diff options
Diffstat (limited to 'libs/hwui/AmbientShadow.cpp')
-rw-r--r-- | libs/hwui/AmbientShadow.cpp | 326 |
1 files changed, 326 insertions, 0 deletions
diff --git a/libs/hwui/AmbientShadow.cpp b/libs/hwui/AmbientShadow.cpp new file mode 100644 index 0000000..c1af5f5 --- /dev/null +++ b/libs/hwui/AmbientShadow.cpp @@ -0,0 +1,326 @@ +/* + * Copyright (C) 2013 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#define LOG_TAG "OpenGLRenderer" + +#include <math.h> +#include <utils/Log.h> +#include <utils/Vector.h> + +#include "AmbientShadow.h" +#include "ShadowTessellator.h" +#include "Vertex.h" + +namespace android { +namespace uirenderer { + +/** + * Calculate the shadows as a triangle strips while alpha value as the + * shadow values. + * + * @param isCasterOpaque Whether the caster is opaque. + * @param vertices The shadow caster's polygon, which is represented in a Vector3 + * array. + * @param vertexCount The length of caster's polygon in terms of number of + * vertices. + * @param centroid3d The centroid of the shadow caster. + * @param heightFactor The factor showing the higher the object, the lighter the + * shadow. + * @param geomFactor The factor scaling the geometry expansion along the normal. + * + * @param shadowVertexBuffer Return an floating point array of (x, y, a) + * triangle strips mode. + */ +VertexBufferMode AmbientShadow::createAmbientShadow(bool isCasterOpaque, + const Vector3* vertices, int vertexCount, const Vector3& centroid3d, + float heightFactor, float geomFactor, VertexBuffer& shadowVertexBuffer) { + const int rays = SHADOW_RAY_COUNT; + VertexBufferMode mode = kVertexBufferMode_OnePolyRingShadow; + // Validate the inputs. + if (vertexCount < 3 || heightFactor <= 0 || rays <= 0 + || geomFactor <= 0) { +#if DEBUG_SHADOW + ALOGW("Invalid input for createAmbientShadow(), early return!"); +#endif + return mode; // vertex buffer is empty, so any mode doesn't matter. + } + + Vector<Vector2> dir; // TODO: use C++11 unique_ptr + dir.setCapacity(rays); + float rayDist[rays]; + float rayHeight[rays]; + calculateRayDirections(rays, vertices, vertexCount, centroid3d, dir.editArray()); + + // Calculate the length and height of the points along the edge. + // + // The math here is: + // Intersect each ray (starting from the centroid) with the polygon. + for (int i = 0; i < rays; i++) { + int edgeIndex; + float edgeFraction; + float rayDistance; + calculateIntersection(vertices, vertexCount, centroid3d, dir[i], edgeIndex, + edgeFraction, rayDistance); + rayDist[i] = rayDistance; + if (edgeIndex < 0 || edgeIndex >= vertexCount) { +#if DEBUG_SHADOW + ALOGW("Invalid edgeIndex!"); +#endif + edgeIndex = 0; + } + float h1 = vertices[edgeIndex].z; + float h2 = vertices[((edgeIndex + 1) % vertexCount)].z; + rayHeight[i] = h1 + edgeFraction * (h2 - h1); + } + + // The output buffer length basically is roughly rays * layers, but since we + // need triangle strips, so we need to duplicate vertices to accomplish that. + AlphaVertex* shadowVertices = + shadowVertexBuffer.alloc<AlphaVertex>(SHADOW_VERTEX_COUNT); + + // Calculate the vertex of the shadows. + // + // The math here is: + // Along the edges of the polygon, for each intersection point P (generated above), + // calculate the normal N, which should be perpendicular to the edge of the + // polygon (represented by the neighbor intersection points) . + // Shadow's vertices will be generated as : P + N * scale. + const Vector2 centroid2d = Vector2(centroid3d.x, centroid3d.y); + for (int rayIndex = 0; rayIndex < rays; rayIndex++) { + Vector2 normal(1.0f, 0.0f); + calculateNormal(rays, rayIndex, dir.array(), rayDist, normal); + + // The vertex should be start from rayDist[i] then scale the + // normalizeNormal! + Vector2 intersection = dir[rayIndex] * rayDist[rayIndex] + + centroid2d; + + // outer ring of points, expanded based upon height of each ray intersection + float expansionDist = rayHeight[rayIndex] * heightFactor * + geomFactor; + AlphaVertex::set(&shadowVertices[rayIndex], + intersection.x + normal.x * expansionDist, + intersection.y + normal.y * expansionDist, + 0.0f); + + // inner ring of points + float opacity = 1.0 / (1 + rayHeight[rayIndex] * heightFactor); + AlphaVertex::set(&shadowVertices[rays + rayIndex], + intersection.x, + intersection.y, + opacity); + } + + // If caster isn't opaque, we need to to fill the umbra by storing the umbra's + // centroid in the innermost ring of vertices. + if (!isCasterOpaque) { + mode = kVertexBufferMode_TwoPolyRingShadow; + float centroidAlpha = 1.0 / (1 + centroid3d.z * heightFactor); + AlphaVertex centroidXYA; + AlphaVertex::set(¢roidXYA, centroid2d.x, centroid2d.y, centroidAlpha); + for (int rayIndex = 0; rayIndex < rays; rayIndex++) { + shadowVertices[2 * rays + rayIndex] = centroidXYA; + } + } + +#if DEBUG_SHADOW + for (int i = 0; i < SHADOW_VERTEX_COUNT; i++) { + ALOGD("ambient shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x, + shadowVertices[i].y, shadowVertices[i].alpha); + } +#endif + return mode; +} + +/** + * Generate an array of rays' direction vectors. + * To make sure the vertices generated are clockwise, the directions are from PI + * to -PI. + * + * @param rays The number of rays shooting out from the centroid. + * @param vertices Vertices of the polygon. + * @param vertexCount The number of vertices. + * @param centroid3d The centroid of the polygon. + * @param dir Return the array of ray vectors. + */ +void AmbientShadow::calculateRayDirections(const int rays, const Vector3* vertices, + const int vertexCount, const Vector3& centroid3d, Vector2* dir) { + // If we don't have enough rays, then fall back to the uniform distribution. + if (vertexCount * 2 > rays) { + float deltaAngle = 2 * M_PI / rays; + for (int i = 0; i < rays; i++) { + dir[i].x = cosf(M_PI - deltaAngle * i); + dir[i].y = sinf(M_PI - deltaAngle * i); + } + return; + } + + // If we have enough rays, then we assign each vertices a ray, and distribute + // the rest uniformly. + float rayThetas[rays]; + + const int uniformRayCount = rays - vertexCount; + const float deltaAngle = 2 * M_PI / uniformRayCount; + + // We have to generate all the vertices' theta anyway and we also need to + // find the minimal, so let's precompute it first. + // Since the incoming polygon is clockwise, we can find the dip to identify + // the minimal theta. + float polyThetas[vertexCount]; + int maxPolyThetaIndex = 0; + for (int i = 0; i < vertexCount; i++) { + polyThetas[i] = atan2(vertices[i].y - centroid3d.y, + vertices[i].x - centroid3d.x); + if (i > 0 && polyThetas[i] > polyThetas[i - 1]) { + maxPolyThetaIndex = i; + } + } + + // Both poly's thetas and uniform thetas are in decrease order(clockwise) + // from PI to -PI. + int polyThetaIndex = maxPolyThetaIndex; + float polyTheta = polyThetas[maxPolyThetaIndex]; + int uniformThetaIndex = 0; + float uniformTheta = M_PI; + for (int i = 0; i < rays; i++) { + // Compare both thetas and pick the smaller one and move on. + bool hasThetaCollision = abs(polyTheta - uniformTheta) < MINIMAL_DELTA_THETA; + if (polyTheta > uniformTheta || hasThetaCollision) { + if (hasThetaCollision) { + // Shift the uniformTheta to middle way between current polyTheta + // and next uniform theta. The next uniform theta can wrap around + // to exactly PI safely here. + // Note that neither polyTheta nor uniformTheta can be FLT_MAX + // due to the hasThetaCollision is true. + uniformTheta = (polyTheta + M_PI - deltaAngle * (uniformThetaIndex + 1)) / 2; +#if DEBUG_SHADOW + ALOGD("Shifted uniformTheta to %f", uniformTheta); +#endif + } + rayThetas[i] = polyTheta; + polyThetaIndex = (polyThetaIndex + 1) % vertexCount; + if (polyThetaIndex != maxPolyThetaIndex) { + polyTheta = polyThetas[polyThetaIndex]; + } else { + // out of poly points. + polyTheta = - FLT_MAX; + } + } else { + rayThetas[i] = uniformTheta; + uniformThetaIndex++; + if (uniformThetaIndex < uniformRayCount) { + uniformTheta = M_PI - deltaAngle * uniformThetaIndex; + } else { + // out of uniform points. + uniformTheta = - FLT_MAX; + } + } + } + + for (int i = 0; i < rays; i++) { +#if DEBUG_SHADOW + ALOGD("No. %d : %f", i, rayThetas[i] * 180 / M_PI); +#endif + // TODO: Fix the intersection precision problem and remvoe the delta added + // here. + dir[i].x = cosf(rayThetas[i] + MINIMAL_DELTA_THETA); + dir[i].y = sinf(rayThetas[i] + MINIMAL_DELTA_THETA); + } +} + +/** + * Calculate the intersection of a ray hitting the polygon. + * + * @param vertices The shadow caster's polygon, which is represented in a + * Vector3 array. + * @param vertexCount The length of caster's polygon in terms of number of vertices. + * @param start The starting point of the ray. + * @param dir The direction vector of the ray. + * + * @param outEdgeIndex Return the index of the segment (or index of the starting + * vertex) that ray intersect with. + * @param outEdgeFraction Return the fraction offset from the segment starting + * index. + * @param outRayDist Return the ray distance from centroid to the intersection. + */ +void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount, + const Vector3& start, const Vector2& dir, int& outEdgeIndex, + float& outEdgeFraction, float& outRayDist) { + float startX = start.x; + float startY = start.y; + float dirX = dir.x; + float dirY = dir.y; + // Start the search from the last edge from poly[len-1] to poly[0]. + int p1 = vertexCount - 1; + + for (int p2 = 0; p2 < vertexCount; p2++) { + float p1x = vertices[p1].x; + float p1y = vertices[p1].y; + float p2x = vertices[p2].x; + float p2y = vertices[p2].y; + + // The math here is derived from: + // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0; + // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0; + float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x); + if (div != 0) { + float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div); + if (t > 0 && t <= 1) { + float t2 = (p1x * (startY - p2y) + + p2x * (p1y - startY) + + startX * (p2y - p1y)) / div; + if (t2 > 0) { + outEdgeIndex = p1; + outRayDist = t2; + outEdgeFraction = t; + return; + } + } + } + p1 = p2; + } + return; +}; + +/** + * Calculate the normal at the intersection point between a ray and the polygon. + * + * @param rays The total number of rays. + * @param currentRayIndex The index of the ray which the normal is based on. + * @param dir The array of the all the rays directions. + * @param rayDist The pre-computed ray distances array. + * + * @param normal Return the normal. + */ +void AmbientShadow::calculateNormal(int rays, int currentRayIndex, + const Vector2* dir, const float* rayDist, Vector2& normal) { + int preIndex = (currentRayIndex - 1 + rays) % rays; + int postIndex = (currentRayIndex + 1) % rays; + Vector2 p1 = dir[preIndex] * rayDist[preIndex]; + Vector2 p2 = dir[postIndex] * rayDist[postIndex]; + + // Now the rays are going CW around the poly. + Vector2 delta = p2 - p1; + if (delta.length() != 0) { + delta.normalize(); + // Calculate the normal , which is CCW 90 rotate to the delta. + normal.x = - delta.y; + normal.y = delta.x; + } +} + +}; // namespace uirenderer +}; // namespace android |