diff options
Diffstat (limited to 'services/sensorservice/Fusion.cpp')
| -rw-r--r-- | services/sensorservice/Fusion.cpp | 431 |
1 files changed, 431 insertions, 0 deletions
diff --git a/services/sensorservice/Fusion.cpp b/services/sensorservice/Fusion.cpp new file mode 100644 index 0000000..56ac9f9 --- /dev/null +++ b/services/sensorservice/Fusion.cpp @@ -0,0 +1,431 @@ +/* + * Copyright (C) 2011 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include <stdio.h> + +#include <utils/Log.h> + +#include "Fusion.h" + +namespace android { + +// ----------------------------------------------------------------------- + +template <typename TYPE> +static inline TYPE sqr(TYPE x) { + return x*x; +} + +template <typename T> +static inline T clamp(T v) { + return v < 0 ? 0 : v; +} + +template <typename TYPE, size_t C, size_t R> +static mat<TYPE, R, R> scaleCovariance( + const mat<TYPE, C, R>& A, + const mat<TYPE, C, C>& P) { + // A*P*transpose(A); + mat<TYPE, R, R> APAt; + for (size_t r=0 ; r<R ; r++) { + for (size_t j=r ; j<R ; j++) { + double apat(0); + for (size_t c=0 ; c<C ; c++) { + double v(A[c][r]*P[c][c]*0.5); + for (size_t k=c+1 ; k<C ; k++) + v += A[k][r] * P[c][k]; + apat += 2 * v * A[c][j]; + } + APAt[j][r] = apat; + APAt[r][j] = apat; + } + } + return APAt; +} + +template <typename TYPE, typename OTHER_TYPE> +static mat<TYPE, 3, 3> crossMatrix(const vec<TYPE, 3>& p, OTHER_TYPE diag) { + mat<TYPE, 3, 3> r; + r[0][0] = diag; + r[1][1] = diag; + r[2][2] = diag; + r[0][1] = p.z; + r[1][0] =-p.z; + r[0][2] =-p.y; + r[2][0] = p.y; + r[1][2] = p.x; + r[2][1] =-p.x; + return r; +} + +template <typename TYPE> +static mat<TYPE, 3, 3> MRPsToMatrix(const vec<TYPE, 3>& p) { + mat<TYPE, 3, 3> res(1); + const mat<TYPE, 3, 3> px(crossMatrix(p, 0)); + const TYPE ptp(dot_product(p,p)); + const TYPE t = 4/sqr(1+ptp); + res -= t * (1-ptp) * px; + res += t * 2 * sqr(px); + return res; +} + +template <typename TYPE> +vec<TYPE, 3> matrixToMRPs(const mat<TYPE, 3, 3>& R) { + // matrix to MRPs + vec<TYPE, 3> q; + const float Hx = R[0].x; + const float My = R[1].y; + const float Az = R[2].z; + const float w = 1 / (1 + sqrtf( clamp( Hx + My + Az + 1) * 0.25f )); + q.x = sqrtf( clamp( Hx - My - Az + 1) * 0.25f ) * w; + q.y = sqrtf( clamp(-Hx + My - Az + 1) * 0.25f ) * w; + q.z = sqrtf( clamp(-Hx - My + Az + 1) * 0.25f ) * w; + q.x = copysignf(q.x, R[2].y - R[1].z); + q.y = copysignf(q.y, R[0].z - R[2].x); + q.z = copysignf(q.z, R[1].x - R[0].y); + return q; +} + +template<typename TYPE, size_t SIZE> +class Covariance { + mat<TYPE, SIZE, SIZE> mSumXX; + vec<TYPE, SIZE> mSumX; + size_t mN; +public: + Covariance() : mSumXX(0.0f), mSumX(0.0f), mN(0) { } + void update(const vec<TYPE, SIZE>& x) { + mSumXX += x*transpose(x); + mSumX += x; + mN++; + } + mat<TYPE, SIZE, SIZE> operator()() const { + const float N = 1.0f / mN; + return mSumXX*N - (mSumX*transpose(mSumX))*(N*N); + } + void reset() { + mN = 0; + mSumXX = 0; + mSumX = 0; + } + size_t getCount() const { + return mN; + } +}; + +// ----------------------------------------------------------------------- + +Fusion::Fusion() { + // process noise covariance matrix + const float w1 = gyroSTDEV; + const float w2 = biasSTDEV; + Q[0] = w1*w1; + Q[1] = w2*w2; + + Ba.x = 0; + Ba.y = 0; + Ba.z = 1; + + Bm.x = 0; + Bm.y = 1; + Bm.z = 0; + + init(); +} + +void Fusion::init() { + // initial estimate: E{ x(t0) } + x = 0; + + // initial covariance: Var{ x(t0) } + P = 0; + + mInitState = 0; + mCount[0] = 0; + mCount[1] = 0; + mCount[2] = 0; + mData = 0; +} + +bool Fusion::hasEstimate() const { + return (mInitState == (MAG|ACC|GYRO)); +} + +bool Fusion::checkInitComplete(int what, const vec3_t& d) { + if (mInitState == (MAG|ACC|GYRO)) + return true; + + if (what == ACC) { + mData[0] += d * (1/length(d)); + mCount[0]++; + mInitState |= ACC; + } else if (what == MAG) { + mData[1] += d * (1/length(d)); + mCount[1]++; + mInitState |= MAG; + } else if (what == GYRO) { + mData[2] += d; + mCount[2]++; + if (mCount[2] == 64) { + // 64 samples is good enough to estimate the gyro drift and + // doesn't take too much time. + mInitState |= GYRO; + } + } + + if (mInitState == (MAG|ACC|GYRO)) { + // Average all the values we collected so far + mData[0] *= 1.0f/mCount[0]; + mData[1] *= 1.0f/mCount[1]; + mData[2] *= 1.0f/mCount[2]; + + // calculate the MRPs from the data collection, this gives us + // a rough estimate of our initial state + mat33_t R; + vec3_t up(mData[0]); + vec3_t east(cross_product(mData[1], up)); + east *= 1/length(east); + vec3_t north(cross_product(up, east)); + R << east << north << up; + x[0] = matrixToMRPs(R); + + // NOTE: we could try to use the average of the gyro data + // to estimate the initial bias, but this only works if + // the device is not moving. For now, we don't use that value + // and start with a bias of 0. + x[1] = 0; + + // initial covariance + P = 0; + } + + return false; +} + +void Fusion::handleGyro(const vec3_t& w, float dT) { + const vec3_t wdT(w * dT); // rad/s * s -> rad + if (!checkInitComplete(GYRO, wdT)) + return; + + predict(wdT); +} + +status_t Fusion::handleAcc(const vec3_t& a) { + if (length(a) < 0.981f) + return BAD_VALUE; + + if (!checkInitComplete(ACC, a)) + return BAD_VALUE; + + // ignore acceleration data if we're close to free-fall + const float l = 1/length(a); + update(a*l, Ba, accSTDEV*l); + return NO_ERROR; +} + +status_t Fusion::handleMag(const vec3_t& m) { + // the geomagnetic-field should be between 30uT and 60uT + // reject obviously wrong magnetic-fields + if (length(m) > 100) + return BAD_VALUE; + + if (!checkInitComplete(MAG, m)) + return BAD_VALUE; + + const vec3_t up( getRotationMatrix() * Ba ); + const vec3_t east( cross_product(m, up) ); + vec3_t north( cross_product(up, east) ); + + const float l = 1 / length(north); + north *= l; + +#if 0 + // in practice the magnetic-field sensor is so wrong + // that there is no point trying to use it to constantly + // correct the gyro. instead, we use the mag-sensor only when + // the device points north (just to give us a reference). + // We're hoping that it'll actually point north, if it doesn't + // we'll be offset, but at least the instantaneous posture + // of the device will be correct. + + const float cos_30 = 0.8660254f; + if (dot_product(north, Bm) < cos_30) + return BAD_VALUE; +#endif + + update(north, Bm, magSTDEV*l); + return NO_ERROR; +} + +bool Fusion::checkState(const vec3_t& v) { + if (isnanf(length(v))) { + LOGW("9-axis fusion diverged. reseting state."); + P = 0; + x[1] = 0; + mInitState = 0; + mCount[0] = 0; + mCount[1] = 0; + mCount[2] = 0; + mData = 0; + return false; + } + return true; +} + +vec3_t Fusion::getAttitude() const { + return x[0]; +} + +vec3_t Fusion::getBias() const { + return x[1]; +} + +mat33_t Fusion::getRotationMatrix() const { + return MRPsToMatrix(x[0]); +} + +mat33_t Fusion::getF(const vec3_t& p) { + const float p0 = p.x; + const float p1 = p.y; + const float p2 = p.z; + + // f(p, w) + const float p0p1 = p0*p1; + const float p0p2 = p0*p2; + const float p1p2 = p1*p2; + const float p0p0 = p0*p0; + const float p1p1 = p1*p1; + const float p2p2 = p2*p2; + const float pp = 0.5f * (1 - (p0p0 + p1p1 + p2p2)); + + mat33_t F; + F[0][0] = 0.5f*(p0p0 + pp); + F[0][1] = 0.5f*(p0p1 + p2); + F[0][2] = 0.5f*(p0p2 - p1); + F[1][0] = 0.5f*(p0p1 - p2); + F[1][1] = 0.5f*(p1p1 + pp); + F[1][2] = 0.5f*(p1p2 + p0); + F[2][0] = 0.5f*(p0p2 + p1); + F[2][1] = 0.5f*(p1p2 - p0); + F[2][2] = 0.5f*(p2p2 + pp); + return F; +} + +mat33_t Fusion::getdFdp(const vec3_t& p, const vec3_t& we) { + + // dF = | A = df/dp -F | + // | 0 0 | + + mat33_t A; + A[0][0] = A[1][1] = A[2][2] = 0.5f * (p.x*we.x + p.y*we.y + p.z*we.z); + A[0][1] = 0.5f * (p.y*we.x - p.x*we.y - we.z); + A[0][2] = 0.5f * (p.z*we.x - p.x*we.z + we.y); + A[1][2] = 0.5f * (p.z*we.y - p.y*we.z - we.x); + A[1][0] = -A[0][1]; + A[2][0] = -A[0][2]; + A[2][1] = -A[1][2]; + return A; +} + +void Fusion::predict(const vec3_t& w) { + // f(p, w) + vec3_t& p(x[0]); + + // There is a discontinuity at 2.pi, to avoid it we need to switch to + // the shadow of p when pT.p gets too big. + const float ptp(dot_product(p,p)); + if (ptp >= 2.0f) { + p = -p * (1/ptp); + } + + const mat33_t F(getF(p)); + + // compute w with the bias correction: + // w_estimated = w - b_estimated + const vec3_t& b(x[1]); + const vec3_t we(w - b); + + // prediction + const vec3_t dX(F*we); + + if (!checkState(dX)) + return; + + p += dX; + + const mat33_t A(getdFdp(p, we)); + + // G = | G0 0 | = | -F 0 | + // | 0 1 | | 0 1 | + + // P += A*P + P*At + F*Q*Ft + const mat33_t AP(A*transpose(P[0][0])); + const mat33_t PAt(P[0][0]*transpose(A)); + const mat33_t FPSt(F*transpose(P[1][0])); + const mat33_t PSFt(P[1][0]*transpose(F)); + const mat33_t FQFt(scaleCovariance(F, Q[0])); + P[0][0] += AP + PAt - FPSt - PSFt + FQFt; + P[1][0] += A*P[1][0] - F*P[1][1]; + P[1][1] += Q[1]; +} + +void Fusion::update(const vec3_t& z, const vec3_t& Bi, float sigma) { + const vec3_t p(x[0]); + // measured vector in body space: h(p) = A(p)*Bi + const mat33_t A(MRPsToMatrix(p)); + const vec3_t Bb(A*Bi); + + // Sensitivity matrix H = dh(p)/dp + // H = [ L 0 ] + const float ptp(dot_product(p,p)); + const mat33_t px(crossMatrix(p, 0.5f*(ptp-1))); + const mat33_t ppt(p*transpose(p)); + const mat33_t L((8 / sqr(1+ptp))*crossMatrix(Bb, 0)*(ppt-px)); + + // update... + const mat33_t R(sigma*sigma); + const mat33_t S(scaleCovariance(L, P[0][0]) + R); + const mat33_t Si(invert(S)); + const mat33_t LtSi(transpose(L)*Si); + + vec<mat33_t, 2> K; + K[0] = P[0][0] * LtSi; + K[1] = transpose(P[1][0])*LtSi; + + const vec3_t e(z - Bb); + const vec3_t K0e(K[0]*e); + const vec3_t K1e(K[1]*e); + + if (!checkState(K0e)) + return; + + if (!checkState(K1e)) + return; + + x[0] += K0e; + x[1] += K1e; + + // P -= K*H*P; + const mat33_t K0L(K[0] * L); + const mat33_t K1L(K[1] * L); + P[0][0] -= K0L*P[0][0]; + P[1][1] -= K1L*P[1][0]; + P[1][0] -= K0L*P[1][0]; +} + +// ----------------------------------------------------------------------- + +}; // namespace android + |
