/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "SurfaceTexture" //#define LOG_NDEBUG 0 #define GL_GLEXT_PROTOTYPES #define EGL_EGLEXT_PROTOTYPES #include #include #include #include #include #include #include #include #include namespace android { // Transform matrices static float mtxIdentity[16] = { 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, }; static float mtxFlipH[16] = { -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, }; static float mtxFlipV[16] = { 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, }; static float mtxRot90[16] = { 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, }; static float mtxRot180[16] = { -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, }; static float mtxRot270[16] = { 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, }; static void mtxMul(float out[16], const float a[16], const float b[16]); SurfaceTexture::SurfaceTexture(GLuint tex) : mDefaultWidth(1), mDefaultHeight(1), mPixelFormat(PIXEL_FORMAT_RGBA_8888), mUseDefaultSize(true), mBufferCount(MIN_BUFFER_SLOTS), mCurrentTexture(INVALID_BUFFER_SLOT), mCurrentTransform(0), mCurrentTimestamp(0), mLastQueued(INVALID_BUFFER_SLOT), mLastQueuedTransform(0), mLastQueuedTimestamp(0), mNextTransform(0), mTexName(tex) { LOGV("SurfaceTexture::SurfaceTexture"); for (int i = 0; i < NUM_BUFFER_SLOTS; i++) { mSlots[i].mEglImage = EGL_NO_IMAGE_KHR; mSlots[i].mEglDisplay = EGL_NO_DISPLAY; mSlots[i].mOwnedByClient = false; } sp composer(ComposerService::getComposerService()); mGraphicBufferAlloc = composer->createGraphicBufferAlloc(); } SurfaceTexture::~SurfaceTexture() { LOGV("SurfaceTexture::~SurfaceTexture"); freeAllBuffers(); } status_t SurfaceTexture::setBufferCount(int bufferCount) { LOGV("SurfaceTexture::setBufferCount"); if (bufferCount < MIN_BUFFER_SLOTS) { return BAD_VALUE; } Mutex::Autolock lock(mMutex); freeAllBuffers(); mBufferCount = bufferCount; mCurrentTexture = INVALID_BUFFER_SLOT; mLastQueued = INVALID_BUFFER_SLOT; return OK; } status_t SurfaceTexture::setDefaultBufferSize(uint32_t w, uint32_t h) { Mutex::Autolock lock(mMutex); if ((w != mDefaultWidth) || (h != mDefaultHeight)) { mDefaultWidth = w; mDefaultHeight = h; } return OK; } sp SurfaceTexture::requestBuffer(int buf, uint32_t w, uint32_t h, uint32_t format, uint32_t usage) { LOGV("SurfaceTexture::requestBuffer"); Mutex::Autolock lock(mMutex); if (buf < 0 || mBufferCount <= buf) { LOGE("requestBuffer: slot index out of range [0, %d]: %d", mBufferCount, buf); return 0; } if ((w && !h) || (!w & h)) { LOGE("requestBuffer: invalid size: w=%u, h=%u: %d", w, h, buf); return 0; } const bool useDefaultSize = !w && !h; if (useDefaultSize) { // use the default size w = mDefaultWidth; h = mDefaultHeight; } const bool updateFormat = (format != 0); if (!updateFormat) { // keep the current (or default) format format = mPixelFormat; } usage |= GraphicBuffer::USAGE_HW_TEXTURE; sp graphicBuffer( mGraphicBufferAlloc->createGraphicBuffer(w, h, format, usage)); if (graphicBuffer == 0) { LOGE("requestBuffer: SurfaceComposer::createGraphicBuffer failed"); } else { mUseDefaultSize = useDefaultSize; if (updateFormat) { mPixelFormat = format; } mSlots[buf].mGraphicBuffer = graphicBuffer; if (mSlots[buf].mEglImage != EGL_NO_IMAGE_KHR) { eglDestroyImageKHR(mSlots[buf].mEglDisplay, mSlots[buf].mEglImage); mSlots[buf].mEglImage = EGL_NO_IMAGE_KHR; mSlots[buf].mEglDisplay = EGL_NO_DISPLAY; } mAllocdBuffers.add(graphicBuffer); } return graphicBuffer; } status_t SurfaceTexture::dequeueBuffer(int *buf) { LOGV("SurfaceTexture::dequeueBuffer"); Mutex::Autolock lock(mMutex); int found = INVALID_BUFFER_SLOT; for (int i = 0; i < mBufferCount; i++) { if (!mSlots[i].mOwnedByClient && i != mCurrentTexture && i != mLastQueued) { mSlots[i].mOwnedByClient = true; found = i; break; } } if (found == INVALID_BUFFER_SLOT) { return -EBUSY; } *buf = found; const sp& buffer(mSlots[found].mGraphicBuffer); if (buffer == NULL) { return ISurfaceTexture::BUFFER_NEEDS_REALLOCATION; } if ((mUseDefaultSize) && ((uint32_t(buffer->width) != mDefaultWidth) || (uint32_t(buffer->height) != mDefaultHeight))) { return ISurfaceTexture::BUFFER_NEEDS_REALLOCATION; } return OK; } status_t SurfaceTexture::queueBuffer(int buf, int64_t timestamp) { LOGV("SurfaceTexture::queueBuffer"); Mutex::Autolock lock(mMutex); if (buf < 0 || mBufferCount <= buf) { LOGE("queueBuffer: slot index out of range [0, %d]: %d", mBufferCount, buf); return -EINVAL; } else if (!mSlots[buf].mOwnedByClient) { LOGE("queueBuffer: slot %d is not owned by the client", buf); return -EINVAL; } else if (mSlots[buf].mGraphicBuffer == 0) { LOGE("queueBuffer: slot %d was enqueued without requesting a buffer", buf); return -EINVAL; } mSlots[buf].mOwnedByClient = false; mLastQueued = buf; mLastQueuedCrop = mNextCrop; mLastQueuedTransform = mNextTransform; mLastQueuedTimestamp = timestamp; if (mFrameAvailableListener != 0) { mFrameAvailableListener->onFrameAvailable(); } return OK; } void SurfaceTexture::cancelBuffer(int buf) { LOGV("SurfaceTexture::cancelBuffer"); Mutex::Autolock lock(mMutex); if (buf < 0 || mBufferCount <= buf) { LOGE("cancelBuffer: slot index out of range [0, %d]: %d", mBufferCount, buf); return; } else if (!mSlots[buf].mOwnedByClient) { LOGE("cancelBuffer: slot %d is not owned by the client", buf); return; } mSlots[buf].mOwnedByClient = false; } status_t SurfaceTexture::setCrop(const Rect& crop) { LOGV("SurfaceTexture::setCrop"); Mutex::Autolock lock(mMutex); mNextCrop = crop; return OK; } status_t SurfaceTexture::setTransform(uint32_t transform) { LOGV("SurfaceTexture::setTransform"); Mutex::Autolock lock(mMutex); mNextTransform = transform; return OK; } status_t SurfaceTexture::updateTexImage() { LOGV("SurfaceTexture::updateTexImage"); Mutex::Autolock lock(mMutex); // We always bind the texture even if we don't update its contents. glBindTexture(GL_TEXTURE_EXTERNAL_OES, mTexName); // Initially both mCurrentTexture and mLastQueued are INVALID_BUFFER_SLOT, // so this check will fail until a buffer gets queued. if (mCurrentTexture != mLastQueued) { // Update the GL texture object. EGLImageKHR image = mSlots[mLastQueued].mEglImage; if (image == EGL_NO_IMAGE_KHR) { EGLDisplay dpy = eglGetCurrentDisplay(); sp graphicBuffer = mSlots[mLastQueued].mGraphicBuffer; image = createImage(dpy, graphicBuffer); mSlots[mLastQueued].mEglImage = image; mSlots[mLastQueued].mEglDisplay = dpy; } GLint error; while ((error = glGetError()) != GL_NO_ERROR) { LOGE("GL error cleared before updating SurfaceTexture: %#04x", error); } glEGLImageTargetTexture2DOES(GL_TEXTURE_EXTERNAL_OES, (GLeglImageOES)image); bool failed = false; while ((error = glGetError()) != GL_NO_ERROR) { LOGE("error binding external texture image %p (slot %d): %#04x", image, mLastQueued, error); failed = true; } if (failed) { return -EINVAL; } // Update the SurfaceTexture state. mCurrentTexture = mLastQueued; mCurrentTextureBuf = mSlots[mCurrentTexture].mGraphicBuffer; mCurrentCrop = mLastQueuedCrop; mCurrentTransform = mLastQueuedTransform; mCurrentTimestamp = mLastQueuedTimestamp; } return OK; } void SurfaceTexture::getTransformMatrix(float mtx[16]) { LOGV("SurfaceTexture::getTransformMatrix"); Mutex::Autolock lock(mMutex); float xform[16]; for (int i = 0; i < 16; i++) { xform[i] = mtxIdentity[i]; } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_H) { float result[16]; mtxMul(result, xform, mtxFlipH); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_FLIP_V) { float result[16]; mtxMul(result, xform, mtxFlipV); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } if (mCurrentTransform & NATIVE_WINDOW_TRANSFORM_ROT_90) { float result[16]; mtxMul(result, xform, mtxRot90); for (int i = 0; i < 16; i++) { xform[i] = result[i]; } } sp& buf(mSlots[mCurrentTexture].mGraphicBuffer); float tx, ty, sx, sy; if (!mCurrentCrop.isEmpty()) { // In order to prevent bilinear sampling at the of the crop rectangle we // may need to shrink it by 2 texels in each direction. Normally this // would just need to take 1/2 a texel off each end, but because the // chroma channels will likely be subsampled we need to chop off a whole // texel. This will cause artifacts if someone does nearest sampling // with 1:1 pixel:texel ratio, but it's impossible to simultaneously // accomodate the bilinear and nearest sampling uses. // // If nearest sampling turns out to be a desirable usage of these // textures then we could add the ability to switch a SurfaceTexture to // nearest-mode. Preferably, however, the image producers (video // decoder, camera, etc.) would simply not use a crop rectangle (or at // least not tell the framework about it) so that the GPU can do the // correct edge behavior. int xshrink = 0, yshrink = 0; if (mCurrentCrop.left > 0) { tx = float(mCurrentCrop.left + 1) / float(buf->getWidth()); xshrink++; } else { tx = 0.0f; } if (mCurrentCrop.right < int32_t(buf->getWidth())) { xshrink++; } if (mCurrentCrop.bottom < int32_t(buf->getHeight())) { ty = (float(buf->getHeight() - mCurrentCrop.bottom) + 1.0f) / float(buf->getHeight()); yshrink++; } else { ty = 0.0f; } if (mCurrentCrop.top > 0) { yshrink++; } sx = float(mCurrentCrop.width() - xshrink) / float(buf->getWidth()); sy = float(mCurrentCrop.height() - yshrink) / float(buf->getHeight()); } else { tx = 0.0f; ty = 0.0f; sx = 1.0f; sy = 1.0f; } float crop[16] = { sx, 0, 0, 0, 0, sy, 0, 0, 0, 0, 1, 0, tx, ty, 0, 1, }; float mtxBeforeFlipV[16]; mtxMul(mtxBeforeFlipV, crop, xform); // SurfaceFlinger expects the top of its window textures to be at a Y // coordinate of 0, so SurfaceTexture must behave the same way. We don't // want to expose this to applications, however, so we must add an // additional vertical flip to the transform after all the other transforms. mtxMul(mtx, mtxFlipV, mtxBeforeFlipV); } nsecs_t SurfaceTexture::getTimestamp() { LOGV("SurfaceTexture::getTimestamp"); Mutex::Autolock lock(mMutex); return mCurrentTimestamp; } void SurfaceTexture::setFrameAvailableListener( const sp& l) { LOGV("SurfaceTexture::setFrameAvailableListener"); Mutex::Autolock lock(mMutex); mFrameAvailableListener = l; } sp SurfaceTexture::getAllocator() { LOGV("SurfaceTexture::getAllocator"); return mGraphicBufferAlloc->asBinder(); } void SurfaceTexture::freeAllBuffers() { for (int i = 0; i < NUM_BUFFER_SLOTS; i++) { mSlots[i].mGraphicBuffer = 0; mSlots[i].mOwnedByClient = false; if (mSlots[i].mEglImage != EGL_NO_IMAGE_KHR) { eglDestroyImageKHR(mSlots[i].mEglDisplay, mSlots[i].mEglImage); mSlots[i].mEglImage = EGL_NO_IMAGE_KHR; mSlots[i].mEglDisplay = EGL_NO_DISPLAY; } } int exceptBuf = -1; for (size_t i = 0; i < mAllocdBuffers.size(); i++) { if (mAllocdBuffers[i] == mCurrentTextureBuf) { exceptBuf = i; break; } } mAllocdBuffers.clear(); if (exceptBuf >= 0) { mAllocdBuffers.add(mCurrentTextureBuf); } mGraphicBufferAlloc->freeAllGraphicBuffersExcept(exceptBuf); } EGLImageKHR SurfaceTexture::createImage(EGLDisplay dpy, const sp& graphicBuffer) { EGLClientBuffer cbuf = (EGLClientBuffer)graphicBuffer->getNativeBuffer(); EGLint attrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_TRUE, EGL_NONE, }; EGLImageKHR image = eglCreateImageKHR(dpy, EGL_NO_CONTEXT, EGL_NATIVE_BUFFER_ANDROID, cbuf, attrs); EGLint error = eglGetError(); if (error != EGL_SUCCESS) { LOGE("error creating EGLImage: %#x", error); } else if (image == EGL_NO_IMAGE_KHR) { LOGE("no error reported, but no image was returned by " "eglCreateImageKHR"); } return image; } static void mtxMul(float out[16], const float a[16], const float b[16]) { out[0] = a[0]*b[0] + a[4]*b[1] + a[8]*b[2] + a[12]*b[3]; out[1] = a[1]*b[0] + a[5]*b[1] + a[9]*b[2] + a[13]*b[3]; out[2] = a[2]*b[0] + a[6]*b[1] + a[10]*b[2] + a[14]*b[3]; out[3] = a[3]*b[0] + a[7]*b[1] + a[11]*b[2] + a[15]*b[3]; out[4] = a[0]*b[4] + a[4]*b[5] + a[8]*b[6] + a[12]*b[7]; out[5] = a[1]*b[4] + a[5]*b[5] + a[9]*b[6] + a[13]*b[7]; out[6] = a[2]*b[4] + a[6]*b[5] + a[10]*b[6] + a[14]*b[7]; out[7] = a[3]*b[4] + a[7]*b[5] + a[11]*b[6] + a[15]*b[7]; out[8] = a[0]*b[8] + a[4]*b[9] + a[8]*b[10] + a[12]*b[11]; out[9] = a[1]*b[8] + a[5]*b[9] + a[9]*b[10] + a[13]*b[11]; out[10] = a[2]*b[8] + a[6]*b[9] + a[10]*b[10] + a[14]*b[11]; out[11] = a[3]*b[8] + a[7]*b[9] + a[11]*b[10] + a[15]*b[11]; out[12] = a[0]*b[12] + a[4]*b[13] + a[8]*b[14] + a[12]*b[15]; out[13] = a[1]*b[12] + a[5]*b[13] + a[9]*b[14] + a[13]*b[15]; out[14] = a[2]*b[12] + a[6]*b[13] + a[10]*b[14] + a[14]*b[15]; out[15] = a[3]*b[12] + a[7]*b[13] + a[11]*b[14] + a[15]*b[15]; } }; // namespace android