summaryrefslogtreecommitdiffstats
path: root/libs/common_time/clock_recovery.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/common_time/clock_recovery.cpp')
-rw-r--r--libs/common_time/clock_recovery.cpp423
1 files changed, 423 insertions, 0 deletions
diff --git a/libs/common_time/clock_recovery.cpp b/libs/common_time/clock_recovery.cpp
new file mode 100644
index 0000000..3a7c70c
--- /dev/null
+++ b/libs/common_time/clock_recovery.cpp
@@ -0,0 +1,423 @@
+/*
+ * Copyright (C) 2011 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * A service that exchanges time synchronization information between
+ * a master that defines a timeline and clients that follow the timeline.
+ */
+
+#define __STDC_LIMIT_MACROS
+#define LOG_TAG "common_time"
+#include <utils/Log.h>
+#include <stdint.h>
+
+#include <common_time/local_clock.h>
+#include <assert.h>
+
+#include "clock_recovery.h"
+#include "common_clock.h"
+#ifdef TIME_SERVICE_DEBUG
+#include "diag_thread.h"
+#endif
+
+// Define log macro so we can make LOGV into LOGE when we are exclusively
+// debugging this code.
+#ifdef TIME_SERVICE_DEBUG
+#define LOG_TS ALOGE
+#else
+#define LOG_TS ALOGV
+#endif
+
+namespace android {
+
+ClockRecoveryLoop::ClockRecoveryLoop(LocalClock* local_clock,
+ CommonClock* common_clock) {
+ assert(NULL != local_clock);
+ assert(NULL != common_clock);
+
+ local_clock_ = local_clock;
+ common_clock_ = common_clock;
+
+ local_clock_can_slew_ = local_clock_->initCheck() &&
+ (local_clock_->setLocalSlew(0) == OK);
+ tgt_correction_ = 0;
+ cur_correction_ = 0;
+
+ // Precompute the max rate at which we are allowed to change the VCXO
+ // control.
+ uint64_t N = 0x10000ull * 1000ull;
+ uint64_t D = local_clock_->getLocalFreq() * kMinFullRangeSlewChange_mSec;
+ LinearTransform::reduce(&N, &D);
+ while ((N > INT32_MAX) || (D > UINT32_MAX)) {
+ N >>= 1;
+ D >>= 1;
+ LinearTransform::reduce(&N, &D);
+ }
+ time_to_cur_slew_.a_to_b_numer = static_cast<int32_t>(N);
+ time_to_cur_slew_.a_to_b_denom = static_cast<uint32_t>(D);
+
+ reset(true, true);
+
+#ifdef TIME_SERVICE_DEBUG
+ diag_thread_ = new DiagThread(common_clock_, local_clock_);
+ if (diag_thread_ != NULL) {
+ status_t res = diag_thread_->startWorkThread();
+ if (res != OK)
+ ALOGW("Failed to start A@H clock recovery diagnostic thread.");
+ } else
+ ALOGW("Failed to allocate diagnostic thread.");
+#endif
+}
+
+ClockRecoveryLoop::~ClockRecoveryLoop() {
+#ifdef TIME_SERVICE_DEBUG
+ diag_thread_->stopWorkThread();
+#endif
+}
+
+// Constants.
+const float ClockRecoveryLoop::dT = 1.0;
+const float ClockRecoveryLoop::Kc = 1.0f;
+const float ClockRecoveryLoop::Ti = 15.0f;
+const float ClockRecoveryLoop::Tf = 0.05;
+const float ClockRecoveryLoop::bias_Fc = 0.01;
+const float ClockRecoveryLoop::bias_RC = (dT / (2 * 3.14159f * bias_Fc));
+const float ClockRecoveryLoop::bias_Alpha = (dT / (bias_RC + dT));
+const int64_t ClockRecoveryLoop::panic_thresh_ = 50000;
+const int64_t ClockRecoveryLoop::control_thresh_ = 10000;
+const float ClockRecoveryLoop::COmin = -100.0f;
+const float ClockRecoveryLoop::COmax = 100.0f;
+const uint32_t ClockRecoveryLoop::kMinFullRangeSlewChange_mSec = 300;
+const int ClockRecoveryLoop::kSlewChangeStepPeriod_mSec = 10;
+
+
+void ClockRecoveryLoop::reset(bool position, bool frequency) {
+ Mutex::Autolock lock(&lock_);
+ reset_l(position, frequency);
+}
+
+uint32_t ClockRecoveryLoop::findMinRTTNdx(DisciplineDataPoint* data,
+ uint32_t count) {
+ uint32_t min_rtt = 0;
+ for (uint32_t i = 1; i < count; ++i)
+ if (data[min_rtt].rtt > data[i].rtt)
+ min_rtt = i;
+
+ return min_rtt;
+}
+
+bool ClockRecoveryLoop::pushDisciplineEvent(int64_t local_time,
+ int64_t nominal_common_time,
+ int64_t rtt) {
+ Mutex::Autolock lock(&lock_);
+
+ int64_t local_common_time = 0;
+ common_clock_->localToCommon(local_time, &local_common_time);
+ int64_t raw_delta = nominal_common_time - local_common_time;
+
+#ifdef TIME_SERVICE_DEBUG
+ ALOGE("local=%lld, common=%lld, delta=%lld, rtt=%lld\n",
+ local_common_time, nominal_common_time,
+ raw_delta, rtt);
+#endif
+
+ // If we have not defined a basis for common time, then we need to use these
+ // initial points to do so. In order to avoid significant initial error
+ // from a particularly bad startup data point, we collect the first N data
+ // points and choose the best of them before moving on.
+ if (!common_clock_->isValid()) {
+ if (startup_filter_wr_ < kStartupFilterSize) {
+ DisciplineDataPoint& d = startup_filter_data_[startup_filter_wr_];
+ d.local_time = local_time;
+ d.nominal_common_time = nominal_common_time;
+ d.rtt = rtt;
+ startup_filter_wr_++;
+ }
+
+ if (startup_filter_wr_ == kStartupFilterSize) {
+ uint32_t min_rtt = findMinRTTNdx(startup_filter_data_,
+ kStartupFilterSize);
+
+ common_clock_->setBasis(
+ startup_filter_data_[min_rtt].local_time,
+ startup_filter_data_[min_rtt].nominal_common_time);
+ }
+
+ return true;
+ }
+
+ int64_t observed_common;
+ int64_t delta;
+ float delta_f, dCO;
+ int32_t tgt_correction;
+
+ if (OK != common_clock_->localToCommon(local_time, &observed_common)) {
+ // Since we just checked to make certain that this conversion was valid,
+ // and no one else in the system should be messing with it, if this
+ // conversion is suddenly invalid, it is a good reason to panic.
+ ALOGE("Failed to convert local time to common time in %s:%d",
+ __PRETTY_FUNCTION__, __LINE__);
+ return false;
+ }
+
+ // Implement a filter which should match NTP filtering behavior when a
+ // client is associated with only one peer of lower stratum. Basically,
+ // always use the best of the N last data points, where best is defined as
+ // lowest round trip time. NTP uses an N of 8; we use a value of 6.
+ //
+ // TODO(johngro) : experiment with other filter strategies. The goal here
+ // is to mitigate the effects of high RTT data points which typically have
+ // large asymmetries in the TX/RX legs. Downside of the existing NTP
+ // approach (particularly because of the PID controller we are using to
+ // produce the control signal from the filtered data) are that the rate at
+ // which discipline events are actually acted upon becomes irregular and can
+ // become drawn out (the time between actionable event can go way up). If
+ // the system receives a strong high quality data point, the proportional
+ // component of the controller can produce a strong correction which is left
+ // in place for too long causing overshoot. In addition, the integral
+ // component of the system currently is an approximation based on the
+ // assumption of a more or less homogeneous sampling of the error. Its
+ // unclear what the effect of undermining this assumption would be right
+ // now.
+
+ // Two ideas which come to mind immediately would be to...
+ // 1) Keep a history of more data points (32 or so) and ignore data points
+ // whose RTT is more than a certain number of standard deviations outside
+ // of the norm.
+ // 2) Eliminate the PID controller portion of this system entirely.
+ // Instead, move to a system which uses a very wide filter (128 data
+ // points or more) with a sum-of-least-squares line fitting approach to
+ // tracking the long term drift. This would take the place of the I
+ // component in the current PID controller. Also use a much more narrow
+ // outlier-rejector filter (as described in #1) to drive a short term
+ // correction factor similar to the P component of the PID controller.
+ assert(filter_wr_ < kFilterSize);
+ filter_data_[filter_wr_].local_time = local_time;
+ filter_data_[filter_wr_].observed_common_time = observed_common;
+ filter_data_[filter_wr_].nominal_common_time = nominal_common_time;
+ filter_data_[filter_wr_].rtt = rtt;
+ filter_data_[filter_wr_].point_used = false;
+ uint32_t current_point = filter_wr_;
+ filter_wr_ = (filter_wr_ + 1) % kFilterSize;
+ if (!filter_wr_)
+ filter_full_ = true;
+
+ uint32_t scan_end = filter_full_ ? kFilterSize : filter_wr_;
+ uint32_t min_rtt = findMinRTTNdx(filter_data_, scan_end);
+ // We only use packets with low RTTs for control. If the packet RTT
+ // is less than the panic threshold, we can probably eat the jitter with the
+ // control loop. Otherwise, take the packet only if it better than all
+ // of the packets we have in the history. That way we try to track
+ // something, even if it is noisy.
+ if (current_point == min_rtt || rtt < control_thresh_) {
+ delta_f = delta = nominal_common_time - observed_common;
+
+ last_error_est_valid_ = true;
+ last_error_est_usec_ = delta;
+
+ // Compute the error then clamp to the panic threshold. If we ever
+ // exceed this amt of error, its time to panic and reset the system.
+ // Given that the error in the measurement of the error could be as
+ // high as the RTT of the data point, we don't actually panic until
+ // the implied error (delta) is greater than the absolute panic
+ // threashold plus the RTT. IOW - we don't panic until we are
+ // absoluely sure that our best case sync is worse than the absolute
+ // panic threshold.
+ int64_t effective_panic_thresh = panic_thresh_ + rtt;
+ if ((delta > effective_panic_thresh) ||
+ (delta < -effective_panic_thresh)) {
+ // PANIC!!!
+ reset_l(false, true);
+ return false;
+ }
+
+ } else {
+ // We do not have a good packet to look at, but we also do not want to
+ // free-run the clock at some crazy slew rate. So we guess the
+ // trajectory of the clock based on the last controller output and the
+ // estimated bias of our clock against the master.
+ // The net effect of this is that CO == CObias after some extended
+ // period of no feedback.
+ delta_f = last_delta_f_ - dT*(CO - CObias);
+ delta = delta_f;
+ }
+
+ // Velocity form PI control equation.
+ dCO = Kc * (1.0f + dT/Ti) * delta_f - Kc * last_delta_f_;
+ CO += dCO * Tf; // Filter CO by applying gain <1 here.
+
+ // Save error terms for later.
+ last_delta_f_ = delta_f;
+
+ // Clamp CO to +/- 100ppm.
+ if (CO < COmin)
+ CO = COmin;
+ else if (CO > COmax)
+ CO = COmax;
+
+ // Update the controller bias.
+ CObias = bias_Alpha * CO + (1.0f - bias_Alpha) * lastCObias;
+ lastCObias = CObias;
+
+ // Convert PPM to 16-bit int range. Add some guard band (-0.01) so we
+ // don't get fp weirdness.
+ tgt_correction = CO * 327.66;
+
+ // If there was a change in the amt of correction to use, update the
+ // system.
+ setTargetCorrection_l(tgt_correction);
+
+ LOG_TS("clock_loop %lld %f %f %f %d\n", raw_delta, delta_f, CO, CObias, tgt_correction);
+
+#ifdef TIME_SERVICE_DEBUG
+ diag_thread_->pushDisciplineEvent(
+ local_time,
+ observed_common,
+ nominal_common_time,
+ tgt_correction,
+ rtt);
+#endif
+
+ return true;
+}
+
+int32_t ClockRecoveryLoop::getLastErrorEstimate() {
+ Mutex::Autolock lock(&lock_);
+
+ if (last_error_est_valid_)
+ return last_error_est_usec_;
+ else
+ return ICommonClock::kErrorEstimateUnknown;
+}
+
+void ClockRecoveryLoop::reset_l(bool position, bool frequency) {
+ assert(NULL != common_clock_);
+
+ if (position) {
+ common_clock_->resetBasis();
+ startup_filter_wr_ = 0;
+ }
+
+ if (frequency) {
+ last_error_est_valid_ = false;
+ last_error_est_usec_ = 0;
+ last_delta_f_ = 0.0;
+ CO = 0.0f;
+ lastCObias = CObias = 0.0f;
+ setTargetCorrection_l(0);
+ applySlew_l();
+ }
+
+ filter_wr_ = 0;
+ filter_full_ = false;
+}
+
+void ClockRecoveryLoop::setTargetCorrection_l(int32_t tgt) {
+ // When we make a change to the slew rate, we need to be careful to not
+ // change it too quickly as it can anger some HDMI sinks out there, notably
+ // some Sony panels from the 2010-2011 timeframe. From experimenting with
+ // some of these sinks, it seems like swinging from one end of the range to
+ // another in less that 190mSec or so can start to cause trouble. Adding in
+ // a hefty margin, we limit the system to a full range sweep in no less than
+ // 300mSec.
+ if (tgt_correction_ != tgt) {
+ int64_t now = local_clock_->getLocalTime();
+ status_t res;
+
+ tgt_correction_ = tgt;
+
+ // Set up the transformation to figure out what the slew should be at
+ // any given point in time in the future.
+ time_to_cur_slew_.a_zero = now;
+ time_to_cur_slew_.b_zero = cur_correction_;
+
+ // Make sure the sign of the slope is headed in the proper direction.
+ bool needs_increase = (cur_correction_ < tgt_correction_);
+ bool is_increasing = (time_to_cur_slew_.a_to_b_numer > 0);
+ if (( needs_increase && !is_increasing) ||
+ (!needs_increase && is_increasing)) {
+ time_to_cur_slew_.a_to_b_numer = -time_to_cur_slew_.a_to_b_numer;
+ }
+
+ // Finally, figure out when the change will be finished and start the
+ // slew operation.
+ time_to_cur_slew_.doReverseTransform(tgt_correction_,
+ &slew_change_end_time_);
+
+ applySlew_l();
+ }
+}
+
+bool ClockRecoveryLoop::applySlew_l() {
+ bool ret = true;
+
+ // If cur == tgt, there is no ongoing sleq rate change and we are already
+ // finished.
+ if (cur_correction_ == tgt_correction_)
+ goto bailout;
+
+ if (local_clock_can_slew_) {
+ int64_t now = local_clock_->getLocalTime();
+ int64_t tmp;
+
+ if (now >= slew_change_end_time_) {
+ cur_correction_ = tgt_correction_;
+ next_slew_change_timeout_.setTimeout(-1);
+ } else {
+ time_to_cur_slew_.doForwardTransform(now, &tmp);
+
+ if (tmp > INT16_MAX)
+ cur_correction_ = INT16_MAX;
+ else if (tmp < INT16_MIN)
+ cur_correction_ = INT16_MIN;
+ else
+ cur_correction_ = static_cast<int16_t>(tmp);
+
+ next_slew_change_timeout_.setTimeout(kSlewChangeStepPeriod_mSec);
+ ret = false;
+ }
+
+ local_clock_->setLocalSlew(cur_correction_);
+ } else {
+ // Since we are not actually changing the rate of a HW clock, we don't
+ // need to worry to much about changing the slew rate so fast that we
+ // anger any downstream HDMI devices.
+ cur_correction_ = tgt_correction_;
+ next_slew_change_timeout_.setTimeout(-1);
+
+ // The SW clock recovery implemented by the common clock class expects
+ // values expressed in PPM. CO is in ppm.
+ common_clock_->setSlew(local_clock_->getLocalTime(), CO);
+ }
+
+bailout:
+ return ret;
+}
+
+int ClockRecoveryLoop::applyRateLimitedSlew() {
+ Mutex::Autolock lock(&lock_);
+
+ int ret = next_slew_change_timeout_.msecTillTimeout();
+ if (!ret) {
+ if (applySlew_l())
+ next_slew_change_timeout_.setTimeout(-1);
+ ret = next_slew_change_timeout_.msecTillTimeout();
+ }
+
+ return ret;
+}
+
+} // namespace android