16(negCoef));
            sP -= 16;
        }
        } break;
    } while (count -= 8);

    // multiply by volume and save
    volumeLR = (const int32_t*)__builtin_assume_aligned(volumeLR, 8);
    int32x2_t vLR = vld1_s32(volumeLR);
    int32x2_t outSamp = vld1_s32(out);
    // combine and funnel down accumulator
    int32x2_t outAccum = vpadd_s32(vget_low_s32(accum), vget_high_s32(accum));
    if (CHANNELS == 1) {
        // duplicate accum to both L and R
        outAccum = vpadd_s32(outAccum, outAccum);
    } else if (CHANNELS == 2) {
        // accum2 contains R, fold in
        int32x2_t outAccum2 = vpadd_s32(vget_low_s32(accum2), vget_high_s32(accum2));
        outAccum = vpadd_s32(outAccum, outAccum2);
    }
    outAccum = vqrdmulh_s32(outAccum, vLR);
    outSamp = vqadd_s32(outSamp, outAccum);
    vst1_s32(out, outSamp);
}

template <int CHANNELS, int STRIDE, bool FIXED>
static inline void ProcessNeonIntrinsic(int32_t* out,
        int count,
        const int32_t* coefsP,
        const int32_t* coefsN,
        const int16_t* sP,
        const int16_t* sN,
        const int32_t* volumeLR,
        uint32_t lerpP,
        const int32_t* coefsP1,
        const int32_t* coefsN1)
{
    ALOG_ASSERT(count > 0 && (count & 7) == 0); // multiple of 8
    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(CHANNELS == 1 || CHANNELS == 2);

    sP -= CHANNELS*((STRIDE>>1)-1);
    coefsP = (const int32_t*)__builtin_assume_aligned(coefsP, 16);
    coefsN = (const int32_t*)__builtin_assume_aligned(coefsN, 16);

    int32x2_t interp;
    if (!FIXED) {
        interp = vdup_n_s32(lerpP);
        coefsP1 = (const int32_t*)__builtin_assume_aligned(coefsP1, 16);
        coefsN1 = (const int32_t*)__builtin_assume_aligned(coefsN1, 16);
    }
    int32x4_t accum, accum2;
    // warning uninitialized if we use veorq_s32
    // (alternative to below) accum = veorq_s32(accum, accum);
    accum = vdupq_n_s32(0);
    if (CHANNELS == 2) {
        // (alternative to below) accum2 = veorq_s32(accum2, accum2);
        accum2 = vdupq_n_s32(0);
    }
    do {
#ifdef vld1q_s32_x2
        int32x4x2_t posCoef = vld1q_s32_x2(coefsP);
        coefsP += 8;
        int32x4x2_t negCoef = vld1q_s32_x2(coefsN);
        coefsN += 8;
#else
        int32x4x2_t posCoef;
        posCoef.val[0] = vld1q_s32(coefsP);
        coefsP += 4;
        posCoef.val[1] = vld1q_s32(coefsP);
        coefsP += 4;
        int32x4x2_t negCoef;
        negCoef.val[0] = vld1q_s32(coefsN);
        coefsN += 4;
        negCoef.val[1] = vld1q_s32(coefsN);
        coefsN += 4;
#endif
        if (!FIXED) { // interpolate
#ifdef vld1q_s32_x2
            int32x4x2_t posCoef1 = vld1q_s32_x2(coefsP1);
            coefsP1 += 8;
            int32x4x2_t negCoef1 = vld1q_s32_x2(coefsN1);
            coefsN1 += 8;
#else
            int32x4x2_t posCoef1;
            posCoef1.val[0] = vld1q_s32(coefsP1);
            coefsP1 += 4;
            posCoef1.val[1] = vld1q_s32(coefsP1);
            coefsP1 += 4;
            int32x4x2_t negCoef1;
            negCoef1.val[0] = vld1q_s32(coefsN1);
            coefsN1 += 4;
            negCoef1.val[1] = vld1q_s32(coefsN1);
            coefsN1 += 4;
#endif

            posCoef1.val[0] = vsubq_s32(posCoef1.val[0], posCoef.val[0]);
            posCoef1.val[1] = vsubq_s32(posCoef1.val[1], posCoef.val[1]);
            negCoef.val[0] = vsubq_s32(negCoef.val[0], negCoef1.val[0]);
            negCoef.val[1] = vsubq_s32(negCoef.val[1], negCoef1.val[1]);

            posCoef1.val[0] = vqrdmulhq_lane_s32(posCoef1.val[0], interp, 0);
            posCoef1.val[1] = vqrdmulhq_lane_s32(posCoef1.val[1], interp, 0);
            negCoef.val[0] = vqrdmulhq_lane_s32(negCoef.val[0], interp, 0);
            negCoef.val[1] = vqrdmulhq_lane_s32(negCoef.val[1], interp, 0);

            posCoef.val[0] = vaddq_s32(posCoef.val[0], posCoef1.val[0]);
            posCoef.val[1] = vaddq_s32(posCoef.val[1], posCoef1.val[1]);
            negCoef.val[0] = vaddq_s32(negCoef.val[0], negCoef1.val[0]);
            negCoef.val[1] = vaddq_s32(negCoef.val[1], negCoef1.val[1]);
        }
        switch (CHANNELS) {
        case 1: {
            int16x8_t posSamp = vld1q_s16(sP);
            int16x8_t negSamp = vld1q_s16(sN);
            sN += 8;
            posSamp = vrev64q_s16(posSamp);

            int32x4_t posSamp0 = vshll_n_s16(vget_low_s16(posSamp), 15);
            int32x4_t posSamp1 = vshll_n_s16(vget_high_s16(posSamp), 15);
            int32x4_t negSamp0 = vshll_n_s16(vget_low_s16(negSamp), 15);
            int32x4_t negSamp1 = vshll_n_s16(vget_high_s16(negSamp), 15);

            // dot product
            posSamp0 = vqrdmulhq_s32(posSamp0, posCoef.val[1]); // reversed
            posSamp1 = vqrdmulhq_s32(posSamp1, posCoef.val[0]); // reversed
            negSamp0 = vqrdmulhq_s32(negSamp0, negCoef.val[0]);
            negSamp1 = vqrdmulhq_s32(negSamp1, negCoef.val[1]);

            accum = vaddq_s32(accum, posSamp0);
            negSamp0 = vaddq_s32(negSamp0, negSamp1);
            accum = vaddq_s32(accum, posSamp1);
            accum = vaddq_s32(accum, negSamp0);

            sP -= 8;
        } break;
        case 2: {
            int16x8x2_t posSamp = vld2q_s16(sP);
            int16x8x2_t negSamp = vld2q_s16(sN);
            sN += 16;
            posSamp.val[0] = vrev64q_s16(posSamp.val[0]);
            posSamp.val[1] = vrev64q_s16(posSamp.val[1]);

            // left
            int32x4_t posSamp0 = vshll_n_s16(vget_low_s16(posSamp.val[0]), 15);
            int32x4_t posSamp1 = vshll_n_s16(vget_high_s16(posSamp.val[0]), 15);
            int32x4_t negSamp0 = vshll_n_s16(vget_low_s16(negSamp.val[0]), 15);
            int32x4_t negSamp1 = vshll_n_s16(vget_high_s16(negSamp.val[0]), 15);

            // dot product
            posSamp0 = vqrdmulhq_s32(posSamp0, posCoef.val[1]); // reversed
            posSamp1 = vqrdmulhq_s32(posSamp1, posCoef.val[0]); // reversed
            negSamp0 = vqrdmulhq_s32(negSamp0, negCoef.val[0]);
            negSamp1 = vqrdmulhq_s32(negSamp1, negCoef.val[1]);

            accum = vaddq_s32(accum, posSamp0);
            negSamp0 = vaddq_s32(negSamp0, negSamp1);
            accum = vaddq_s32(accum, posSamp1);
            accum = vaddq_s32(accum, negSamp0);

            // right
            posSamp0 = vshll_n_s16(vget_low_s16(posSamp.val[1]), 15);
            posSamp1 = vshll_n_s16(vget_high_s16(posSamp.val[1]), 15);
            negSamp0 = vshll_n_s16(vget_low_s16(negSamp.val[1]), 15);
            negSamp1 = vshll_n_s16(vget_high_s16(negSamp.val[1]), 15);

            // dot product
            posSamp0 = vqrdmulhq_s32(posSamp0, posCoef.val[1]); // reversed
            posSamp1 = vqrdmulhq_s32(posSamp1, posCoef.val[0]); // reversed
            negSamp0 = vqrdmulhq_s32(negSamp0, negCoef.val[0]);
            negSamp1 = vqrdmulhq_s32(negSamp1, negCoef.val[1]);

            accum2 = vaddq_s32(accum2, posSamp0);
            negSamp0 = vaddq_s32(negSamp0, negSamp1);
            accum2 = vaddq_s32(accum2, posSamp1);
            accum2 = vaddq_s32(accum2, negSamp0);

            sP -= 16;
        } break;
        }
    } while (count -= 8);

    // multiply by volume and save
    volumeLR = (const int32_t*)__builtin_assume_aligned(volumeLR, 8);
    int32x2_t vLR = vld1_s32(volumeLR);
    int32x2_t outSamp = vld1_s32(out);
    // combine and funnel down accumulator
    int32x2_t outAccum = vpadd_s32(vget_low_s32(accum), vget_high_s32(accum));
    if (CHANNELS == 1) {
        // duplicate accum to both L and R
        outAccum = vpadd_s32(outAccum, outAccum);
    } else if (CHANNELS == 2) {
        // accum2 contains R, fold in
        int32x2_t outAccum2 = vpadd_s32(vget_low_s32(accum2), vget_high_s32(accum2));
        outAccum = vpadd_s32(outAccum, outAccum2);
    }
    outAccum = vqrdmulh_s32(outAccum, vLR);
    outSamp = vqadd_s32(outSamp, outAccum);
    vst1_s32(out, outSamp);
}

template <int CHANNELS, int STRIDE, bool FIXED>
static inline void ProcessNeonIntrinsic(float* out,
        int count,
        const float* coefsP,
        const float* coefsN,
        const float* sP,
        const float* sN,
        const float* volumeLR,
        float lerpP,
        const float* coefsP1,
        const float* coefsN1)
{
    ALOG_ASSERT(count > 0 && (count & 7) == 0); // multiple of 8
    COMPILE_TIME_ASSERT_FUNCTION_SCOPE(CHANNELS == 1 || CHANNELS == 2);

    sP -= CHANNELS*((STRIDE>>1)-1);
    coefsP = (const float*)__builtin_assume_aligned(coefsP, 16);
    coefsN = (const float*)__builtin_assume_aligned(coefsN, 16);

    float32x2_t interp;
    if (!FIXED) {
        interp = vdup_n_f32(lerpP);
        coefsP1 = (const float*)__builtin_assume_aligned(coefsP1, 16);
        coefsN1 = (const float*)__builtin_assume_aligned(coefsN1, 16);
    }
    float32x4_t accum, accum2;
    // warning uninitialized if we use veorq_s32
    // (alternative to below) accum = veorq_s32(accum, accum);
    accum = vdupq_n_f32(0);
    if (CHANNELS == 2) {
        // (alternative to below) accum2 = veorq_s32(accum2, accum2);
        accum2 = vdupq_n_f32(0);
    }
    do {
#ifdef vld1q_f32_x2
        float32x4x2_t posCoef = vld1q_f32_x2(coefsP);
        coefsP += 8;
        float32x4x2_t negCoef = vld1q_f32_x2(coefsN);
        coefsN += 8;
#else
        float32x4x2_t posCoef;
        posCoef.val[0] = vld1q_f32(coefsP);
        coefsP += 4;
        posCoef.val[1] = vld1q_f32(coefsP);
        coefsP += 4;
        float32x4x2_t negCoef;
        negCoef.val[0] = vld1q_f32(coefsN);
        coefsN += 4;
        negCoef.val[1] = vld1q_f32(coefsN);
        coefsN += 4;
#endif
        if (!FIXED) { // interpolate
#ifdef vld1q_f32_x2
            float32x4x2_t posCoef1 = vld1q_f32_x2(coefsP1);
            coefsP1 += 8;
            float32x4x2_t negCoef1 = vld1q_f32_x2(coefsN1);
            coefsN1 += 8;
#else
            float32x4x2_t posCoef1;
            posCoef1.val[0] = vld1q_f32(coefsP1);
            coefsP1 += 4;
            posCoef1.val[1] = vld1q_f32(coefsP1);
            coefsP1 += 4;
            float32x4x2_t negCoef1;
            negCoef1.val[0] = vld1q_f32(coefsN1);
            coefsN1 += 4;
            negCoef1.val[1] = vld1q_f32(coefsN1);
            coefsN1 += 4;
#endif
            posCoef1.val[0] = vsubq_f32(posCoef1.val[0], posCoef.val[0]);
            posCoef1.val[1] = vsubq_f32(posCoef1.val[1], posCoef.val[1]);
            negCoef.val[0] = vsubq_f32(negCoef.val[0], negCoef1.val[0]);
            negCoef.val[1] = vsubq_f32(negCoef.val[1], negCoef1.val[1]);

            posCoef.val[0] = vmlaq_lane_f32(posCoef.val[0], posCoef1.val[0], interp, 0);
            posCoef.val[1] = vmlaq_lane_f32(posCoef.val[1], posCoef1.val[1], interp, 0);
            negCoef.val[0] = vmlaq_lane_f32(negCoef1.val[0], negCoef.val[0], interp, 0); // rev
            negCoef.val[1] = vmlaq_lane_f32(negCoef1.val[1], negCoef.val[1], interp, 0); // rev
        }
        switch (CHANNELS) {
        case 1: {
#ifdef vld1q_f32_x2
            float32x4x2_t posSamp = vld1q_f32_x2(sP);
            float32x4x2_t negSamp = vld1q_f32_x2(sN);
            sN += 8;
            sP -= 8;
#else
            float32x4x2_t posSamp;
            posSamp.val[0] = vld1q_f32(sP);
            sP += 4;
            posSamp.val[1] = vld1q_f32(sP);
            sP -= 12;
            float32x4x2_t negSamp;
            negSamp.val[0] = vld1q_f32(sN);
            sN += 4;
            negSamp.val[1] = vld1q_f32(sN);
            sN += 4;
#endif
            // effectively we want a vrev128q_f32()
            posSamp.val[0] = vrev64q_f32(posSamp.val[0]);
            posSamp.val[1] = vrev64q_f32(posSamp.val[1]);
            posSamp.val[0] = vcombine_f32(
                    vget_high_f32(posSamp.val[0]), vget_low_f32(posSamp.val[0]));
            posSamp.val[1] = vcombine_f32(
                    vget_high_f32(posSamp.val[1]), vget_low_f32(posSamp.val[1]));

            accum = vmlaq_f32(accum, posSamp.val[0], posCoef.val[1]);
            accum = vmlaq_f32(accum, posSamp.val[1], posCoef.val[0]);
            accum = vmlaq_f32(accum, negSamp.val[0], negCoef.val[0]);
            accum = vmlaq_f32(accum, negSamp.val[1], negCoef.val[1]);
        } break;
        case 2: {
            float32x4x2_t posSamp0 = vld2q_f32(sP);
            sP += 8;
            float32x4x2_t negSamp0 = vld2q_f32(sN);
            sN += 8;
            posSamp0.val[0] = vrev64q_f32(posSamp0.val[0]);
            posSamp0.val[1] = vrev64q_f32(posSamp0.val[1]);
            posSamp0.val[0] = vcombine_f32(
                    vget_high_f32(posSamp0.val[0]), vget_low_f32(posSamp0.val[0]));
            posSamp0.val[1] = vcombine_f32(
                    vget_high_f32(posSamp0.val[1]), vget_low_f32(posSamp0.val[1]));

            float32x4x2_t posSamp1 = vld2q_f32(sP);
            sP -= 24;
            float32x4x2_t negSamp1 = vld2q_f32(sN);
            sN += 8;
            posSamp1.val[0] = vrev64q_f32(posSamp1.val[0]);
            posSamp1.val[1] = vrev64q_f32(posSamp1.val[1]);
            posSamp1.val[0] = vcombine_f32(
                    vget_high_f32(posSamp1.val[0]), vget_low_f32(posSamp1.val[0]));
            posSamp1.val[1] = vcombine_f32(
                    vget_high_f32(posSamp1.val[1]), vget_low_f32(posSamp1.val[1]));

            // Note: speed is affected by accumulation order.
            // Also, speed appears slower using vmul/vadd instead of vmla for
            // stereo case, comparable for mono.

            accum = vmlaq_f32(accum, negSamp0.val[0], negCoef.val[0]);
            accum = vmlaq_f32(accum, negSamp1.val[0], negCoef.val[1]);
            accum2 = vmlaq_f32(accum2, negSamp0.val[1], negCoef.val[0]);
            accum2 = vmlaq_f32(accum2, negSamp1.val[1], negCoef.val[1]);

            accum = vmlaq_f32(accum, posSamp0.val[0], posCoef.val[1]); // reversed
            accum = vmlaq_f32(accum, posSamp1.val[0], posCoef.val[0]); // reversed
            accum2 = vmlaq_f32(accum2, posSamp0.val[1], posCoef.val[1]); // reversed
            accum2 = vmlaq_f32(accum2, posSamp1.val[1], posCoef.val[0]); // reversed
        } break;
        }
    } while (count -= 8);

    // multiply by volume and save
    volumeLR = (const float*)__builtin_assume_aligned(volumeLR, 8);
    float32x2_t vLR = vld1_f32(volumeLR);
    float32x2_t outSamp = vld1_f32(out);
    // combine and funnel down accumulator
    float32x2_t outAccum = vpadd_f32(vget_low_f32(accum), vget_high_f32(accum));
    if (CHANNELS == 1) {
        // duplicate accum to both L and R
        outAccum = vpadd_f32(outAccum, outAccum);
    } else if (CHANNELS == 2) {
        // accum2 contains R, fold in
        float32x2_t outAccum2 = vpadd_f32(vget_low_f32(accum2), vget_high_f32(accum2));
        outAccum = vpadd_f32(outAccum, outAccum2);
    }
    outSamp = vmla_f32(outSamp, outAccum, vLR);
    vst1_f32(out, outSamp);
}

template <>
inline void ProcessL<1, 16>(int32_t* const out,
        int count,
        const int16_t* coefsP,
        const int16_t* coefsN,
        const int16_t* sP,
        const int16_t* sN,
        const int32_t* const volumeLR)
{
#ifdef USE_INTRINSIC
    ProcessNeonIntrinsic<1, 16, true>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            0 /*lerpP*/, NULL /*coefsP1*/, NULL /*coefsN1*/);
#else
    const int CHANNELS = 1; // template specialization does not preserve params
    const int STRIDE = 16;
    sP -= CHANNELS*((STRIDE>>1)-1);
    asm (
        "veor           q0, q0, q0               \n"// (0 - combines+) accumulator = 0

        "1:                                      \n"

        "vld1.16        {q2}, [%[sP]]            \n"// (2+0d) load 8 16-bits mono samples
        "vld1.16        {q3}, [%[sN]]!           \n"// (2) load 8 16-bits mono samples
        "vld1.16        {q8}, [%[coefsP0]:128]!  \n"// (1) load 8 16-bits coefs
        "vld1.16        {q10}, [%[coefsN0]:128]! \n"// (1) load 8 16-bits coefs

        "vrev64.16      q2, q2                   \n"// (1) reverse s3, s2, s1, s0, s7, s6, s5, s4

        // reordering the vmal to do d6, d7 before d4, d5 is slower(?)
        "vmlal.s16      q0, d4, d17              \n"// (1+0d) multiply (reversed)samples by coef
        "vmlal.s16      q0, d5, d16              \n"// (1) multiply (reversed)samples by coef
        "vmlal.s16      q0, d6, d20              \n"// (1) multiply neg samples
        "vmlal.s16      q0, d7, d21              \n"// (1) multiply neg samples

        // moving these ARM instructions before neon above seems to be slower
        "subs           %[count], %[count], #8   \n"// (1) update loop counter
        "sub            %[sP], %[sP], #16        \n"// (0) move pointer to next set of samples

        // sP used after branch (warning)
        "bne            1b                       \n"// loop

         ASSEMBLY_ACCUMULATE_MONO

        : [out]     "=Uv" (out[0]),
          [count]   "+r" (count),
          [coefsP0] "+r" (coefsP),
          [coefsN0] "+r" (coefsN),
          [sP]      "+r" (sP),
          [sN]      "+r" (sN)
        : [vLR]     "r" (volumeLR)
        : "cc", "memory",
          "q0", "q1", "q2", "q3",
          "q8", "q10"
    );
#endif
}

template <>
inline void ProcessL<2, 16>(int32_t* const out,
        int count,
        const int16_t* coefsP,
        const int16_t* coefsN,
        const int16_t* sP,
        const int16_t* sN,
        const int32_t* const volumeLR)
{
#ifdef USE_INTRINSIC
    ProcessNeonIntrinsic<2, 16, true>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            0 /*lerpP*/, NULL /*coefsP1*/, NULL /*coefsN1*/);
#else
    const int CHANNELS = 2; // template specialization does not preserve params
    const int STRIDE = 16;
    sP -= CHANNELS*((STRIDE>>1)-1);
    asm (
        "veor           q0, q0, q0               \n"// (1) acc_L = 0
        "veor           q4, q4, q4               \n"// (0 combines+) acc_R = 0

        "1:                                      \n"

        "vld2.16        {q2, q3}, [%[sP]]        \n"// (3+0d) load 8 16-bits stereo frames
        "vld2.16        {q5, q6}, [%[sN]]!       \n"// (3) load 8 16-bits stereo frames
        "vld1.16        {q8}, [%[coefsP0]:128]!  \n"// (1) load 8 16-bits coefs
        "vld1.16        {q10}, [%[coefsN0]:128]! \n"// (1) load 8 16-bits coefs

        "vrev64.16      q2, q2                   \n"// (1) reverse 8 samples of positive left
        "vrev64.16      q3, q3                   \n"// (0 combines+) reverse positive right

        "vmlal.s16      q0, d4, d17              \n"// (1) multiply (reversed) samples left
        "vmlal.s16      q0, d5, d16              \n"// (1) multiply (reversed) samples left
        "vmlal.s16      q4, d6, d17              \n"// (1) multiply (reversed) samples right
        "vmlal.s16      q4, d7, d16              \n"// (1) multiply (reversed) samples right
        "vmlal.s16      q0, d10, d20             \n"// (1) multiply samples left
        "vmlal.s16      q0, d11, d21             \n"// (1) multiply samples left
        "vmlal.s16      q4, d12, d20             \n"// (1) multiply samples right
        "vmlal.s16      q4, d13, d21             \n"// (1) multiply samples right

        // moving these ARM before neon seems to be slower
        "subs           %[count], %[count], #8   \n"// (1) update loop counter
        "sub            %[sP], %[sP], #32        \n"// (0) move pointer to next set of samples

        // sP used after branch (warning)
        "bne            1b                       \n"// loop

        ASSEMBLY_ACCUMULATE_STEREO

        : [out] "=Uv" (out[0]),
          [count] "+r" (count),
          [coefsP0] "+r" (coefsP),
          [coefsN0] "+r" (coefsN),
          [sP] "+r" (sP),
          [sN] "+r" (sN)
        : [vLR] "r" (volumeLR)
        : "cc", "memory",
          "q0", "q1", "q2", "q3",
          "q4", "q5", "q6",
          "q8", "q10"
     );
#endif
}

template <>
inline void Process<1, 16>(int32_t* const out,
        int count,
        const int16_t* coefsP,
        const int16_t* coefsN,
        const int16_t* coefsP1,
        const int16_t* coefsN1,
        const int16_t* sP,
        const int16_t* sN,
        uint32_t lerpP,
        const int32_t* const volumeLR)
{
#ifdef USE_INTRINSIC
    ProcessNeonIntrinsic<1, 16, false>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            lerpP, coefsP1, coefsN1);
#else

    const int CHANNELS = 1; // template specialization does not preserve params
    const int STRIDE = 16;
    sP -= CHANNELS*((STRIDE>>1)-1);
    asm (
        "vmov.32        d2[0], %[lerpP]          \n"// load the positive phase S32 Q15
        "veor           q0, q0, q0               \n"// (0 - combines+) accumulator = 0

        "1:                                      \n"

        "vld1.16        {q2}, [%[sP]]            \n"// (2+0d) load 8 16-bits mono samples
        "vld1.16        {q3}, [%[sN]]!           \n"// (2) load 8 16-bits mono samples
        "vld1.16        {q8}, [%[coefsP0]:128]!  \n"// (1) load 8 16-bits coefs
        "vld1.16        {q9}, [%[coefsP1]:128]!  \n"// (1) load 8 16-bits coefs for interpolation
        "vld1.16        {q10}, [%[coefsN1]:128]! \n"// (1) load 8 16-bits coefs
        "vld1.16        {q11}, [%[coefsN0]:128]! \n"// (1) load 8 16-bits coefs for interpolation

        "vsub.s16       q9, q9, q8               \n"// (1) interpolate (step1) 1st set of coefs
        "vsub.s16       q11, q11, q10            \n"// (1) interpolate (step1) 2nd set of coets

        "vqrdmulh.s16   q9, q9, d2[0]            \n"// (2) interpolate (step2) 1st set of coefs
        "vqrdmulh.s16   q11, q11, d2[0]          \n"// (2) interpolate (step2) 2nd set of coefs

        "vrev64.16      q2, q2                   \n"// (1) reverse s3, s2, s1, s0, s7, s6, s5, s4

        "vadd.s16       q8, q8, q9               \n"// (1+2d) interpolate (step3) 1st set
        "vadd.s16       q10, q10, q11            \n"// (1+1d) interpolate (step3) 2nd set

        // reordering the vmal to do d6, d7 before d4, d5 is slower(?)
        "vmlal.s16      q0, d4, d17              \n"// (1+0d) multiply reversed samples by coef
        "vmlal.s16      q0, d5, d16              \n"// (1) multiply reversed samples by coef
        "vmlal.s16      q0, d6, d20              \n"// (1) multiply neg samples
        "vmlal.s16      q0, d7, d21              \n"// (1) multiply neg samples

        // moving these ARM instructions before neon above seems to be slower
        "subs           %[count], %[count], #8   \n"// (1) update loop counter
        "sub            %[sP], %[sP], #16        \n"// (0) move pointer to next set of samples

        // sP used after branch (warning)
        "bne            1b                       \n"// loop

        ASSEMBLY_ACCUMULATE_MONO

        : [out]     "=Uv" (out[0]),
          [count]   "+r" (count),
          [coefsP0] "+r" (coefsP),
          [coefsN0] "+r" (coefsN),
          [coefsP1] "+r" (coefsP1),
          [coefsN1] "+r" (coefsN1),
          [sP]      "+r" (sP),
          [sN]      "+r" (sN)
        : [lerpP]   "r" (lerpP),
          [vLR]     "r" (volumeLR)
        : "cc", "memory",
          "q0", "q1", "q2", "q3",
          "q8", "q9", "q10", "q11"
    );
#endif
}

template <>
inline void Process<2, 16>(int32_t* const out,
        int count,
        const int16_t* coefsP,
        const int16_t* coefsN,
        const int16_t* coefsP1,
        const int16_t* coefsN1,
        const int16_t* sP,
        const int16_t* sN,
        uint32_t lerpP,
        const int32_t* const volumeLR)
{
#ifdef USE_INTRINSIC
    ProcessNeonIntrinsic<2, 16, false>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            lerpP, coefsP1, coefsN1);
#else
    const int CHANNELS = 2; // template specialization does not preserve params
    const int STRIDE = 16;
    sP -= CHANNELS*((STRIDE>>1)-1);
    asm (
        "vmov.32        d2[0], %[lerpP]          \n"// load the positive phase
        "veor           q0, q0, q0               \n"// (1) acc_L = 0
        "veor           q4, q4, q4               \n"// (0 combines+) acc_R = 0

        "1:                                      \n"

        "vld2.16        {q2, q3}, [%[sP]]        \n"// (3+0d) load 8 16-bits stereo frames
        "vld2.16        {q5, q6}, [%[sN]]!       \n"// (3) load 8 16-bits stereo frames
        "vld1.16        {q8}, [%[coefsP0]:128]!  \n"// (1) load 8 16-bits coefs
        "vld1.16        {q9}, [%[coefsP1]:128]!  \n"// (1) load 8 16-bits coefs for interpolation
        "vld1.16        {q10}, [%[coefsN1]:128]! \n"// (1) load 8 16-bits coefs
        "vld1.16        {q11}, [%[coefsN0]:128]! \n"// (1) load 8 16-bits coefs for interpolation

        "vsub.s16       q9, q9, q8               \n"// (1) interpolate (step1) 1st set of coefs
        "vsub.s16       q11, q11, q10            \n"// (1) interpolate (step1) 2nd set of coets

        "vqrdmulh.s16   q9, q9, d2[0]            \n"// (2) interpolate (step2) 1st set of coefs
        "vqrdmulh.s16   q11, q11, d2[0]          \n"// (2) interpolate (step2) 2nd set of coefs

        "vrev64.16      q2, q2                   \n"// (1) reverse 8 samples of positive left
        "vrev64.16      q3, q3                   \n"// (1) reverse 8 samples of positive right

        "vadd.s16       q8, q8, q9               \n"// (1+1d) interpolate (step3) 1st set
        "vadd.s16       q10, q10, q11            \n"// (1+1d) interpolate (step3) 2nd set

        "vmlal.s16      q0, d4, d17              \n"// (1) multiply reversed samples left
        "vmlal.s16      q0, d5, d16              \n"// (1) multiply reversed samples left
        "vmlal.s16      q4, d6, d17              \n"// (1) multiply reversed samples right
        "vmlal.s16      q4, d7, d16              \n"// (1) multiply reversed samples right
        "vmlal.s16      q0, d10, d20             \n"// (1) multiply samples left
        "vmlal.s16      q0, d11, d21             \n"// (1) multiply samples left
        "vmlal.s16      q4, d12, d20             \n"// (1) multiply samples right
        "vmlal.s16      q4, d13, d21             \n"// (1) multiply samples right

        // moving these ARM before neon seems to be slower
        "subs           %[count], %[count], #8   \n"// (1) update loop counter
        "sub            %[sP], %[sP], #32        \n"// (0) move pointer to next set of samples

        // sP used after branch (warning)
        "bne            1b                       \n"// loop

        ASSEMBLY_ACCUMULATE_STEREO

        : [out] "=Uv" (out[0]),
          [count] "+r" (count),
          [coefsP0] "+r" (coefsP),
          [coefsN0] "+r" (coefsN),
          [coefsP1] "+r" (coefsP1),
          [coefsN1] "+r" (coefsN1),
          [sP] "+r" (sP),
          [sN] "+r" (sN)
        : [lerpP]   "r" (lerpP),
          [vLR] "r" (volumeLR)
        : "cc", "memory",
          "q0", "q1", "q2", "q3",
          "q4", "q5", "q6",
          "q8", "q9", "q10", "q11"
    );
#endif
}

template <>
inline void ProcessL<1, 16>(int32_t* const out,
        int count,
        const int32_t* coefsP,
        const int32_t* coefsN,
        const int16_t* sP,
        const int16_t* sN,
        const int32_t* const volumeLR)
{
#ifdef USE_INTRINSIC
    ProcessNeonIntrinsic<1, 16, true>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            0 /*lerpP*/, NULL /*coefsP1*/, NULL /*coefsN1*/);
#else
    const int CHANNELS = 1; // template specialization does not preserve params
    const int STRIDE = 16;
    sP -= CHANNELS*((STRIDE>>1)-1);
    asm (
        "veor           q0, q0, q0                    \n"// result, initialize to 0

        "1:                                           \n"

        "vld1.16        {q2}, [%[sP]]                 \n"// load 8 16-bits mono samples
        "vld1.16        {q3}, [%[sN]]!                \n"// load 8 16-bits mono samples
        "vld1.32        {q8, q9}, [%[coefsP0]:128]!   \n"// load 8 32-bits coefs
        "vld1.32        {q10, q11}, [%[coefsN0]:128]! \n"// load 8 32-bits coefs

        "vrev64.16      q2, q2                        \n"// reverse 8 samples of the positive side

        "vshll.s16      q12, d4, #15                  \n"// extend samples to 31 bits
        "vshll.s16      q13, d5, #15                  \n"// extend samples to 31 bits

        "vshll.s16      q14, d6, #15                  \n"// extend samples to 31 bits
        "vshll.s16      q15, d7, #15                  \n"// extend samples to 31 bits

        "vqrdmulh.s32   q12, q12, q9                  \n"// multiply samples
        "vqrdmulh.s32   q13, q13, q8                  \n"// multiply samples
        "vqrdmulh.s32   q14, q14, q10                 \n"// multiply samples
        "vqrdmulh.s32   q15, q15, q11                 \n"// multiply samples

        "vadd.s32       q0, q0, q12                   \n"// accumulate result
        "vadd.s32       q13, q13, q14                 \n"// accumulate result
        "vadd.s32       q0, q0, q15                   \n"// accumulate result
        "vadd.s32       q0, q0, q13                   \n"// accumulate result

        "sub            %[sP], %[sP], #16             \n"// move pointer to next set of samples
        "subs           %[count], %[count], #8        \n"// update loop counter

        "bne            1b                            \n"// loop

        ASSEMBLY_ACCUMULATE_MONO

        : [out]     "=Uv" (out[0]),
          [count]   "+r" (count),
          [coefsP0] "+r" (coefsP),
          [coefsN0] "+r" (coefsN),
          [sP]      "+r" (sP),
          [sN]      "+r" (sN)
        : [vLR]     "r" (volumeLR)
        : "cc", "memory",
          "q0", "q1", "q2", "q3",
          "q8", "q9", "q10", "q11",
          "q12", "q13", "q14", "q15"
    );
#endif
}

template <>
inline void ProcessL<2, 16>(int32_t* const out,
        int count,
        const int32_t* coefsP,
        const int32_t* coefsN,
        const int16_t* sP,
        const int16_t* sN,
        const int32_t* const volumeLR)
{
#ifdef USE_INTRINSIC
    ProcessNeonIntrinsic<2, 16, true>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            0 /*lerpP*/, NULL /*coefsP1*/, NULL /*coefsN1*/);
#else
    const int CHANNELS = 2; // template specialization does not preserve params
    const int STRIDE = 16;
    sP -= CHANNELS*((STRIDE>>1)-1);
    asm (
        "veor           q0, q0, q0                    \n"// result, initialize to 0
        "veor           q4, q4, q4                    \n"// result, initialize to 0

        "1:                                           \n"

        "vld2.16        {q2, q3}, [%[sP]]             \n"// load 8 16-bits stereo frames
        "vld2.16        {q5, q6}, [%[sN]]!            \n"// load 8 16-bits stereo frames
        "vld1.32        {q8, q9}, [%[coefsP0]:128]!   \n"// load 8 32-bits coefs
        "vld1.32        {q10, q11}, [%[coefsN0]:128]! \n"// load 8 32-bits coefs

        "vrev64.16      q2, q2                        \n"// reverse 8 samples of positive left
        "vrev64.16      q3, q3                        \n"// reverse 8 samples of positive right

        "vshll.s16      q12,  d4, #15                 \n"// extend samples to 31 bits
        "vshll.s16      q13,  d5, #15                 \n"// extend samples to 31 bits

        "vshll.s16      q14,  d10, #15                \n"// extend samples to 31 bits
        "vshll.s16      q15,  d11, #15                \n"// extend samples to 31 bits

        "vqrdmulh.s32   q12, q12, q9                  \n"// multiply samples by coef
        "vqrdmulh.s32   q13, q13, q8                  \n"// multiply samples by coef
        "vqrdmulh.s32   q14, q14, q10                 \n"// multiply samples by coef
        "vqrdmulh.s32   q15, q15, q11                 \n"// multiply samples by coef

        "vadd.s32       q0, q0, q12                   \n"// accumulate result
        "vadd.s32       q13, q13, q14                 \n"// accumulate result
        "vadd.s32       q0, q0, q15                   \n"// accumulate result
        "vadd.s32       q0, q0, q13                   \n"// accumulate result

        "vshll.s16      q12,  d6, #15                 \n"// extend samples to 31 bits
        "vshll.s16      q13,  d7, #15                 \n"// extend samples to 31 bits

        "vshll.s16      q14,  d12, #15                \n"// extend samples to 31 bits
        "vshll.s16      q15,  d13, #15                \n"// extend samples to 31 bits

        "vqrdmulh.s32   q12, q12, q9                  \n"// multiply samples by coef
        "vqrdmulh.s32   q13, q13, q8                  \n"// multiply samples by coef
        "vqrdmulh.s32   q14, q14, q10                 \n"// multiply samples by coef
        "vqrdmulh.s32   q15, q15, q11                 \n"// multiply samples by coef

        "vadd.s32       q4, q4, q12                   \n"// accumulate result
        "vadd.s32       q13, q13, q14                 \n"// accumulate result
        "vadd.s32       q4, q4, q15                   \n"// accumulate result
        "vadd.s32       q4, q4, q13                   \n"// accumulate result

        "subs           %[count], %[count], #8        \n"// update loop counter
        "sub            %[sP], %[sP], #32             \n"// move pointer to next set of samples

        "bne            1b                            \n"// loop

        ASSEMBLY_ACCUMULATE_STEREO

        : [out]     "=Uv" (out[0]),
          [count]   "+r" (count),
          [coefsP0] "+r" (coefsP),
          [coefsN0] "+r" (coefsN),
          [sP]      "+r" (sP),
          [sN]      "+r" (sN)
        : [vLR]     "r" (volumeLR)
        : "cc", "memory",
          "q0", "q1", "q2", "q3",
          "q4", "q5", "q6",
          "q8", "q9", "q10", "q11",
          "q12", "q13", "q14", "q15"
    );
#endif
}

template <>
inline void Process<1, 16>(int32_t* const out,
        int count,
        const int32_t* coefsP,
        const int32_t* coefsN,
        const int32_t* coefsP1,
        const int32_t* coefsN1,
        const int16_t* sP,
        const int16_t* sN,
        uint32_t lerpP,
        const int32_t* const volumeLR)
{
#ifdef USE_INTRINSIC
    ProcessNeonIntrinsic<1, 16, false>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            lerpP, coefsP1, coefsN1);
#else
    const int CHANNELS = 1; // template specialization does not preserve params
    const int STRIDE = 16;
    sP -= CHANNELS*((STRIDE>>1)-1);
    asm (
        "vmov.32        d2[0], %[lerpP]               \n"// load the positive phase
        "veor           q0, q0, q0                    \n"// result, initialize to 0

        "1:                                           \n"

        "vld1.16        {q2}, [%[sP]]                 \n"// load 8 16-bits mono samples
        "vld1.16        {q3}, [%[sN]]!                \n"// load 8 16-bits mono samples
        "vld1.32        {q8, q9}, [%[coefsP0]:128]!   \n"// load 8 32-bits coefs
        "vld1.32        {q12, q13}, [%[coefsP1]:128]! \n"// load 8 32-bits coefs
        "vld1.32        {q10, q11}, [%[coefsN1]:128]! \n"// load 8 32-bits coefs
        "vld1.32        {q14, q15}, [%[coefsN0]:128]! \n"// load 8 32-bits coefs

        "vsub.s32       q12, q12, q8                  \n"// interpolate (step1)
        "vsub.s32       q13, q13, q9                  \n"// interpolate (step1)
        "vsub.s32       q14, q14, q10                 \n"// interpolate (step1)
        "vsub.s32       q15, q15, q11                 \n"// interpolate (step1)

        "vqrdmulh.s32   q12, q12, d2[0]               \n"// interpolate (step2)
        "vqrdmulh.s32   q13, q13, d2[0]               \n"// interpolate (step2)
        "vqrdmulh.s32   q14, q14, d2[0]               \n"// interpolate (step2)
        "vqrdmulh.s32   q15, q15, d2[0]               \n"// interpolate (step2)

        "vadd.s32       q8, q8, q12                   \n"// interpolate (step3)
        "vadd.s32       q9, q9, q13                   \n"// interpolate (step3)
        "vadd.s32       q10, q10, q14                 \n"// interpolate (step3)
        "vadd.s32       q11, q11, q15                 \n"// interpolate (step3)

        "vrev64.16      q2, q2                        \n"// reverse 8 samples of the positive side

        "vshll.s16      q12,  d4, #15                 \n"// extend samples to 31 bits
        "vshll.s16      q13,  d5, #15                 \n"// extend samples to 31 bits

        "vshll.s16      q14,  d6, #15                 \n"// extend samples to 31 bits
        "vshll.s16      q15,  d7, #15                 \n"// extend samples to 31 bits

        "vqrdmulh.s32   q12, q12, q9                  \n"// multiply samples by interpolated coef
        "vqrdmulh.s32   q13, q13, q8                  \n"// multiply samples by interpolated coef
        "vqrdmulh.s32   q14, q14, q10                 \n"// multiply samples by interpolated coef
        "vqrdmulh.s32   q15, q15, q11                 \n"// multiply samples by interpolated coef

        "vadd.s32       q0, q0, q12                   \n"// accumulate result
        "vadd.s32       q13, q13, q14                 \n"// accumulate result
        "vadd.s32       q0, q0, q15                   \n"// accumulate result
        "vadd.s32       q0, q0, q13                   \n"// accumulate result

        "sub            %[sP], %[sP], #16             \n"// move pointer to next set of samples
        "subs           %[count], %[count], #8        \n"// update loop counter

        "bne            1b                            \n"// loop

        ASSEMBLY_ACCUMULATE_MONO

        : [out]     "=Uv" (out[0]),
          [count]   "+r" (count),
          [coefsP0] "+r" (coefsP),
          [coefsN0] "+r" (coefsN),
          [coefsP1] "+r" (coefsP1),
          [coefsN1] "+r" (coefsN1),
          [sP]      "+r" (sP),
          [sN]      "+r" (sN)
        : [lerpP]   "r" (lerpP),
          [vLR]     "r" (volumeLR)
        : "cc", "memory",
          "q0", "q1", "q2", "q3",
          "q8", "q9", "q10", "q11",
          "q12", "q13", "q14", "q15"
    );
#endif
}

template <>
inline void Process<2, 16>(int32_t* const out,
        int count,
        const int32_t* coefsP,
        const int32_t* coefsN,
        const int32_t* coefsP1,
        const int32_t* coefsN1,
        const int16_t* sP,
        const int16_t* sN,
        uint32_t lerpP,
        const int32_t* const volumeLR)
{
#ifdef USE_INTRINSIC
    ProcessNeonIntrinsic<2, 16, false>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            lerpP, coefsP1, coefsN1);
#else
    const int CHANNELS = 2; // template specialization does not preserve params
    const int STRIDE = 16;
    sP -= CHANNELS*((STRIDE>>1)-1);
    asm (
        "vmov.32        d2[0], %[lerpP]               \n"// load the positive phase
        "veor           q0, q0, q0                    \n"// result, initialize to 0
        "veor           q4, q4, q4                    \n"// result, initialize to 0

        "1:                                           \n"

        "vld2.16        {q2, q3}, [%[sP]]             \n"// load 8 16-bits stereo frames
        "vld2.16        {q5, q6}, [%[sN]]!            \n"// load 8 16-bits stereo frames
        "vld1.32        {q8, q9}, [%[coefsP0]:128]!   \n"// load 8 32-bits coefs
        "vld1.32        {q12, q13}, [%[coefsP1]:128]! \n"// load 8 32-bits coefs
        "vld1.32        {q10, q11}, [%[coefsN1]:128]! \n"// load 8 32-bits coefs
        "vld1.32        {q14, q15}, [%[coefsN0]:128]! \n"// load 8 32-bits coefs

        "vsub.s32       q12, q12, q8                  \n"// interpolate (step1)
        "vsub.s32       q13, q13, q9                  \n"// interpolate (step1)
        "vsub.s32       q14, q14, q10                 \n"// interpolate (step1)
        "vsub.s32       q15, q15, q11                 \n"// interpolate (step1)

        "vqrdmulh.s32   q12, q12, d2[0]               \n"// interpolate (step2)
        "vqrdmulh.s32   q13, q13, d2[0]               \n"// interpolate (step2)
        "vqrdmulh.s32   q14, q14, d2[0]               \n"// interpolate (step2)
        "vqrdmulh.s32   q15, q15, d2[0]               \n"// interpolate (step2)

        "vadd.s32       q8, q8, q12                   \n"// interpolate (step3)
        "vadd.s32       q9, q9, q13                   \n"// interpolate (step3)
        "vadd.s32       q10, q10, q14                 \n"// interpolate (step3)
        "vadd.s32       q11, q11, q15                 \n"// interpolate (step3)

        "vrev64.16      q2, q2                        \n"// reverse 8 samples of positive left
        "vrev64.16      q3, q3                        \n"// reverse 8 samples of positive right

        "vshll.s16      q12,  d4, #15                 \n"// extend samples to 31 bits
        "vshll.s16      q13,  d5, #15                 \n"// extend samples to 31 bits

        "vshll.s16      q14,  d10, #15                \n"// extend samples to 31 bits
        "vshll.s16      q15,  d11, #15                \n"// extend samples to 31 bits

        "vqrdmulh.s32   q12, q12, q9                  \n"// multiply samples by interpolated coef
        "vqrdmulh.s32   q13, q13, q8                  \n"// multiply samples by interpolated coef
        "vqrdmulh.s32   q14, q14, q10                 \n"// multiply samples by interpolated coef
        "vqrdmulh.s32   q15, q15, q11                 \n"// multiply samples by interpolated coef

        "vadd.s32       q0, q0, q12                   \n"// accumulate result
        "vadd.s32       q13, q13, q14                 \n"// accumulate result
        "vadd.s32       q0, q0, q15                   \n"// accumulate result
        "vadd.s32       q0, q0, q13                   \n"// accumulate result

        "vshll.s16      q12,  d6, #15                 \n"// extend samples to 31 bits
        "vshll.s16      q13,  d7, #15                 \n"// extend samples to 31 bits

        "vshll.s16      q14,  d12, #15                \n"// extend samples to 31 bits
        "vshll.s16      q15,  d13, #15                \n"// extend samples to 31 bits

        "vqrdmulh.s32   q12, q12, q9                  \n"// multiply samples by interpolated coef
        "vqrdmulh.s32   q13, q13, q8                  \n"// multiply samples by interpolated coef
        "vqrdmulh.s32   q14, q14, q10                 \n"// multiply samples by interpolated coef
        "vqrdmulh.s32   q15, q15, q11                 \n"// multiply samples by interpolated coef

        "vadd.s32       q4, q4, q12                   \n"// accumulate result
        "vadd.s32       q13, q13, q14                 \n"// accumulate result
        "vadd.s32       q4, q4, q15                   \n"// accumulate result
        "vadd.s32       q4, q4, q13                   \n"// accumulate result

        "subs           %[count], %[count], #8        \n"// update loop counter
        "sub            %[sP], %[sP], #32             \n"// move pointer to next set of samples

        "bne            1b                            \n"// loop

        ASSEMBLY_ACCUMULATE_STEREO

        : [out]     "=Uv" (out[0]),
          [count]   "+r" (count),
          [coefsP0] "+r" (coefsP),
          [coefsN0] "+r" (coefsN),
          [coefsP1] "+r" (coefsP1),
          [coefsN1] "+r" (coefsN1),
          [sP]      "+r" (sP),
          [sN]      "+r" (sN)
        : [lerpP]   "r" (lerpP),
          [vLR]     "r" (volumeLR)
        : "cc", "memory",
          "q0", "q1", "q2", "q3",
          "q4", "q5", "q6",
          "q8", "q9", "q10", "q11",
          "q12", "q13", "q14", "q15"
    );
#endif
}

template<>
inline void ProcessL<1, 16>(float* const out,
        int count,
        const float* coefsP,
        const float* coefsN,
        const float* sP,
        const float* sN,
        const float* const volumeLR)
{
    ProcessNeonIntrinsic<1, 16, true>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            0 /*lerpP*/, NULL /*coefsP1*/, NULL /*coefsN1*/);
}

template<>
inline void ProcessL<2, 16>(float* const out,
        int count,
        const float* coefsP,
        const float* coefsN,
        const float* sP,
        const float* sN,
        const float* const volumeLR)
{
    ProcessNeonIntrinsic<2, 16, true>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            0 /*lerpP*/, NULL /*coefsP1*/, NULL /*coefsN1*/);
}

template<>
inline void Process<1, 16>(float* const out,
        int count,
        const float* coefsP,
        const float* coefsN,
        const float* coefsP1,
        const float* coefsN1,
        const float* sP,
        const float* sN,
        float lerpP,
        const float* const volumeLR)
{
    ProcessNeonIntrinsic<1, 16, false>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            lerpP, coefsP1, coefsN1);
}

template<>
inline void Process<2, 16>(float* const out,
        int count,
        const float* coefsP,
        const float* coefsN,
        const float* coefsP1,
        const float* coefsN1,
        const float* sP,
        const float* sN,
        float lerpP,
        const float* const volumeLR)
{
    ProcessNeonIntrinsic<2, 16, false>(out, count, coefsP, coefsN, sP, sN, volumeLR,
            lerpP, coefsP1, coefsN1);
}

#endif //USE_NEON

} // namespace android

#endif /*ANDROID_AUDIO_RESAMPLER_FIR_PROCESS_NEON_H*/