/* ** ** Copyright 2008, The Android Open Source Project ** ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** ** http://www.apache.org/licenses/LICENSE-2.0 ** ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. */ #define LOG_TAG "FakeCamera" #include #include #include #include #include "FakeCamera.h" namespace android { // TODO: All this rgb to yuv should probably be in a util class. // TODO: I think something is wrong in this class because the shadow is kBlue // and the square color should alternate between kRed and kGreen. However on the // emulator screen these are all shades of gray. Y seems ok but the U and V are // probably not. static int tables_initialized = 0; uint8_t *gYTable, *gCbTable, *gCrTable; static int clamp(int x) { if (x > 255) return 255; if (x < 0) return 0; return x; } /* the equation used by the video code to translate YUV to RGB looks like this * * Y = (Y0 - 16)*k0 * Cb = Cb0 - 128 * Cr = Cr0 - 128 * * G = ( Y - k1*Cr - k2*Cb ) * R = ( Y + k3*Cr ) * B = ( Y + k4*Cb ) * */ static const double k0 = 1.164; static const double k1 = 0.813; static const double k2 = 0.391; static const double k3 = 1.596; static const double k4 = 2.018; /* let's try to extract the value of Y * * G + k1/k3*R + k2/k4*B = Y*( 1 + k1/k3 + k2/k4 ) * * Y = ( G + k1/k3*R + k2/k4*B ) / (1 + k1/k3 + k2/k4) * Y0 = ( G0 + k1/k3*R0 + k2/k4*B0 ) / ((1 + k1/k3 + k2/k4)*k0) + 16 * * let define: * kYr = k1/k3 * kYb = k2/k4 * kYy = k0 * ( 1 + kYr + kYb ) * * we have: * Y = ( G + kYr*R + kYb*B ) * Y0 = clamp[ Y/kYy + 16 ] */ static const double kYr = k1/k3; static const double kYb = k2/k4; static const double kYy = k0*( 1. + kYr + kYb ); static void initYtab( void ) { const int imax = (int)( (kYr + kYb)*(31 << 2) + (61 << 3) + 0.1 ); int i; gYTable = (uint8_t *)malloc(imax); for(i=0; i 235) x = 235; gYTable[i] = (uint8_t) x; } } /* * the source is RGB565, so adjust for 8-bit range of input values: * * G = (pixels >> 3) & 0xFC; * R = (pixels >> 8) & 0xF8; * B = (pixels & 0x1f) << 3; * * R2 = (pixels >> 11) R = R2*8 * B2 = (pixels & 0x1f) B = B2*8 * * kYr*R = kYr2*R2 => kYr2 = kYr*8 * kYb*B = kYb2*B2 => kYb2 = kYb*8 * * we want to use integer multiplications: * * SHIFT1 = 9 * * (ALPHA*R2) >> SHIFT1 == R*kYr => ALPHA = kYr*8*(1 << SHIFT1) * * ALPHA = kYr*(1 << (SHIFT1+3)) * BETA = kYb*(1 << (SHIFT1+3)) */ static const int SHIFT1 = 9; static const int ALPHA = (int)( kYr*(1 << (SHIFT1+3)) + 0.5 ); static const int BETA = (int)( kYb*(1 << (SHIFT1+3)) + 0.5 ); /* * now let's try to get the values of Cb and Cr * * R-B = (k3*Cr - k4*Cb) * * k3*Cr = k4*Cb + (R-B) * k4*Cb = k3*Cr - (R-B) * * R-G = (k1+k3)*Cr + k2*Cb * = (k1+k3)*Cr + k2/k4*(k3*Cr - (R-B)/k0) * = (k1 + k3 + k2*k3/k4)*Cr - k2/k4*(R-B) * * kRr*Cr = (R-G) + kYb*(R-B) * * Cr = ((R-G) + kYb*(R-B))/kRr * Cr0 = clamp(Cr + 128) */ static const double kRr = (k1 + k3 + k2*k3/k4); static void initCrtab( void ) { uint8_t *pTable; int i; gCrTable = (uint8_t *)malloc(768*2); pTable = gCrTable + 384; for(i=-384; i<384; i++) pTable[i] = (uint8_t) clamp( i/kRr + 128.5 ); } /* * B-G = (k2 + k4)*Cb + k1*Cr * = (k2 + k4)*Cb + k1/k3*(k4*Cb + (R-B)) * = (k2 + k4 + k1*k4/k3)*Cb + k1/k3*(R-B) * * kBb*Cb = (B-G) - kYr*(R-B) * * Cb = ((B-G) - kYr*(R-B))/kBb * Cb0 = clamp(Cb + 128) * */ static const double kBb = (k2 + k4 + k1*k4/k3); static void initCbtab( void ) { uint8_t *pTable; int i; gCbTable = (uint8_t *)malloc(768*2); pTable = gCbTable + 384; for(i=-384; i<384; i++) pTable[i] = (uint8_t) clamp( i/kBb + 128.5 ); } /* * SHIFT2 = 16 * * DELTA = kYb*(1 << SHIFT2) * GAMMA = kYr*(1 << SHIFT2) */ static const int SHIFT2 = 16; static const int DELTA = kYb*(1 << SHIFT2); static const int GAMMA = kYr*(1 << SHIFT2); int32_t ccrgb16toyuv_wo_colorkey(uint8_t *rgb16,uint8_t *yuv422,uint32_t *param,uint8_t *table[]) { uint16_t *inputRGB = (uint16_t*)rgb16; uint8_t *outYUV = yuv422; int32_t width_dst = param[0]; int32_t height_dst = param[1]; int32_t pitch_dst = param[2]; int32_t mheight_dst = param[3]; int32_t pitch_src = param[4]; uint8_t *y_tab = table[0]; uint8_t *cb_tab = table[1]; uint8_t *cr_tab = table[2]; int32_t size16 = pitch_dst*mheight_dst; int32_t i,j,count; int32_t ilimit,jlimit; uint8_t *tempY,*tempU,*tempV; uint16_t pixels; int tmp; uint32_t temp; tempY = outYUV; tempU = outYUV + (height_dst * pitch_dst); tempV = tempU + 1; jlimit = height_dst; ilimit = width_dst; for(j=0; j>11) ); y0 = y_tab[(temp>>SHIFT1) + ((pixels>>3) & 0x00FC)]; G_ds += (pixels>>1) & 0x03E0; B_ds += (pixels<<5) & 0x03E0; R_ds += (pixels>>6) & 0x03E0; pixels = inputRGB[i+1]; temp = (ALPHA*(pixels & 0x001F) + BETA*(pixels>>11) ); y1 = y_tab[(temp>>SHIFT1) + ((pixels>>3) & 0x00FC)]; G_ds += (pixels>>1) & 0x03E0; B_ds += (pixels<<5) & 0x03E0; R_ds += (pixels>>6) & 0x03E0; R_ds >>= 1; B_ds >>= 1; G_ds >>= 1; tmp = R_ds - B_ds; u = cb_tab[(((R_ds-G_ds)<>(SHIFT2+2)]; v = cr_tab[(((B_ds-G_ds)<>(SHIFT2+2)]; tempY[0] = y0; tempY[1] = y1; tempU[0] = u; tempV[0] = v; tempY += 2; tempU += 2; tempV += 2; } inputRGB += pitch_src; } return 1; } #define min(a,b) ((a)<(b)?(a):(b)) #define max(a,b) ((a)>(b)?(a):(b)) static void convert_rgb16_to_yuv422(uint8_t *rgb, uint8_t *yuv, int width, int height) { if (!tables_initialized) { initYtab(); initCrtab(); initCbtab(); tables_initialized = 1; } uint32_t param[6]; param[0] = (uint32_t) width; param[1] = (uint32_t) height; param[2] = (uint32_t) width; param[3] = (uint32_t) height; param[4] = (uint32_t) width; param[5] = (uint32_t) 0; uint8_t *table[3]; table[0] = gYTable; table[1] = gCbTable + 384; table[2] = gCrTable + 384; ccrgb16toyuv_wo_colorkey(rgb, yuv, param, table); } const int FakeCamera::kRed; const int FakeCamera::kGreen; const int FakeCamera::kBlue; FakeCamera::FakeCamera(int width, int height) : mTmpRgb16Buffer(0) { setSize(width, height); } FakeCamera::~FakeCamera() { delete[] mTmpRgb16Buffer; } void FakeCamera::setSize(int width, int height) { mWidth = width; mHeight = height; mCounter = 0; mCheckX = 0; mCheckY = 0; // This will cause it to be reallocated on the next call // to getNextFrameAsYuv422(). delete[] mTmpRgb16Buffer; mTmpRgb16Buffer = 0; } void FakeCamera::getNextFrameAsRgb565(uint16_t *buffer) { int size = mWidth / 10; drawCheckerboard(buffer, size); int x = ((mCounter*3)&255); if(x>128) x = 255 - x; int y = ((mCounter*5)&255); if(y>128) y = 255 - y; drawSquare(buffer, x*size/32, y*size/32, (size*5)>>1, (mCounter&0x100)?kRed:kGreen, kBlue); mCounter++; } void FakeCamera::getNextFrameAsYuv422(uint8_t *buffer) { if (mTmpRgb16Buffer == 0) mTmpRgb16Buffer = new uint16_t[mWidth * mHeight]; getNextFrameAsRgb565(mTmpRgb16Buffer); convert_rgb16_to_yuv422((uint8_t*)mTmpRgb16Buffer, buffer, mWidth, mHeight); } void FakeCamera::drawSquare(uint16_t *dst, int x, int y, int size, int color, int shadow) { int square_xstop, square_ystop, shadow_xstop, shadow_ystop; square_xstop = min(mWidth, x+size); square_ystop = min(mHeight, y+size); shadow_xstop = min(mWidth, x+size+(size/4)); shadow_ystop = min(mHeight, y+size+(size/4)); // Do the shadow. uint16_t *sh = &dst[(y+(size/4))*mWidth]; for (int j = y + (size/4); j < shadow_ystop; j++) { for (int i = x + (size/4); i < shadow_xstop; i++) { sh[i] &= shadow; } sh += mWidth; } // Draw the square. uint16_t *sq = &dst[y*mWidth]; for (int j = y; j < square_ystop; j++) { for (int i = x; i < square_xstop; i++) { sq[i] = color; } sq += mWidth; } } void FakeCamera::drawCheckerboard(uint16_t *dst, int size) { bool black = true; if((mCheckX/size)&1) black = false; if((mCheckY/size)&1) black = !black; int county = mCheckY%size; int checkxremainder = mCheckX%size; for(int y=0;y= size) { countx=0; current = !current; } } if(county++ >= size) { county=0; black = !black; } } mCheckX += 3; mCheckY++; } void FakeCamera::dump(int fd) const { const size_t SIZE = 256; char buffer[SIZE]; String8 result; snprintf(buffer, 255, " width x height (%d x %d), counter (%d), check x-y coordinate(%d, %d)\n", mWidth, mHeight, mCounter, mCheckX, mCheckY); result.append(buffer); ::write(fd, result.string(), result.size()); } }; // namespace android