summaryrefslogtreecommitdiffstats
path: root/location/java/android/location/GpsMeasurement.java
diff options
context:
space:
mode:
Diffstat (limited to 'location/java/android/location/GpsMeasurement.java')
-rw-r--r--location/java/android/location/GpsMeasurement.java1387
1 files changed, 1387 insertions, 0 deletions
diff --git a/location/java/android/location/GpsMeasurement.java b/location/java/android/location/GpsMeasurement.java
new file mode 100644
index 0000000..1550dc2
--- /dev/null
+++ b/location/java/android/location/GpsMeasurement.java
@@ -0,0 +1,1387 @@
+/*
+ * Copyright (C) 2014 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License
+ */
+
+package android.location;
+
+import android.os.Parcel;
+import android.os.Parcelable;
+import android.util.Log;
+
+/**
+ * A class representing a GPS satellite measurement, containing raw and computed information.
+ *
+ * @hide
+ */
+public class GpsMeasurement implements Parcelable {
+ private static final String TAG = "GpsMeasurement";
+
+ private int mFlags;
+ private byte mPrn;
+ private double mTimeOffsetInNs;
+ private short mState;
+ private long mReceivedGpsTowInNs;
+ private long mReceivedGpsTowUncertaintyInNs;
+ private double mCn0InDbHz;
+ private double mPseudorangeRateInMetersPerSec;
+ private double mPseudorangeRateUncertaintyInMetersPerSec;
+ private short mAccumulatedDeltaRangeState;
+ private double mAccumulatedDeltaRangeInMeters;
+ private double mAccumulatedDeltaRangeUncertaintyInMeters;
+ private double mPseudorangeInMeters;
+ private double mPseudorangeUncertaintyInMeters;
+ private double mCodePhaseInChips;
+ private double mCodePhaseUncertaintyInChips;
+ private float mCarrierFrequencyInHz;
+ private long mCarrierCycles;
+ private double mCarrierPhase;
+ private double mCarrierPhaseUncertainty;
+ private byte mLossOfLock;
+ private int mBitNumber;
+ private short mTimeFromLastBitInMs;
+ private double mDopplerShiftInHz;
+ private double mDopplerShiftUncertaintyInHz;
+ private byte mMultipathIndicator;
+ private double mSnrInDb;
+ private double mElevationInDeg;
+ private double mElevationUncertaintyInDeg;
+ private double mAzimuthInDeg;
+ private double mAzimuthUncertaintyInDeg;
+ private boolean mUsedInFix;
+
+ // The following enumerations must be in sync with the values declared in gps.h
+
+ private static final int HAS_NO_FLAGS = 0;
+ private static final int HAS_SNR = (1<<0);
+ private static final int HAS_ELEVATION = (1<<1);
+ private static final int HAS_ELEVATION_UNCERTAINTY = (1<<2);
+ private static final int HAS_AZIMUTH = (1<<3);
+ private static final int HAS_AZIMUTH_UNCERTAINTY = (1<<4);
+ private static final int HAS_PSEUDORANGE = (1<<5);
+ private static final int HAS_PSEUDORANGE_UNCERTAINTY = (1<<6);
+ private static final int HAS_CODE_PHASE = (1<<7);
+ private static final int HAS_CODE_PHASE_UNCERTAINTY = (1<<8);
+ private static final int HAS_CARRIER_FREQUENCY = (1<<9);
+ private static final int HAS_CARRIER_CYCLES = (1<<10);
+ private static final int HAS_CARRIER_PHASE = (1<<11);
+ private static final int HAS_CARRIER_PHASE_UNCERTAINTY = (1<<12);
+ private static final int HAS_BIT_NUMBER = (1<<13);
+ private static final int HAS_TIME_FROM_LAST_BIT = (1<<14);
+ private static final int HAS_DOPPLER_SHIFT = (1<<15);
+ private static final int HAS_DOPPLER_SHIFT_UNCERTAINTY = (1<<16);
+
+ /**
+ * The indicator is not available or it is unknown.
+ */
+ public static final byte LOSS_OF_LOCK_UNKNOWN = 0;
+
+ /**
+ * The measurement does not present any indication of 'loss of lock'.
+ */
+ public static final byte LOSS_OF_LOCK_OK = 1;
+
+ /**
+ * 'Loss of lock' detected between the previous and current observation: cycle slip possible.
+ */
+ public static final byte LOSS_OF_LOCK_CYCLE_SLIP = 2;
+
+ /**
+ * The indicator is not available or it is unknown.
+ */
+ public static final byte MULTIPATH_INDICATOR_UNKNOWN = 0;
+
+ /**
+ * The measurement has been indicated to use multi-path.
+ */
+ public static final byte MULTIPATH_INDICATOR_DETECTED = 1;
+
+ /**
+ * The measurement has been indicated not tu use multi-path.
+ */
+ public static final byte MULTIPATH_INDICATOR_NOT_USED = 2;
+
+ /**
+ * The state of GPS receiver the measurement is invalid or unknown.
+ */
+ public static final short STATE_UNKNOWN = 0;
+
+ /**
+ * The state of the GPS receiver is ranging code lock.
+ */
+ public static final short STATE_CODE_LOCK = (1<<0);
+
+ /**
+ * The state of the GPS receiver is in bit sync.
+ */
+ public static final short STATE_BIT_SYNC = (1<<1);
+
+ /**
+ *The state of the GPS receiver is in sub-frame sync.
+ */
+ public static final short STATE_SUBFRAME_SYNC = (1<<2);
+
+ /**
+ * The state of the GPS receiver has TOW decoded.
+ */
+ public static final short STATE_TOW_DECODED = (1<<3);
+
+ /**
+ * The state of the 'Accumulated Delta Range' is invalid or unknown.
+ */
+ public static final short ADR_STATE_UNKNOWN = 0;
+
+ /**
+ * The state of the 'Accumulated Delta Range' is valid.
+ */
+ public static final short ADR_STATE_VALID = (1<<0);
+
+ /**
+ * The state of the 'Accumulated Delta Range' has detected a reset.
+ */
+ public static final short ADR_STATE_RESET = (1<<1);
+
+ /**
+ * The state of the 'Accumulated Delta Range' has a cycle slip detected.
+ */
+ public static final short ADR_STATE_CYCLE_SLIP = (1<<2);
+
+ // End enumerations in sync with gps.h
+
+ GpsMeasurement() {
+ initialize();
+ }
+
+ /**
+ * Sets all contents to the values stored in the provided object.
+ */
+ public void set(GpsMeasurement measurement) {
+ mFlags = measurement.mFlags;
+ mPrn = measurement.mPrn;
+ mTimeOffsetInNs = measurement.mTimeOffsetInNs;
+ mState = measurement.mState;
+ mReceivedGpsTowInNs = measurement.mReceivedGpsTowInNs;
+ mReceivedGpsTowUncertaintyInNs = measurement.mReceivedGpsTowUncertaintyInNs;
+ mCn0InDbHz = measurement.mCn0InDbHz;
+ mPseudorangeRateInMetersPerSec = measurement.mPseudorangeRateInMetersPerSec;
+ mPseudorangeRateUncertaintyInMetersPerSec =
+ measurement.mPseudorangeRateUncertaintyInMetersPerSec;
+ mAccumulatedDeltaRangeState = measurement.mAccumulatedDeltaRangeState;
+ mAccumulatedDeltaRangeInMeters = measurement.mAccumulatedDeltaRangeInMeters;
+ mAccumulatedDeltaRangeUncertaintyInMeters =
+ measurement.mAccumulatedDeltaRangeUncertaintyInMeters;
+ mPseudorangeInMeters = measurement.mPseudorangeInMeters;
+ mPseudorangeUncertaintyInMeters = measurement.mPseudorangeUncertaintyInMeters;
+ mCodePhaseInChips = measurement.mCodePhaseInChips;
+ mCodePhaseUncertaintyInChips = measurement.mCodePhaseUncertaintyInChips;
+ mCarrierFrequencyInHz = measurement.mCarrierFrequencyInHz;
+ mCarrierCycles = measurement.mCarrierCycles;
+ mCarrierPhase = measurement.mCarrierPhase;
+ mCarrierPhaseUncertainty = measurement.mCarrierPhaseUncertainty;
+ mLossOfLock = measurement.mLossOfLock;
+ mBitNumber = measurement.mBitNumber;
+ mTimeFromLastBitInMs = measurement.mTimeFromLastBitInMs;
+ mDopplerShiftInHz = measurement.mDopplerShiftInHz;
+ mDopplerShiftUncertaintyInHz = measurement.mDopplerShiftUncertaintyInHz;
+ mMultipathIndicator = measurement.mMultipathIndicator;
+ mSnrInDb = measurement.mSnrInDb;
+ mElevationInDeg = measurement.mElevationInDeg;
+ mElevationUncertaintyInDeg = measurement.mElevationUncertaintyInDeg;
+ mAzimuthInDeg = measurement.mAzimuthInDeg;
+ mAzimuthUncertaintyInDeg = measurement.mAzimuthUncertaintyInDeg;
+ mUsedInFix = measurement.mUsedInFix;
+ }
+
+ /**
+ * Resets all the contents to its original state.
+ */
+ public void reset() {
+ initialize();
+ }
+
+ /**
+ * Gets the Pseudo-random number (PRN).
+ * Range: [1, 32]
+ */
+ public byte getPrn() {
+ return mPrn;
+ }
+
+ /**
+ * Sets the Pseud-random number (PRN).
+ */
+ public void setPrn(byte value) {
+ mPrn = value;
+ }
+
+ /**
+ * Gets the time offset at which the measurement was taken in nanoseconds.
+ * The reference receiver's time is specified by {@link GpsClock#getTimeInNs()} and should be
+ * interpreted in the same way as indicated by {@link GpsClock#getType()}.
+ *
+ * The sign of this value is given by the following equation:
+ * measurement time = time_ns + time_offset_ns
+ *
+ * The value provides an individual time-stamp for the measurement, and allows sub-nanosecond
+ * accuracy.
+ */
+ public double getTimeOffsetInNs() {
+ return mTimeOffsetInNs;
+ }
+
+ /**
+ * Sets the time offset at which the measurement was taken in nanoseconds.
+ */
+ public void setTimeOffsetInNs(double value) {
+ mTimeOffsetInNs = value;
+ }
+
+ /**
+ * Gets per-satellite sync state.
+ * It represents the current sync state for the associated satellite.
+ *
+ * This value helps interpret {@link #getReceivedGpsTowInNs()}.
+ */
+ public short getState() {
+ return mState;
+ }
+
+ /**
+ * Sets the sync state.
+ */
+ public void setState(short value) {
+ switch (value) {
+ case STATE_UNKNOWN:
+ case STATE_BIT_SYNC:
+ case STATE_CODE_LOCK:
+ case STATE_SUBFRAME_SYNC:
+ case STATE_TOW_DECODED:
+ mState = value;
+ break;
+ default:
+ Log.d(TAG, "Sanitizing invalid 'sync state': " + value);
+ mState = STATE_UNKNOWN;
+ break;
+ }
+ }
+
+ /**
+ * Gets a string representation of the 'sync state'.
+ * For internal and logging use only.
+ */
+ private String getStateString() {
+ switch (mState) {
+ case STATE_UNKNOWN:
+ return "Unknown";
+ case STATE_BIT_SYNC:
+ return "BitSync";
+ case STATE_CODE_LOCK:
+ return "CodeLock";
+ case STATE_SUBFRAME_SYNC:
+ return "SubframeSync";
+ case STATE_TOW_DECODED:
+ return "TowDecoded";
+ default:
+ return "<Invalid>";
+ }
+ }
+
+ /**
+ * Gets the received GPS Time-of-Week at the measurement time, in nanoseconds.
+ * The value is relative to the beginning of the current GPS week.
+ *
+ * Given {@link #getState()} of the GPS receiver, the range of this field can be:
+ * Searching : [ 0 ] : {@link #STATE_UNKNOWN} is set
+ * Ranging code lock : [ 0 1 ms ] : {@link #STATE_CODE_LOCK} is set
+ * Bit sync : [ 0 20 ms ] : {@link #STATE_BIT_SYNC} is set
+ * Subframe sync : [ 0 6 ms ] : {@link #STATE_SUBFRAME_SYNC} is set
+ * TOW decoded : [ 0 1 week ] : {@link #STATE_TOW_DECODED} is set
+ */
+ public long getReceivedGpsTowInNs() {
+ return mReceivedGpsTowInNs;
+ }
+
+ /**
+ * Sets the received GPS time-of-week in nanoseconds.
+ */
+ public void setReceivedGpsTowInNs(long value) {
+ mReceivedGpsTowInNs = value;
+ }
+
+ /**
+ * Gets the received GPS time-of-week's uncertainty (1-Sigma) in nanoseconds.
+ */
+ public long getReceivedGpsTowUncertaintyInNs() {
+ return mReceivedGpsTowUncertaintyInNs;
+ }
+
+ /**
+ * Sets the received GPS time-of-week's uncertainty (1-Sigma) in nanoseconds.
+ */
+ public void setReceivedGpsTowUncertaintyInNs(long value) {
+ mReceivedGpsTowUncertaintyInNs = value;
+ }
+
+ /**
+ * Gets the Carrier-to-noise density in dB-Hz.
+ * Range: [0, 63].
+ *
+ * The value contains the measured C/N0 for the signal at the antenna input.
+ */
+ public double getCn0InDbHz() {
+ return mCn0InDbHz;
+ }
+
+ /**
+ * Sets the carrier-to-noise density in dB-Hz.
+ */
+ public void setCn0InDbHz(double value) {
+ mCn0InDbHz = value;
+ }
+
+ /**
+ * Gets the Pseudorange rate at the timestamp in m/s.
+ * The reported value includes {@link #getPseudorangeRateUncertaintyInMetersPerSec()}.
+ */
+ public double getPseudorangeRateInMetersPerSec() {
+ return mPseudorangeRateInMetersPerSec;
+ }
+
+ /**
+ * Sets the pseudorange rate at the timestamp in m/s.
+ */
+ public void setPseudorangeRateInMetersPerSec(double value) {
+ mPseudorangeRateInMetersPerSec = value;
+ }
+
+ /**
+ * Gets the pseudorange's rate uncertainty (1-Sigma) in m/s.
+ * The uncertainty is represented as an absolute (single sided) value.
+ */
+ public double getPseudorangeRateUncertaintyInMetersPerSec() {
+ return mPseudorangeRateUncertaintyInMetersPerSec;
+ }
+
+ /**
+ * Sets the pseudorange's rate uncertainty (1-Sigma) in m/s.
+ */
+ public void setPseudorangeRateUncertaintyInMetersPerSec(double value) {
+ mPseudorangeRateUncertaintyInMetersPerSec = value;
+ }
+
+ /**
+ * Gets 'Accumulated Delta Range' state.
+ * It indicates whether {@link #getAccumulatedDeltaRangeInMeters()} is reset or there is a
+ * cycle slip (indicating 'loss of lock').
+ */
+ public short getAccumulatedDeltaRangeState() {
+ return mAccumulatedDeltaRangeState;
+ }
+
+ /**
+ * Sets the 'Accumulated Delta Range' state.
+ */
+ public void setAccumulatedDeltaRangeState(short value) {
+ switch (value) {
+ case ADR_STATE_UNKNOWN:
+ case ADR_STATE_VALID:
+ case ADR_STATE_RESET:
+ case ADR_STATE_CYCLE_SLIP:
+ mAccumulatedDeltaRangeState = value;
+ break;
+ default:
+ Log.d(TAG, "Sanitizing invalid 'Accumulated Delta Range state': " + value);
+ mAccumulatedDeltaRangeState = ADR_STATE_UNKNOWN;
+ break;
+ }
+ }
+
+ /**
+ * Gets a string representation of the 'Accumulated Delta Range state'.
+ * For internal and logging use only.
+ */
+ private String getAccumulatedDeltaRangeStateString() {
+ switch (mAccumulatedDeltaRangeState) {
+ case ADR_STATE_UNKNOWN:
+ return "Unknown";
+ case ADR_STATE_VALID:
+ return "Valid";
+ case ADR_STATE_RESET:
+ return "Reset";
+ case ADR_STATE_CYCLE_SLIP:
+ return "CycleSlip";
+ default:
+ return "<Invalid>";
+ }
+ }
+
+ /**
+ * Gets the accumulated delta range since the last channel reset, in meters.
+ * The reported value includes {@link #getAccumulatedDeltaRangeUncertaintyInMeters()}.
+ *
+ * The availability of the value is represented by {@link #getAccumulatedDeltaRangeState()}.
+ */
+ public double getAccumulatedDeltaRangeInMeters() {
+ return mAccumulatedDeltaRangeInMeters;
+ }
+
+ /**
+ * Sets the accumulated delta range in meters.
+ */
+ public void setAccumulatedDeltaRangeInMeters(double value) {
+ mAccumulatedDeltaRangeInMeters = value;
+ }
+
+ /**
+ * Gets the accumulated delta range's uncertainty (1-Sigma) in meters.
+ * The uncertainty is represented as an absolute (single sided) value.
+ */
+ public double getAccumulatedDeltaRangeUncertaintyInMeters() {
+ return mAccumulatedDeltaRangeUncertaintyInMeters;
+ }
+
+ /**
+ * Sets the accumulated delta range's uncertainty (1-sigma) in meters.
+ *
+ * The availability of the value is represented by {@link #getAccumulatedDeltaRangeState()}.
+ */
+ public void setAccumulatedDeltaRangeUncertaintyInMeters(double value) {
+ mAccumulatedDeltaRangeUncertaintyInMeters = value;
+ }
+
+ /**
+ * Returns true if {@link #getPseudorangeInMeters()} is available, false otherwise.
+ */
+ public boolean hasPseudorangeInMeters() {
+ return isFlagSet(HAS_PSEUDORANGE);
+ }
+
+ /**
+ * Gets the best derived pseudorange by the chipset, in meters.
+ * The reported pseudorange includes {@link #getPseudorangeUncertaintyInMeters()}.
+ *
+ * The value is only available if {@link #hasPseudorangeInMeters()} is true.
+ */
+ public double getPseudorangeInMeters() {
+ return mPseudorangeInMeters;
+ }
+
+ /**
+ * Sets the Pseudo-range in meters.
+ */
+ public void setPseudorangeInMeters(double value) {
+ setFlag(HAS_PSEUDORANGE);
+ mPseudorangeInMeters = value;
+ }
+
+ /**
+ * Resets the Pseudo-range in meters.
+ */
+ public void resetPseudorangeInMeters() {
+ resetFlag(HAS_PSEUDORANGE);
+ mPseudorangeInMeters = Double.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getPseudorangeUncertaintyInMeters()} is available, false otherwise.
+ */
+ public boolean hasPseudorangeUncertaintyInMeters() {
+ return isFlagSet(HAS_PSEUDORANGE_UNCERTAINTY);
+ }
+
+ /**
+ * Gets the pseudorange's uncertainty (1-Sigma) in meters.
+ * The value contains the 'pseudorange' and 'clock' uncertainty in it.
+ * The uncertainty is represented as an absolute (single sided) value.
+ *
+ * The value is only available if {@link #hasPseudorangeUncertaintyInMeters()} is true.
+ */
+ public double getPseudorangeUncertaintyInMeters() {
+ return mPseudorangeUncertaintyInMeters;
+ }
+
+ /**
+ * Sets the pseudo-range's uncertainty (1-Sigma) in meters.
+ */
+ public void setPseudorangeUncertaintyInMeters(double value) {
+ setFlag(HAS_PSEUDORANGE_UNCERTAINTY);
+ mPseudorangeUncertaintyInMeters = value;
+ }
+
+ /**
+ * Resets the pseudo-range's uncertainty (1-Sigma) in meters.
+ */
+ public void resetPseudorangeUncertaintyInMeters() {
+ resetFlag(HAS_PSEUDORANGE_UNCERTAINTY);
+ mPseudorangeUncertaintyInMeters = Double.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getCodePhaseInChips()} is available, false otherwise.
+ */
+ public boolean hasCodePhaseInChips() {
+ return isFlagSet(HAS_CODE_PHASE);
+ }
+
+ /**
+ * Gets the fraction of the current C/A code cycle.
+ * Range: [0, 1023]
+ * The reference frequency is given by the value of {@link #getCarrierFrequencyInHz()}.
+ * The reported code-phase includes {@link #getCodePhaseUncertaintyInChips()}.
+ *
+ * The value is only available if {@link #hasCodePhaseInChips()} is true.
+ */
+ public double getCodePhaseInChips() {
+ return mCodePhaseInChips;
+ }
+
+ /**
+ * Sets the Code-phase in chips.
+ */
+ public void setCodePhaseInChips(double value) {
+ setFlag(HAS_CODE_PHASE);
+ mCodePhaseInChips = value;
+ }
+
+ /**
+ * Resets the Code-phase in chips.
+ */
+ public void resetCodePhaseInChips() {
+ resetFlag(HAS_CODE_PHASE);
+ mCodePhaseInChips = Double.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getCodePhaseUncertaintyInChips()} is available, false otherwise.
+ */
+ public boolean hasCodePhaseUncertaintyInChips() {
+ return isFlagSet(HAS_CODE_PHASE_UNCERTAINTY);
+ }
+
+ /**
+ * Gets the code-phase's uncertainty (1-Sigma) as a fraction of chips.
+ * The uncertainty is represented as an absolute (single sided) value.
+ *
+ * The value is only available if {@link #hasCodePhaseUncertaintyInChips()} is true.
+ */
+ public double getCodePhaseUncertaintyInChips() {
+ return mCodePhaseUncertaintyInChips;
+ }
+
+ /**
+ * Sets the Code-phase's uncertainty (1-Sigma) in fractions of chips.
+ */
+ public void setCodePhaseUncertaintyInChips(double value) {
+ setFlag(HAS_CODE_PHASE_UNCERTAINTY);
+ mCodePhaseUncertaintyInChips = value;
+ }
+
+ /**
+ * Resets the Code-phase's uncertainty (1-Sigma) in fractions of chips.
+ */
+ public void resetCodePhaseUncertaintyInChips() {
+ resetFlag(HAS_CODE_PHASE_UNCERTAINTY);
+ mCodePhaseUncertaintyInChips = Double.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getCarrierFrequencyInHz()} is available, false otherwise.
+ */
+ public boolean hasCarrierFrequencyInHz() {
+ return isFlagSet(HAS_CARRIER_FREQUENCY);
+ }
+
+ /**
+ * Gets the carrier frequency at which codes and messages are modulated, it can be L1 or L2.
+ * If the field is not set, the carrier frequency corresponds to L1.
+ *
+ * The value is only available if {@link #hasCarrierFrequencyInHz()} is true.
+ */
+ public float getCarrierFrequencyInHz() {
+ return mCarrierFrequencyInHz;
+ }
+
+ /**
+ * Sets the Carrier frequency (L1 or L2) in Hz.
+ */
+ public void setCarrierFrequencyInHz(float carrierFrequencyInHz) {
+ setFlag(HAS_CARRIER_FREQUENCY);
+ mCarrierFrequencyInHz = carrierFrequencyInHz;
+ }
+
+ /**
+ * Resets the Carrier frequency (L1 or L2) in Hz.
+ */
+ public void resetCarrierFrequencyInHz() {
+ resetFlag(HAS_CARRIER_FREQUENCY);
+ mCarrierFrequencyInHz = Float.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getCarrierCycles()} is available, false otherwise.
+ */
+ public boolean hasCarrierCycles() {
+ return isFlagSet(HAS_CARRIER_CYCLES);
+ }
+
+ /**
+ * The number of full carrier cycles between the satellite and the receiver.
+ * The reference frequency is given by the value of {@link #getCarrierFrequencyInHz()}.
+ *
+ * The value is only available if {@link #hasCarrierCycles()} is true.
+ */
+ public long getCarrierCycles() {
+ return mCarrierCycles;
+ }
+
+ /**
+ * Sets the number of full carrier cycles between the satellite and the receiver.
+ */
+ public void setCarrierCycles(long value) {
+ setFlag(HAS_CARRIER_CYCLES);
+ mCarrierCycles = value;
+ }
+
+ /**
+ * Resets the number of full carrier cycles between the satellite and the receiver.
+ */
+ public void resetCarrierCycles() {
+ resetFlag(HAS_CARRIER_CYCLES);
+ mCarrierCycles = Long.MIN_VALUE;
+ }
+
+ /**
+ * Returns true if {@link #getCarrierPhase()} is available, false otherwise.
+ */
+ public boolean hasCarrierPhase() {
+ return isFlagSet(HAS_CARRIER_PHASE);
+ }
+
+ /**
+ * Gets the RF phase detected by the receiver.
+ * Range: [0.0, 1.0].
+ * This is usually the fractional part of the complete carrier phase measurement.
+ *
+ * The reference frequency is given by the value of {@link #getCarrierFrequencyInHz()}.
+ * The reported carrier-phase includes {@link #getCarrierPhaseUncertainty()}.
+ *
+ * The value is only available if {@link #hasCarrierPhase()} is true.
+ */
+ public double getCarrierPhase() {
+ return mCarrierPhase;
+ }
+
+ /**
+ * Sets the RF phase detected by the receiver.
+ */
+ public void setCarrierPhase(double value) {
+ setFlag(HAS_CARRIER_PHASE);
+ mCarrierPhase = value;
+ }
+
+ /**
+ * Resets the RF phase detected by the receiver.
+ */
+ public void resetCarrierPhase() {
+ resetFlag(HAS_CARRIER_PHASE);
+ mCarrierPhase = Double.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getCarrierPhaseUncertainty()} is available, false otherwise.
+ */
+ public boolean hasCarrierPhaseUncertainty() {
+ return isFlagSet(HAS_CARRIER_PHASE_UNCERTAINTY);
+ }
+
+ /**
+ * Gets the carrier-phase's uncertainty (1-Sigma).
+ * The uncertainty is represented as an absolute (single sided) value.
+ *
+ * The value is only available if {@link #hasCarrierPhaseUncertainty()} is true.
+ */
+ public double getCarrierPhaseUncertainty() {
+ return mCarrierPhaseUncertainty;
+ }
+
+ /**
+ * Sets the Carrier-phase's uncertainty (1-Sigma) in cycles.
+ */
+ public void setCarrierPhaseUncertainty(double value) {
+ setFlag(HAS_CARRIER_PHASE_UNCERTAINTY);
+ mCarrierPhaseUncertainty = value;
+ }
+
+ /**
+ * Resets the Carrier-phase's uncertainty (1-Sigma) in cycles.
+ */
+ public void resetCarrierPhaseUncertainty() {
+ resetFlag(HAS_CARRIER_PHASE_UNCERTAINTY);
+ mCarrierPhaseUncertainty = Double.NaN;
+ }
+
+ /**
+ * Gets a value indicating the 'loss of lock' state of the event.
+ */
+ public byte getLossOfLock() {
+ return mLossOfLock;
+ }
+
+ /**
+ * Sets the 'loss of lock' status.
+ */
+ public void setLossOfLock(byte value) {
+ switch (value) {
+ case LOSS_OF_LOCK_UNKNOWN:
+ case LOSS_OF_LOCK_OK:
+ case LOSS_OF_LOCK_CYCLE_SLIP:
+ mLossOfLock = value;
+ break;
+ default:
+ Log.d(TAG, "Sanitizing invalid 'loss of lock': " + value);
+ mLossOfLock = LOSS_OF_LOCK_UNKNOWN;
+ break;
+ }
+ }
+
+ /**
+ * Gets a string representation of the 'loss of lock'.
+ * For internal and logging use only.
+ */
+ private String getLossOfLockString() {
+ switch (mLossOfLock) {
+ case LOSS_OF_LOCK_UNKNOWN:
+ return "Unknown";
+ case LOSS_OF_LOCK_OK:
+ return "Ok";
+ case LOSS_OF_LOCK_CYCLE_SLIP:
+ return "CycleSlip";
+ default:
+ return "<Invalid>";
+ }
+ }
+
+ /**
+ * Returns true if {@link #getBitNumber()} is available, false otherwise.
+ */
+ public boolean hasBitNumber() {
+ return isFlagSet(HAS_BIT_NUMBER);
+ }
+
+ /**
+ * Gets the number of GPS bits transmitted since Sat-Sun midnight (GPS week).
+ *
+ * The value is only available if {@link #hasBitNumber()} is true.
+ */
+ public int getBitNumber() {
+ return mBitNumber;
+ }
+
+ /**
+ * Sets the bit number within the broadcast frame.
+ */
+ public void setBitNumber(int bitNumber) {
+ setFlag(HAS_BIT_NUMBER);
+ mBitNumber = bitNumber;
+ }
+
+ /**
+ * Resets the bit number within the broadcast frame.
+ */
+ public void resetBitNumber() {
+ resetFlag(HAS_BIT_NUMBER);
+ mBitNumber = Integer.MIN_VALUE;
+ }
+
+ /**
+ * Returns true if {@link #getTimeFromLastBitInMs()} is available, false otherwise.
+ */
+ public boolean hasTimeFromLastBitInMs() {
+ return isFlagSet(HAS_TIME_FROM_LAST_BIT);
+ }
+
+ /**
+ * Gets the elapsed time since the last received bit in milliseconds.
+ * Range: [0, 20].
+ *
+ * The value is only available if {@link #hasTimeFromLastBitInMs()} is true.
+ */
+ public short getTimeFromLastBitInMs() {
+ return mTimeFromLastBitInMs;
+ }
+
+ /**
+ * Sets the elapsed time since the last received bit in milliseconds.
+ */
+ public void setTimeFromLastBitInMs(short value) {
+ setFlag(HAS_TIME_FROM_LAST_BIT);
+ mTimeFromLastBitInMs = value;
+ }
+
+ /**
+ * Resets the elapsed time since the last received bit in milliseconds.
+ */
+ public void resetTimeFromLastBitInMs() {
+ resetFlag(HAS_TIME_FROM_LAST_BIT);
+ mTimeFromLastBitInMs = Short.MIN_VALUE;
+ }
+
+ /**
+ * Returns true if {@link #getDopplerShiftInHz()} is available, false otherwise.
+ */
+ public boolean hasDopplerShiftInHz() {
+ return isFlagSet(HAS_DOPPLER_SHIFT);
+ }
+
+ /**
+ * Gets the Doppler Shift in Hz.
+ * A positive value indicates that the SV is moving toward the receiver.
+ *
+ * The reference frequency is given by the value of {@link #getCarrierFrequencyInHz()}.
+ * The reported doppler shift includes {@link #getDopplerShiftUncertaintyInHz()}.
+ *
+ * The value is only available if {@link #hasDopplerShiftInHz()} is true.
+ */
+ public double getDopplerShiftInHz() {
+ return mDopplerShiftInHz;
+ }
+
+ /**
+ * Sets the Doppler shift in Hz.
+ */
+ public void setDopplerShiftInHz(double value) {
+ setFlag(HAS_DOPPLER_SHIFT);
+ mDopplerShiftInHz = value;
+ }
+
+ /**
+ * Resets the Doppler shift in Hz.
+ */
+ public void resetDopplerShiftInHz() {
+ resetFlag(HAS_DOPPLER_SHIFT);
+ mDopplerShiftInHz = Double.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getDopplerShiftUncertaintyInHz()} is available, false otherwise.
+ */
+ public boolean hasDopplerShiftUncertaintyInHz() {
+ return isFlagSet(HAS_DOPPLER_SHIFT_UNCERTAINTY);
+ }
+
+ /**
+ * Gets the Doppler's Shift uncertainty (1-Sigma) in Hz.
+ * The uncertainty is represented as an absolute (single sided) value.
+ *
+ * The value is only available if {@link #hasDopplerShiftUncertaintyInHz()} is true.
+ */
+ public double getDopplerShiftUncertaintyInHz() {
+ return mDopplerShiftUncertaintyInHz;
+ }
+
+ /**
+ * Sets the Doppler's shift uncertainty (1-Sigma) in Hz.
+ */
+ public void setDopplerShiftUncertaintyInHz(double value) {
+ setFlag(HAS_DOPPLER_SHIFT_UNCERTAINTY);
+ mDopplerShiftUncertaintyInHz = value;
+ }
+
+ /**
+ * Resets the Doppler's shift uncertainty (1-Sigma) in Hz.
+ */
+ public void resetDopplerShiftUncertaintyInHz() {
+ resetFlag(HAS_DOPPLER_SHIFT_UNCERTAINTY);
+ mDopplerShiftUncertaintyInHz = Double.NaN;
+ }
+
+ /**
+ * Gets a value indicating the 'multipath' state of the event.
+ */
+ public byte getMultipathIndicator() {
+ return mMultipathIndicator;
+ }
+
+ /**
+ * Sets the 'multi-path' indicator.
+ */
+ public void setMultipathIndicator(byte value) {
+ switch (value) {
+ case MULTIPATH_INDICATOR_UNKNOWN:
+ case MULTIPATH_INDICATOR_DETECTED:
+ case MULTIPATH_INDICATOR_NOT_USED:
+ mMultipathIndicator = value;
+ break;
+ default:
+ Log.d(TAG, "Sanitizing invalid 'muti-path indicator': " + value);
+ mMultipathIndicator = MULTIPATH_INDICATOR_UNKNOWN;
+ break;
+ }
+ }
+
+ /**
+ * Gets a string representation of the 'multi-path indicator'.
+ * For internal and logging use only.
+ */
+ private String getMultipathIndicatorString() {
+ switch(mMultipathIndicator) {
+ case MULTIPATH_INDICATOR_UNKNOWN:
+ return "Unknown";
+ case MULTIPATH_INDICATOR_DETECTED:
+ return "Detected";
+ case MULTIPATH_INDICATOR_NOT_USED:
+ return "NotUsed";
+ default:
+ return "<Invalid>";
+ }
+ }
+
+ /**
+ * Returns true if {@link #getSnrInDb()} is available, false otherwise.
+ */
+ public boolean hasSnrInDb() {
+ return isFlagSet(HAS_SNR);
+ }
+
+ /**
+ * Gets the Signal-to-Noise ratio (SNR) in dB.
+ *
+ * The value is only available if {@link #hasSnrInDb()} is true.
+ */
+ public double getSnrInDb() {
+ return mSnrInDb;
+ }
+
+ /**
+ * Sets the Signal-to-noise ratio (SNR) in dB.
+ */
+ public void setSnrInDb(double snrInDb) {
+ setFlag(HAS_SNR);
+ mSnrInDb = snrInDb;
+ }
+
+ /**
+ * Resets the Signal-to-noise ratio (SNR) in dB.
+ */
+ public void resetSnrInDb() {
+ resetFlag(HAS_SNR);
+ mSnrInDb = Double.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getElevationInDeg()} is available, false otherwise.
+ */
+ public boolean hasElevationInDeg() {
+ return isFlagSet(HAS_ELEVATION);
+ }
+
+ /**
+ * Gets the Elevation in degrees.
+ * Range: [-90, 90]
+ * The reported elevation includes {@link #getElevationUncertaintyInDeg()}.
+ *
+ * The value is only available if {@link #hasElevationInDeg()} is true.
+ */
+ public double getElevationInDeg() {
+ return mElevationInDeg;
+ }
+
+ /**
+ * Sets the Elevation in degrees.
+ */
+ public void setElevationInDeg(double elevationInDeg) {
+ setFlag(HAS_ELEVATION);
+ mElevationInDeg = elevationInDeg;
+ }
+
+ /**
+ * Resets the Elevation in degrees.
+ */
+ public void resetElevationInDeg() {
+ resetFlag(HAS_ELEVATION);
+ mElevationInDeg = Double.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getElevationUncertaintyInDeg()} is available, false otherwise.
+ */
+ public boolean hasElevationUncertaintyInDeg() {
+ return isFlagSet(HAS_ELEVATION_UNCERTAINTY);
+ }
+
+ /**
+ * Gets the elevation's uncertainty (1-Sigma) in degrees.
+ * Range: [0, 90]
+ *
+ * The uncertainty is represented as an absolute (single sided) value.
+ *
+ * The value is only available if {@link #hasElevationUncertaintyInDeg()} is true.
+ */
+ public double getElevationUncertaintyInDeg() {
+ return mElevationUncertaintyInDeg;
+ }
+
+ /**
+ * Sets the elevation's uncertainty (1-Sigma) in degrees.
+ */
+ public void setElevationUncertaintyInDeg(double value) {
+ setFlag(HAS_ELEVATION_UNCERTAINTY);
+ mElevationUncertaintyInDeg = value;
+ }
+
+ /**
+ * Resets the elevation's uncertainty (1-Sigma) in degrees.
+ */
+ public void resetElevationUncertaintyInDeg() {
+ resetFlag(HAS_ELEVATION_UNCERTAINTY);
+ mElevationUncertaintyInDeg = Double.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getAzimuthInDeg()} is available, false otherwise.
+ */
+ public boolean hasAzimuthInDeg() {
+ return isFlagSet(HAS_AZIMUTH);
+ }
+
+ /**
+ * Gets the azimuth in degrees.
+ * Range: [0, 360).
+ *
+ * The reported azimuth includes {@link #getAzimuthUncertaintyInDeg()}.
+ *
+ * The value is only available if {@link #hasAzimuthInDeg()} is true.
+ */
+ public double getAzimuthInDeg() {
+ return mAzimuthInDeg;
+ }
+
+ /**
+ * Sets the Azimuth in degrees.
+ */
+ public void setAzimuthInDeg(double value) {
+ setFlag(HAS_AZIMUTH);
+ mAzimuthInDeg = value;
+ }
+
+ /**
+ * Resets the Azimuth in degrees.
+ */
+ public void resetAzimuthInDeg() {
+ resetFlag(HAS_AZIMUTH);
+ mAzimuthInDeg = Double.NaN;
+ }
+
+ /**
+ * Returns true if {@link #getAzimuthUncertaintyInDeg()} is available, false otherwise.
+ */
+ public boolean hasAzimuthUncertaintyInDeg() {
+ return isFlagSet(HAS_AZIMUTH_UNCERTAINTY);
+ }
+
+ /**
+ * Gets the azimuth's uncertainty (1-Sigma) in degrees.
+ * Range: [0, 180].
+ *
+ * The uncertainty is represented as an absolute (single sided) value.
+ *
+ * The value is only available if {@link #hasAzimuthUncertaintyInDeg()} is true.
+ */
+ public double getAzimuthUncertaintyInDeg() {
+ return mAzimuthUncertaintyInDeg;
+ }
+
+ /**
+ * Sets the Azimuth's uncertainty (1-Sigma) in degrees.
+ */
+ public void setAzimuthUncertaintyInDeg(double value) {
+ setFlag(HAS_AZIMUTH_UNCERTAINTY);
+ mAzimuthUncertaintyInDeg = value;
+ }
+
+ /**
+ * Resets the Azimuth's uncertainty (1-Sigma) in degrees.
+ */
+ public void resetAzimuthUncertaintyInDeg() {
+ resetFlag(HAS_AZIMUTH_UNCERTAINTY);
+ mAzimuthUncertaintyInDeg = Double.NaN;
+ }
+
+ /**
+ * Gets a flag indicating whether the GPS represented by the measurement was used for computing
+ * the most recent fix.
+ *
+ * @return A non-null value if the data is available, null otherwise.
+ */
+ public boolean isUsedInFix() {
+ return mUsedInFix;
+ }
+
+ /**
+ * Sets the Used-in-Fix flag.
+ */
+ public void setUsedInFix(boolean value) {
+ mUsedInFix = value;
+ }
+
+ public static final Creator<GpsMeasurement> CREATOR = new Creator<GpsMeasurement>() {
+ @Override
+ public GpsMeasurement createFromParcel(Parcel parcel) {
+ GpsMeasurement gpsMeasurement = new GpsMeasurement();
+
+ gpsMeasurement.mFlags = parcel.readInt();
+ gpsMeasurement.mPrn = parcel.readByte();
+ gpsMeasurement.mTimeOffsetInNs = parcel.readDouble();
+ gpsMeasurement.mState = (short) parcel.readInt();
+ gpsMeasurement.mReceivedGpsTowInNs = parcel.readLong();
+ gpsMeasurement.mReceivedGpsTowUncertaintyInNs = parcel.readLong();
+ gpsMeasurement.mCn0InDbHz = parcel.readDouble();
+ gpsMeasurement.mPseudorangeRateInMetersPerSec = parcel.readDouble();
+ gpsMeasurement.mPseudorangeRateUncertaintyInMetersPerSec = parcel.readDouble();
+ gpsMeasurement.mAccumulatedDeltaRangeState = (short) parcel.readInt();
+ gpsMeasurement.mAccumulatedDeltaRangeInMeters = parcel.readDouble();
+ gpsMeasurement.mAccumulatedDeltaRangeUncertaintyInMeters = parcel.readDouble();
+ gpsMeasurement.mPseudorangeInMeters = parcel.readDouble();
+ gpsMeasurement.mPseudorangeUncertaintyInMeters = parcel.readDouble();
+ gpsMeasurement.mCodePhaseInChips = parcel.readDouble();
+ gpsMeasurement.mCodePhaseUncertaintyInChips = parcel.readDouble();
+ gpsMeasurement.mCarrierFrequencyInHz = parcel.readFloat();
+ gpsMeasurement.mCarrierCycles = parcel.readLong();
+ gpsMeasurement.mCarrierPhase = parcel.readDouble();
+ gpsMeasurement.mCarrierPhaseUncertainty = parcel.readDouble();
+ gpsMeasurement.mLossOfLock = parcel.readByte();
+ gpsMeasurement.mBitNumber = parcel.readInt();
+ gpsMeasurement.mTimeFromLastBitInMs = (short) parcel.readInt();
+ gpsMeasurement.mDopplerShiftInHz = parcel.readDouble();
+ gpsMeasurement.mDopplerShiftUncertaintyInHz = parcel.readDouble();
+ gpsMeasurement.mMultipathIndicator = parcel.readByte();
+ gpsMeasurement.mSnrInDb = parcel.readDouble();
+ gpsMeasurement.mElevationInDeg = parcel.readDouble();
+ gpsMeasurement.mElevationUncertaintyInDeg = parcel.readDouble();
+ gpsMeasurement.mAzimuthInDeg = parcel.readDouble();
+ gpsMeasurement.mAzimuthUncertaintyInDeg = parcel.readDouble();
+ gpsMeasurement.mUsedInFix = parcel.readInt() != 0;
+
+ return gpsMeasurement;
+ }
+
+ @Override
+ public GpsMeasurement[] newArray(int i) {
+ return new GpsMeasurement[i];
+ }
+ };
+
+ public void writeToParcel(Parcel parcel, int flags) {
+ parcel.writeInt(mFlags);
+ parcel.writeByte(mPrn);
+ parcel.writeDouble(mTimeOffsetInNs);
+ parcel.writeInt(mState);
+ parcel.writeLong(mReceivedGpsTowInNs);
+ parcel.writeLong(mReceivedGpsTowUncertaintyInNs);
+ parcel.writeDouble(mCn0InDbHz);
+ parcel.writeDouble(mPseudorangeRateInMetersPerSec);
+ parcel.writeDouble(mPseudorangeRateUncertaintyInMetersPerSec);
+ parcel.writeInt(mAccumulatedDeltaRangeState);
+ parcel.writeDouble(mAccumulatedDeltaRangeInMeters);
+ parcel.writeDouble(mAccumulatedDeltaRangeUncertaintyInMeters);
+ parcel.writeDouble(mPseudorangeInMeters);
+ parcel.writeDouble(mPseudorangeUncertaintyInMeters);
+ parcel.writeDouble(mCodePhaseInChips);
+ parcel.writeDouble(mCodePhaseUncertaintyInChips);
+ parcel.writeFloat(mCarrierFrequencyInHz);
+ parcel.writeLong(mCarrierCycles);
+ parcel.writeDouble(mCarrierPhase);
+ parcel.writeDouble(mCarrierPhaseUncertainty);
+ parcel.writeByte(mLossOfLock);
+ parcel.writeInt(mBitNumber);
+ parcel.writeInt(mTimeFromLastBitInMs);
+ parcel.writeDouble(mDopplerShiftInHz);
+ parcel.writeDouble(mDopplerShiftUncertaintyInHz);
+ parcel.writeByte(mMultipathIndicator);
+ parcel.writeDouble(mSnrInDb);
+ parcel.writeDouble(mElevationInDeg);
+ parcel.writeDouble(mElevationUncertaintyInDeg);
+ parcel.writeDouble(mAzimuthInDeg);
+ parcel.writeDouble(mAzimuthUncertaintyInDeg);
+ parcel.writeInt(mUsedInFix ? 1 : 0);
+ }
+
+ @Override
+ public int describeContents() {
+ return 0;
+ }
+
+ @Override
+ public String toString() {
+ final String format = " %-29s = %s\n";
+ final String formatWithUncertainty = " %-29s = %-25s %-40s = %s\n";
+ StringBuilder builder = new StringBuilder("GpsMeasurement:\n");
+
+ builder.append(String.format(format, "Prn", mPrn));
+
+ builder.append(String.format(format, "TimeOffsetInNs", mTimeOffsetInNs));
+
+ builder.append(String.format(format, "State", getStateString()));
+
+ builder.append(String.format(
+ formatWithUncertainty,
+ "ReceivedGpsTowInNs",
+ mReceivedGpsTowInNs,
+ "ReceivedGpsTowUncertaintyInNs",
+ mReceivedGpsTowUncertaintyInNs));
+
+ builder.append(String.format(format, "Cn0InDbHz", mCn0InDbHz));
+
+ builder.append(String.format(
+ formatWithUncertainty,
+ "PseudorangeRateInMetersPerSec",
+ mPseudorangeRateInMetersPerSec,
+ "PseudorangeRateUncertaintyInMetersPerSec",
+ mPseudorangeRateUncertaintyInMetersPerSec));
+
+ builder.append(String.format(
+ format,
+ "AccumulatedDeltaRangeState",
+ getAccumulatedDeltaRangeStateString()));
+
+ builder.append(String.format(
+ formatWithUncertainty,
+ "AccumulatedDeltaRangeInMeters",
+ mAccumulatedDeltaRangeInMeters,
+ "AccumulatedDeltaRangeUncertaintyInMeters",
+ mAccumulatedDeltaRangeUncertaintyInMeters));
+
+ builder.append(String.format(
+ formatWithUncertainty,
+ "PseudorangeInMeters",
+ hasPseudorangeInMeters() ? mPseudorangeInMeters : null,
+ "PseudorangeUncertaintyInMeters",
+ hasPseudorangeUncertaintyInMeters() ? mPseudorangeUncertaintyInMeters : null));
+
+ builder.append(String.format(
+ formatWithUncertainty,
+ "CodePhaseInChips",
+ hasCodePhaseInChips() ? mCodePhaseInChips : null,
+ "CodePhaseUncertaintyInChips",
+ hasCodePhaseUncertaintyInChips() ? mCodePhaseUncertaintyInChips : null));
+
+ builder.append(String.format(
+ format,
+ "CarrierFrequencyInHz",
+ hasCarrierFrequencyInHz() ? mCarrierFrequencyInHz : null));
+
+ builder.append(String.format(
+ format,
+ "CarrierCycles",
+ hasCarrierCycles() ? mCarrierCycles : null));
+
+ builder.append(String.format(
+ formatWithUncertainty,
+ "CarrierPhase",
+ hasCarrierPhase() ? mCarrierPhase : null,
+ "CarrierPhaseUncertainty",
+ hasCarrierPhaseUncertainty() ? mCarrierPhaseUncertainty : null));
+
+ builder.append(String.format(format, "LossOfLock", getLossOfLockString()));
+
+ builder.append(String.format(
+ format,
+ "BitNumber",
+ hasBitNumber() ? mBitNumber : null));
+
+ builder.append(String.format(
+ format,
+ "TimeFromLastBitInMs",
+ hasTimeFromLastBitInMs() ? mTimeFromLastBitInMs : null));
+
+ builder.append(String.format(
+ formatWithUncertainty,
+ "DopplerShiftInHz",
+ hasDopplerShiftInHz() ? mDopplerShiftInHz : null,
+ "DopplerShiftUncertaintyInHz",
+ hasDopplerShiftUncertaintyInHz() ? mDopplerShiftUncertaintyInHz : null));
+
+ builder.append(String.format(format, "MultipathIndicator", getMultipathIndicatorString()));
+
+ builder.append(String.format(
+ format,
+ "SnrInDb",
+ hasSnrInDb() ? mSnrInDb : null));
+
+ builder.append(String.format(
+ formatWithUncertainty,
+ "ElevationInDeg",
+ hasElevationInDeg() ? mElevationInDeg : null,
+ "ElevationUncertaintyInDeg",
+ hasElevationUncertaintyInDeg() ? mElevationUncertaintyInDeg : null));
+
+ builder.append(String.format(
+ formatWithUncertainty,
+ "AzimuthInDeg",
+ hasAzimuthInDeg() ? mAzimuthInDeg : null,
+ "AzimuthUncertaintyInDeg",
+ hasAzimuthUncertaintyInDeg() ? mAzimuthUncertaintyInDeg : null));
+
+ builder.append(String.format(format, "UsedInFix", mUsedInFix));
+
+ return builder.toString();
+ }
+
+ private void initialize() {
+ mFlags = HAS_NO_FLAGS;
+ setPrn(Byte.MIN_VALUE);
+ setTimeOffsetInNs(Long.MIN_VALUE);
+ setState(STATE_UNKNOWN);
+ setReceivedGpsTowInNs(Long.MIN_VALUE);
+ setReceivedGpsTowUncertaintyInNs(Long.MAX_VALUE);
+ setCn0InDbHz(Double.MIN_VALUE);
+ setPseudorangeRateInMetersPerSec(Double.MIN_VALUE);
+ setPseudorangeRateUncertaintyInMetersPerSec(Double.MIN_VALUE);
+ setAccumulatedDeltaRangeState(ADR_STATE_UNKNOWN);
+ setAccumulatedDeltaRangeInMeters(Double.MIN_VALUE);
+ setAccumulatedDeltaRangeUncertaintyInMeters(Double.MIN_VALUE);
+ resetPseudorangeInMeters();
+ resetPseudorangeUncertaintyInMeters();
+ resetCodePhaseInChips();
+ resetCodePhaseUncertaintyInChips();
+ resetCarrierFrequencyInHz();
+ resetCarrierCycles();
+ resetCarrierPhase();
+ resetCarrierPhaseUncertainty();
+ setLossOfLock(LOSS_OF_LOCK_UNKNOWN);
+ resetBitNumber();
+ resetTimeFromLastBitInMs();
+ resetDopplerShiftInHz();
+ resetDopplerShiftUncertaintyInHz();
+ setMultipathIndicator(MULTIPATH_INDICATOR_UNKNOWN);
+ resetSnrInDb();
+ resetElevationInDeg();
+ resetElevationUncertaintyInDeg();
+ resetAzimuthInDeg();
+ resetAzimuthUncertaintyInDeg();
+ setUsedInFix(false);
+ }
+
+ private void setFlag(int flag) {
+ mFlags |= flag;
+ }
+
+ private void resetFlag(int flag) {
+ mFlags &= ~flag;
+ }
+
+ private boolean isFlagSet(int flag) {
+ return (mFlags & flag) == flag;
+ }
+}