/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LOG_TAG "keystore" #include #include #include #include "keystore.h" /* KeyStore is a secured storage for key-value pairs. In this implementation, * each file stores one key-value pair. Keys are encoded in file names, and * values are encrypted with checksums. The encryption key is protected by a * user-defined password. To keep things simple, buffers are always larger than * the maximum space we needed, so boundary checks on buffers are omitted. */ #define KEY_SIZE ((NAME_MAX - 15) / 2) #define VALUE_SIZE 32768 #define PASSWORD_SIZE VALUE_SIZE struct Value { int length; uint8_t value[VALUE_SIZE]; }; /* Here is the encoding of keys. This is necessary in order to allow arbitrary * characters in keys. Characters in [0-~] are not encoded. Others are encoded * into two bytes. The first byte is one of [+-.] which represents the first * two bits of the character. The second byte encodes the rest of the bits into * [0-o]. Therefore in the worst case the length of a key gets doubled. Note * that Base64 cannot be used here due to the need of prefix match on keys. */ static int encode_key(char* out, uid_t uid, const Value* key) { int n = snprintf(out, NAME_MAX, "%u_", uid); out += n; const uint8_t* in = key->value; int length = key->length; for (int i = length; i > 0; --i, ++in, ++out) { if (*in >= '0' && *in <= '~') { *out = *in; } else { *out = '+' + (*in >> 6); *++out = '0' + (*in & 0x3F); ++length; } } *out = '\0'; return n + length; } static int decode_key(uint8_t* out, char* in, int length) { for (int i = 0; i < length; ++i, ++in, ++out) { if (*in >= '0' && *in <= '~') { *out = *in; } else { *out = (*in - '+') << 6; *out |= (*++in - '0') & 0x3F; --length; } } *out = '\0'; return length; } static size_t readFully(int fd, uint8_t* data, size_t size) { size_t remaining = size; while (remaining > 0) { ssize_t n = TEMP_FAILURE_RETRY(read(fd, data, size)); if (n == -1 || n == 0) { return size-remaining; } data += n; remaining -= n; } return size; } static size_t writeFully(int fd, uint8_t* data, size_t size) { size_t remaining = size; while (remaining > 0) { ssize_t n = TEMP_FAILURE_RETRY(write(fd, data, size)); if (n == -1 || n == 0) { return size-remaining; } data += n; remaining -= n; } return size; } class Entropy { public: Entropy() : mRandom(-1) {} ~Entropy() { if (mRandom != -1) { close(mRandom); } } bool open() { const char* randomDevice = "/dev/urandom"; mRandom = ::open(randomDevice, O_RDONLY); if (mRandom == -1) { LOGE("open: %s: %s", randomDevice, strerror(errno)); return false; } return true; } bool generate_random_data(uint8_t* data, size_t size) { return (readFully(mRandom, data, size) == size); } private: int mRandom; }; /* Here is the file format. There are two parts in blob.value, the secret and * the description. The secret is stored in ciphertext, and its original size * can be found in blob.length. The description is stored after the secret in * plaintext, and its size is specified in blob.info. The total size of the two * parts must be no more than VALUE_SIZE bytes. The first three bytes of the * file are reserved for future use and are always set to zero. Fields other * than blob.info, blob.length, and blob.value are modified by encryptBlob() * and decryptBlob(). Thus they should not be accessed from outside. */ struct __attribute__((packed)) blob { uint8_t reserved[3]; uint8_t info; uint8_t vector[AES_BLOCK_SIZE]; uint8_t encrypted[0]; uint8_t digest[MD5_DIGEST_LENGTH]; uint8_t digested[0]; int32_t length; // in network byte order when encrypted uint8_t value[VALUE_SIZE + AES_BLOCK_SIZE]; }; class Blob { public: Blob(uint8_t* value, int32_t valueLength, uint8_t* info, uint8_t infoLength) { mBlob.length = valueLength; memcpy(mBlob.value, value, valueLength); mBlob.info = infoLength; memcpy(mBlob.value + valueLength, info, infoLength); } Blob(blob b) { mBlob = b; } Blob() {} uint8_t* getValue() { return mBlob.value; } int32_t getLength() { return mBlob.length; } uint8_t getInfo() { return mBlob.info; } ResponseCode encryptBlob(const char* filename, AES_KEY *aes_key, Entropy* entropy) { if (!entropy->generate_random_data(mBlob.vector, AES_BLOCK_SIZE)) { return SYSTEM_ERROR; } // data includes the value and the value's length size_t dataLength = mBlob.length + sizeof(mBlob.length); // pad data to the AES_BLOCK_SIZE size_t digestedLength = ((dataLength + AES_BLOCK_SIZE - 1) / AES_BLOCK_SIZE * AES_BLOCK_SIZE); // encrypted data includes the digest value size_t encryptedLength = digestedLength + MD5_DIGEST_LENGTH; // move info after space for padding memmove(&mBlob.encrypted[encryptedLength], &mBlob.value[mBlob.length], mBlob.info); // zero padding area memset(mBlob.value + mBlob.length, 0, digestedLength - dataLength); mBlob.length = htonl(mBlob.length); MD5(mBlob.digested, digestedLength, mBlob.digest); uint8_t vector[AES_BLOCK_SIZE]; memcpy(vector, mBlob.vector, AES_BLOCK_SIZE); AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, aes_key, vector, AES_ENCRYPT); memset(mBlob.reserved, 0, sizeof(mBlob.reserved)); size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob); size_t fileLength = encryptedLength + headerLength + mBlob.info; const char* tmpFileName = ".tmp"; int out = open(tmpFileName, O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR); if (out == -1) { return SYSTEM_ERROR; } size_t writtenBytes = writeFully(out, (uint8_t*) &mBlob, fileLength); if (close(out) != 0) { return SYSTEM_ERROR; } if (writtenBytes != fileLength) { unlink(tmpFileName); return SYSTEM_ERROR; } return (rename(tmpFileName, filename) == 0) ? NO_ERROR : SYSTEM_ERROR; } ResponseCode decryptBlob(const char* filename, AES_KEY *aes_key) { int in = open(filename, O_RDONLY); if (in == -1) { return (errno == ENOENT) ? KEY_NOT_FOUND : SYSTEM_ERROR; } // fileLength may be less than sizeof(mBlob) since the in // memory version has extra padding to tolerate rounding up to // the AES_BLOCK_SIZE size_t fileLength = readFully(in, (uint8_t*) &mBlob, sizeof(mBlob)); if (close(in) != 0) { return SYSTEM_ERROR; } size_t headerLength = (mBlob.encrypted - (uint8_t*) &mBlob); if (fileLength < headerLength) { return VALUE_CORRUPTED; } ssize_t encryptedLength = fileLength - (headerLength + mBlob.info); if (encryptedLength < 0 || encryptedLength % AES_BLOCK_SIZE != 0) { return VALUE_CORRUPTED; } AES_cbc_encrypt(mBlob.encrypted, mBlob.encrypted, encryptedLength, aes_key, mBlob.vector, AES_DECRYPT); size_t digestedLength = encryptedLength - MD5_DIGEST_LENGTH; uint8_t computedDigest[MD5_DIGEST_LENGTH]; MD5(mBlob.digested, digestedLength, computedDigest); if (memcmp(mBlob.digest, computedDigest, MD5_DIGEST_LENGTH) != 0) { return VALUE_CORRUPTED; } ssize_t maxValueLength = digestedLength - sizeof(mBlob.length); mBlob.length = ntohl(mBlob.length); if (mBlob.length < 0 || mBlob.length > maxValueLength) { return VALUE_CORRUPTED; } if (mBlob.info != 0) { // move info from after padding to after data memmove(&mBlob.value[mBlob.length], &mBlob.value[maxValueLength], mBlob.info); } return NO_ERROR; } private: struct blob mBlob; }; class KeyStore { public: KeyStore(Entropy* entropy) : mEntropy(entropy), mRetry(MAX_RETRY) { if (access(MASTER_KEY_FILE, R_OK) == 0) { setState(STATE_LOCKED); } else { setState(STATE_UNINITIALIZED); } } State getState() { return mState; } int8_t getRetry() { return mRetry; } ResponseCode initialize(Value* pw) { if (!generateMasterKey()) { return SYSTEM_ERROR; } ResponseCode response = writeMasterKey(pw); if (response != NO_ERROR) { return response; } setupMasterKeys(); return NO_ERROR; } ResponseCode writeMasterKey(Value* pw) { uint8_t passwordKey[MASTER_KEY_SIZE_BYTES]; generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, mSalt); AES_KEY passwordAesKey; AES_set_encrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey); Blob masterKeyBlob(mMasterKey, sizeof(mMasterKey), mSalt, sizeof(mSalt)); return masterKeyBlob.encryptBlob(MASTER_KEY_FILE, &passwordAesKey, mEntropy); } ResponseCode readMasterKey(Value* pw) { int in = open(MASTER_KEY_FILE, O_RDONLY); if (in == -1) { return SYSTEM_ERROR; } // we read the raw blob to just to get the salt to generate // the AES key, then we create the Blob to use with decryptBlob blob rawBlob; size_t length = readFully(in, (uint8_t*) &rawBlob, sizeof(rawBlob)); if (close(in) != 0) { return SYSTEM_ERROR; } // find salt at EOF if present, otherwise we have an old file uint8_t* salt; if (length > SALT_SIZE && rawBlob.info == SALT_SIZE) { salt = (uint8_t*) &rawBlob + length - SALT_SIZE; } else { salt = NULL; } uint8_t passwordKey[MASTER_KEY_SIZE_BYTES]; generateKeyFromPassword(passwordKey, MASTER_KEY_SIZE_BYTES, pw, salt); AES_KEY passwordAesKey; AES_set_decrypt_key(passwordKey, MASTER_KEY_SIZE_BITS, &passwordAesKey); Blob masterKeyBlob(rawBlob); ResponseCode response = masterKeyBlob.decryptBlob(MASTER_KEY_FILE, &passwordAesKey); if (response == SYSTEM_ERROR) { return SYSTEM_ERROR; } if (response == NO_ERROR && masterKeyBlob.getLength() == MASTER_KEY_SIZE_BYTES) { // if salt was missing, generate one and write a new master key file with the salt. if (salt == NULL) { if (!generateSalt()) { return SYSTEM_ERROR; } response = writeMasterKey(pw); } if (response == NO_ERROR) { memcpy(mMasterKey, masterKeyBlob.getValue(), MASTER_KEY_SIZE_BYTES); setupMasterKeys(); } return response; } if (mRetry <= 0) { reset(); return UNINITIALIZED; } --mRetry; switch (mRetry) { case 0: return WRONG_PASSWORD_0; case 1: return WRONG_PASSWORD_1; case 2: return WRONG_PASSWORD_2; case 3: return WRONG_PASSWORD_3; default: return WRONG_PASSWORD_3; } } bool reset() { clearMasterKeys(); setState(STATE_UNINITIALIZED); DIR* dir = opendir("."); struct dirent* file; if (!dir) { return false; } while ((file = readdir(dir)) != NULL) { unlink(file->d_name); } closedir(dir); return true; } bool isEmpty() { DIR* dir = opendir("."); struct dirent* file; if (!dir) { return true; } bool result = true; while ((file = readdir(dir)) != NULL) { if (isKeyFile(file->d_name)) { result = false; break; } } closedir(dir); return result; } void lock() { clearMasterKeys(); setState(STATE_LOCKED); } ResponseCode get(const char* filename, Blob* keyBlob) { return keyBlob->decryptBlob(filename, &mMasterKeyDecryption); } ResponseCode put(const char* filename, Blob* keyBlob) { return keyBlob->encryptBlob(filename, &mMasterKeyEncryption, mEntropy); } private: static const char* MASTER_KEY_FILE; static const int MASTER_KEY_SIZE_BYTES = 16; static const int MASTER_KEY_SIZE_BITS = MASTER_KEY_SIZE_BYTES * 8; static const int MAX_RETRY = 4; static const size_t SALT_SIZE = 16; Entropy* mEntropy; State mState; int8_t mRetry; uint8_t mMasterKey[MASTER_KEY_SIZE_BYTES]; uint8_t mSalt[SALT_SIZE]; AES_KEY mMasterKeyEncryption; AES_KEY mMasterKeyDecryption; void setState(State state) { mState = state; if (mState == STATE_NO_ERROR || mState == STATE_UNINITIALIZED) { mRetry = MAX_RETRY; } } bool generateSalt() { return mEntropy->generate_random_data(mSalt, sizeof(mSalt)); } bool generateMasterKey() { if (!mEntropy->generate_random_data(mMasterKey, sizeof(mMasterKey))) { return false; } if (!generateSalt()) { return false; } return true; } void setupMasterKeys() { AES_set_encrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyEncryption); AES_set_decrypt_key(mMasterKey, MASTER_KEY_SIZE_BITS, &mMasterKeyDecryption); setState(STATE_NO_ERROR); } void clearMasterKeys() { memset(mMasterKey, 0, sizeof(mMasterKey)); memset(mSalt, 0, sizeof(mSalt)); memset(&mMasterKeyEncryption, 0, sizeof(mMasterKeyEncryption)); memset(&mMasterKeyDecryption, 0, sizeof(mMasterKeyDecryption)); } static void generateKeyFromPassword(uint8_t* key, ssize_t keySize, Value* pw, uint8_t* salt) { size_t saltSize; if (salt != NULL) { saltSize = SALT_SIZE; } else { // pre-gingerbread used this hardwired salt, readMasterKey will rewrite these when found salt = (uint8_t*) "keystore"; // sizeof = 9, not strlen = 8 saltSize = sizeof("keystore"); } PKCS5_PBKDF2_HMAC_SHA1((char*) pw->value, pw->length, salt, saltSize, 8192, keySize, key); } static bool isKeyFile(const char* filename) { return ((strcmp(filename, MASTER_KEY_FILE) != 0) && (strcmp(filename, ".") != 0) && (strcmp(filename, "..") != 0)); } }; const char* KeyStore::MASTER_KEY_FILE = ".masterkey"; /* Here is the protocol used in both requests and responses: * code [length_1 message_1 ... length_n message_n] end-of-file * where code is one byte long and lengths are unsigned 16-bit integers in * network order. Thus the maximum length of a message is 65535 bytes. */ static int recv_code(int sock, int8_t* code) { return recv(sock, code, 1, 0) == 1; } static int recv_message(int sock, uint8_t* message, int length) { uint8_t bytes[2]; if (recv(sock, &bytes[0], 1, 0) != 1 || recv(sock, &bytes[1], 1, 0) != 1) { return -1; } else { int offset = bytes[0] << 8 | bytes[1]; if (length < offset) { return -1; } length = offset; offset = 0; while (offset < length) { int n = recv(sock, &message[offset], length - offset, 0); if (n <= 0) { return -1; } offset += n; } } return length; } static int recv_end_of_file(int sock) { uint8_t byte; return recv(sock, &byte, 1, 0) == 0; } static void send_code(int sock, int8_t code) { send(sock, &code, 1, 0); } static void send_message(int sock, uint8_t* message, int length) { uint16_t bytes = htons(length); send(sock, &bytes, 2, 0); send(sock, message, length, 0); } /* Here are the actions. Each of them is a function without arguments. All * information is defined in global variables, which are set properly before * performing an action. The number of parameters required by each action is * fixed and defined in a table. If the return value of an action is positive, * it will be treated as a response code and transmitted to the client. Note * that the lengths of parameters are checked when they are received, so * boundary checks on parameters are omitted. */ static const ResponseCode NO_ERROR_RESPONSE_CODE_SENT = (ResponseCode) 0; static ResponseCode test(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) { return (ResponseCode) keyStore->getState(); } static ResponseCode get(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) { char filename[NAME_MAX]; encode_key(filename, uid, keyName); Blob keyBlob; ResponseCode responseCode = keyStore->get(filename, &keyBlob); if (responseCode != NO_ERROR) { return responseCode; } send_code(sock, NO_ERROR); send_message(sock, keyBlob.getValue(), keyBlob.getLength()); return NO_ERROR_RESPONSE_CODE_SENT; } static ResponseCode insert(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value* val) { char filename[NAME_MAX]; encode_key(filename, uid, keyName); Blob keyBlob(val->value, val->length, 0, NULL); return keyStore->put(filename, &keyBlob); } static ResponseCode del(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) { char filename[NAME_MAX]; encode_key(filename, uid, keyName); return (unlink(filename) && errno != ENOENT) ? SYSTEM_ERROR : NO_ERROR; } static ResponseCode exist(KeyStore* keyStore, int sock, uid_t uid, Value* keyName, Value*) { char filename[NAME_MAX]; encode_key(filename, uid, keyName); if (access(filename, R_OK) == -1) { return (errno != ENOENT) ? SYSTEM_ERROR : KEY_NOT_FOUND; } return NO_ERROR; } static ResponseCode saw(KeyStore* keyStore, int sock, uid_t uid, Value* keyPrefix, Value*) { DIR* dir = opendir("."); if (!dir) { return SYSTEM_ERROR; } char filename[NAME_MAX]; int n = encode_key(filename, uid, keyPrefix); send_code(sock, NO_ERROR); struct dirent* file; while ((file = readdir(dir)) != NULL) { if (!strncmp(filename, file->d_name, n)) { char* p = &file->d_name[n]; keyPrefix->length = decode_key(keyPrefix->value, p, strlen(p)); send_message(sock, keyPrefix->value, keyPrefix->length); } } closedir(dir); return NO_ERROR_RESPONSE_CODE_SENT; } static ResponseCode reset(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) { return keyStore->reset() ? NO_ERROR : SYSTEM_ERROR; } /* Here is the history. To improve the security, the parameters to generate the * master key has been changed. To make a seamless transition, we update the * file using the same password when the user unlock it for the first time. If * any thing goes wrong during the transition, the new file will not overwrite * the old one. This avoids permanent damages of the existing data. */ static ResponseCode password(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value*) { switch (keyStore->getState()) { case STATE_UNINITIALIZED: { // generate master key, encrypt with password, write to file, initialize mMasterKey*. return keyStore->initialize(pw); } case STATE_NO_ERROR: { // rewrite master key with new password. return keyStore->writeMasterKey(pw); } case STATE_LOCKED: { // read master key, decrypt with password, initialize mMasterKey*. return keyStore->readMasterKey(pw); } } return SYSTEM_ERROR; } static ResponseCode lock(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) { keyStore->lock(); return NO_ERROR; } static ResponseCode unlock(KeyStore* keyStore, int sock, uid_t uid, Value* pw, Value* unused) { return password(keyStore, sock, uid, pw, unused); } static ResponseCode zero(KeyStore* keyStore, int sock, uid_t uid, Value*, Value*) { return keyStore->isEmpty() ? KEY_NOT_FOUND : NO_ERROR; } /* Here are the permissions, actions, users, and the main function. */ enum perm { TEST = 1, GET = 2, INSERT = 4, DELETE = 8, EXIST = 16, SAW = 32, RESET = 64, PASSWORD = 128, LOCK = 256, UNLOCK = 512, ZERO = 1024, }; static const int MAX_PARAM = 2; static const State STATE_ANY = (State) 0; static struct action { ResponseCode (*run)(KeyStore* keyStore, int sock, uid_t uid, Value* param1, Value* param2); int8_t code; State state; uint32_t perm; int lengths[MAX_PARAM]; } actions[] = { {test, 't', STATE_ANY, TEST, {0, 0}}, {get, 'g', STATE_NO_ERROR, GET, {KEY_SIZE, 0}}, {insert, 'i', STATE_NO_ERROR, INSERT, {KEY_SIZE, VALUE_SIZE}}, {del, 'd', STATE_ANY, DELETE, {KEY_SIZE, 0}}, {exist, 'e', STATE_ANY, EXIST, {KEY_SIZE, 0}}, {saw, 's', STATE_ANY, SAW, {KEY_SIZE, 0}}, {reset, 'r', STATE_ANY, RESET, {0, 0}}, {password, 'p', STATE_ANY, PASSWORD, {PASSWORD_SIZE, 0}}, {lock, 'l', STATE_NO_ERROR, LOCK, {0, 0}}, {unlock, 'u', STATE_LOCKED, UNLOCK, {PASSWORD_SIZE, 0}}, {zero, 'z', STATE_ANY, ZERO, {0, 0}}, {NULL, 0 , STATE_ANY, 0, {0, 0}}, }; static struct user { uid_t uid; uid_t euid; uint32_t perms; } users[] = { {AID_SYSTEM, ~0, ~0}, {AID_VPN, AID_SYSTEM, GET}, {AID_WIFI, AID_SYSTEM, GET}, {AID_ROOT, AID_SYSTEM, GET}, {~0, ~0, TEST | GET | INSERT | DELETE | EXIST | SAW}, }; static ResponseCode process(KeyStore* keyStore, int sock, uid_t uid, int8_t code) { struct user* user = users; struct action* action = actions; int i; while (~user->uid && user->uid != uid) { ++user; } while (action->code && action->code != code) { ++action; } if (!action->code) { return UNDEFINED_ACTION; } if (!(action->perm & user->perms)) { return PERMISSION_DENIED; } if (action->state != STATE_ANY && action->state != keyStore->getState()) { return (ResponseCode) keyStore->getState(); } if (~user->euid) { uid = user->euid; } Value params[MAX_PARAM]; for (i = 0; i < MAX_PARAM && action->lengths[i] != 0; ++i) { params[i].length = recv_message(sock, params[i].value, action->lengths[i]); if (params[i].length < 0) { return PROTOCOL_ERROR; } } if (!recv_end_of_file(sock)) { return PROTOCOL_ERROR; } return action->run(keyStore, sock, uid, ¶ms[0], ¶ms[1]); } int main(int argc, char* argv[]) { int controlSocket = android_get_control_socket("keystore"); if (argc < 2) { LOGE("A directory must be specified!"); return 1; } if (chdir(argv[1]) == -1) { LOGE("chdir: %s: %s", argv[1], strerror(errno)); return 1; } Entropy entropy; if (!entropy.open()) { return 1; } if (listen(controlSocket, 3) == -1) { LOGE("listen: %s", strerror(errno)); return 1; } signal(SIGPIPE, SIG_IGN); KeyStore keyStore(&entropy); int sock; while ((sock = accept(controlSocket, NULL, 0)) != -1) { struct timeval tv; tv.tv_sec = 3; setsockopt(sock, SOL_SOCKET, SO_RCVTIMEO, &tv, sizeof(tv)); setsockopt(sock, SOL_SOCKET, SO_SNDTIMEO, &tv, sizeof(tv)); struct ucred cred; socklen_t size = sizeof(cred); int credResult = getsockopt(sock, SOL_SOCKET, SO_PEERCRED, &cred, &size); if (credResult != 0) { LOGW("getsockopt: %s", strerror(errno)); } else { int8_t request; if (recv_code(sock, &request)) { State old_state = keyStore.getState(); ResponseCode response = process(&keyStore, sock, cred.uid, request); if (response == NO_ERROR_RESPONSE_CODE_SENT) { response = NO_ERROR; } else { send_code(sock, response); } LOGI("uid: %d action: %c -> %d state: %d -> %d retry: %d", cred.uid, request, response, old_state, keyStore.getState(), keyStore.getRetry()); } } close(sock); } LOGE("accept: %s", strerror(errno)); return 1; }