/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #include #include #include #include "AmbientShadow.h" #include "ShadowTessellator.h" #include "Vertex.h" namespace android { namespace uirenderer { /** * Calculate the shadows as a triangle strips while alpha value as the * shadow values. * * @param isCasterOpaque Whether the caster is opaque. * @param vertices The shadow caster's polygon, which is represented in a Vector3 * array. * @param vertexCount The length of caster's polygon in terms of number of * vertices. * @param centroid3d The centroid of the shadow caster. * @param heightFactor The factor showing the higher the object, the lighter the * shadow. * @param geomFactor The factor scaling the geometry expansion along the normal. * * @param shadowVertexBuffer Return an floating point array of (x, y, a) * triangle strips mode. */ VertexBufferMode AmbientShadow::createAmbientShadow(bool isCasterOpaque, const Vector3* vertices, int vertexCount, const Vector3& centroid3d, float heightFactor, float geomFactor, VertexBuffer& shadowVertexBuffer) { const int rays = SHADOW_RAY_COUNT; VertexBufferMode mode = kVertexBufferMode_OnePolyRingShadow; // Validate the inputs. if (vertexCount < 3 || heightFactor <= 0 || rays <= 0 || geomFactor <= 0) { #if DEBUG_SHADOW ALOGW("Invalid input for createAmbientShadow(), early return!"); #endif return mode; // vertex buffer is empty, so any mode doesn't matter. } Vector dir; // TODO: use C++11 unique_ptr dir.setCapacity(rays); float rayDist[rays]; float rayHeight[rays]; calculateRayDirections(rays, vertices, vertexCount, centroid3d, dir.editArray()); // Calculate the length and height of the points along the edge. // // The math here is: // Intersect each ray (starting from the centroid) with the polygon. for (int i = 0; i < rays; i++) { int edgeIndex; float edgeFraction; float rayDistance; calculateIntersection(vertices, vertexCount, centroid3d, dir[i], edgeIndex, edgeFraction, rayDistance); rayDist[i] = rayDistance; if (edgeIndex < 0 || edgeIndex >= vertexCount) { #if DEBUG_SHADOW ALOGW("Invalid edgeIndex!"); #endif edgeIndex = 0; } float h1 = vertices[edgeIndex].z; float h2 = vertices[((edgeIndex + 1) % vertexCount)].z; rayHeight[i] = h1 + edgeFraction * (h2 - h1); } // The output buffer length basically is roughly rays * layers, but since we // need triangle strips, so we need to duplicate vertices to accomplish that. AlphaVertex* shadowVertices = shadowVertexBuffer.alloc(SHADOW_VERTEX_COUNT); // Calculate the vertex of the shadows. // // The math here is: // Along the edges of the polygon, for each intersection point P (generated above), // calculate the normal N, which should be perpendicular to the edge of the // polygon (represented by the neighbor intersection points) . // Shadow's vertices will be generated as : P + N * scale. const Vector2 centroid2d = Vector2(centroid3d.x, centroid3d.y); for (int rayIndex = 0; rayIndex < rays; rayIndex++) { Vector2 normal(1.0f, 0.0f); calculateNormal(rays, rayIndex, dir.array(), rayDist, normal); // The vertex should be start from rayDist[i] then scale the // normalizeNormal! Vector2 intersection = dir[rayIndex] * rayDist[rayIndex] + centroid2d; // outer ring of points, expanded based upon height of each ray intersection float expansionDist = rayHeight[rayIndex] * heightFactor * geomFactor; AlphaVertex::set(&shadowVertices[rayIndex], intersection.x + normal.x * expansionDist, intersection.y + normal.y * expansionDist, 0.0f); // inner ring of points float opacity = 1.0 / (1 + rayHeight[rayIndex] * heightFactor); AlphaVertex::set(&shadowVertices[rays + rayIndex], intersection.x, intersection.y, opacity); } // If caster isn't opaque, we need to to fill the umbra by storing the umbra's // centroid in the innermost ring of vertices. if (!isCasterOpaque) { mode = kVertexBufferMode_TwoPolyRingShadow; float centroidAlpha = 1.0 / (1 + centroid3d.z * heightFactor); AlphaVertex centroidXYA; AlphaVertex::set(¢roidXYA, centroid2d.x, centroid2d.y, centroidAlpha); for (int rayIndex = 0; rayIndex < rays; rayIndex++) { shadowVertices[2 * rays + rayIndex] = centroidXYA; } } #if DEBUG_SHADOW for (int i = 0; i < SHADOW_VERTEX_COUNT; i++) { ALOGD("ambient shadow value: i %d, (x:%f, y:%f, a:%f)", i, shadowVertices[i].x, shadowVertices[i].y, shadowVertices[i].alpha); } #endif return mode; } /** * Generate an array of rays' direction vectors. * To make sure the vertices generated are clockwise, the directions are from PI * to -PI. * * @param rays The number of rays shooting out from the centroid. * @param vertices Vertices of the polygon. * @param vertexCount The number of vertices. * @param centroid3d The centroid of the polygon. * @param dir Return the array of ray vectors. */ void AmbientShadow::calculateRayDirections(const int rays, const Vector3* vertices, const int vertexCount, const Vector3& centroid3d, Vector2* dir) { // If we don't have enough rays, then fall back to the uniform distribution. if (vertexCount * 2 > rays) { float deltaAngle = 2 * M_PI / rays; for (int i = 0; i < rays; i++) { dir[i].x = cosf(M_PI - deltaAngle * i); dir[i].y = sinf(M_PI - deltaAngle * i); } return; } // If we have enough rays, then we assign each vertices a ray, and distribute // the rest uniformly. float rayThetas[rays]; const int uniformRayCount = rays - vertexCount; const float deltaAngle = 2 * M_PI / uniformRayCount; // We have to generate all the vertices' theta anyway and we also need to // find the minimal, so let's precompute it first. // Since the incoming polygon is clockwise, we can find the dip to identify // the minimal theta. float polyThetas[vertexCount]; int maxPolyThetaIndex = 0; for (int i = 0; i < vertexCount; i++) { polyThetas[i] = atan2(vertices[i].y - centroid3d.y, vertices[i].x - centroid3d.x); if (i > 0 && polyThetas[i] > polyThetas[i - 1]) { maxPolyThetaIndex = i; } } // Both poly's thetas and uniform thetas are in decrease order(clockwise) // from PI to -PI. int polyThetaIndex = maxPolyThetaIndex; float polyTheta = polyThetas[maxPolyThetaIndex]; int uniformThetaIndex = 0; float uniformTheta = M_PI; for (int i = 0; i < rays; i++) { // Compare both thetas and pick the smaller one and move on. bool hasThetaCollision = abs(polyTheta - uniformTheta) < MINIMAL_DELTA_THETA; if (polyTheta > uniformTheta || hasThetaCollision) { if (hasThetaCollision) { // Shift the uniformTheta to middle way between current polyTheta // and next uniform theta. The next uniform theta can wrap around // to exactly PI safely here. // Note that neither polyTheta nor uniformTheta can be FLT_MAX // due to the hasThetaCollision is true. uniformTheta = (polyTheta + M_PI - deltaAngle * (uniformThetaIndex + 1)) / 2; #if DEBUG_SHADOW ALOGD("Shifted uniformTheta to %f", uniformTheta); #endif } rayThetas[i] = polyTheta; polyThetaIndex = (polyThetaIndex + 1) % vertexCount; if (polyThetaIndex != maxPolyThetaIndex) { polyTheta = polyThetas[polyThetaIndex]; } else { // out of poly points. polyTheta = - FLT_MAX; } } else { rayThetas[i] = uniformTheta; uniformThetaIndex++; if (uniformThetaIndex < uniformRayCount) { uniformTheta = M_PI - deltaAngle * uniformThetaIndex; } else { // out of uniform points. uniformTheta = - FLT_MAX; } } } for (int i = 0; i < rays; i++) { #if DEBUG_SHADOW ALOGD("No. %d : %f", i, rayThetas[i] * 180 / M_PI); #endif // TODO: Fix the intersection precision problem and remvoe the delta added // here. dir[i].x = cosf(rayThetas[i] + MINIMAL_DELTA_THETA); dir[i].y = sinf(rayThetas[i] + MINIMAL_DELTA_THETA); } } /** * Calculate the intersection of a ray hitting the polygon. * * @param vertices The shadow caster's polygon, which is represented in a * Vector3 array. * @param vertexCount The length of caster's polygon in terms of number of vertices. * @param start The starting point of the ray. * @param dir The direction vector of the ray. * * @param outEdgeIndex Return the index of the segment (or index of the starting * vertex) that ray intersect with. * @param outEdgeFraction Return the fraction offset from the segment starting * index. * @param outRayDist Return the ray distance from centroid to the intersection. */ void AmbientShadow::calculateIntersection(const Vector3* vertices, int vertexCount, const Vector3& start, const Vector2& dir, int& outEdgeIndex, float& outEdgeFraction, float& outRayDist) { float startX = start.x; float startY = start.y; float dirX = dir.x; float dirY = dir.y; // Start the search from the last edge from poly[len-1] to poly[0]. int p1 = vertexCount - 1; for (int p2 = 0; p2 < vertexCount; p2++) { float p1x = vertices[p1].x; float p1y = vertices[p1].y; float p2x = vertices[p2].x; float p2y = vertices[p2].y; // The math here is derived from: // f(t, v) = p1x * (1 - t) + p2x * t - (startX + dirX * v) = 0; // g(t, v) = p1y * (1 - t) + p2y * t - (startY + dirY * v) = 0; float div = (dirX * (p1y - p2y) + dirY * p2x - dirY * p1x); if (div != 0) { float t = (dirX * (p1y - startY) + dirY * startX - dirY * p1x) / (div); if (t > 0 && t <= 1) { float t2 = (p1x * (startY - p2y) + p2x * (p1y - startY) + startX * (p2y - p1y)) / div; if (t2 > 0) { outEdgeIndex = p1; outRayDist = t2; outEdgeFraction = t; return; } } } p1 = p2; } return; }; /** * Calculate the normal at the intersection point between a ray and the polygon. * * @param rays The total number of rays. * @param currentRayIndex The index of the ray which the normal is based on. * @param dir The array of the all the rays directions. * @param rayDist The pre-computed ray distances array. * * @param normal Return the normal. */ void AmbientShadow::calculateNormal(int rays, int currentRayIndex, const Vector2* dir, const float* rayDist, Vector2& normal) { int preIndex = (currentRayIndex - 1 + rays) % rays; int postIndex = (currentRayIndex + 1) % rays; Vector2 p1 = dir[preIndex] * rayDist[preIndex]; Vector2 p2 = dir[postIndex] * rayDist[postIndex]; // Now the rays are going CW around the poly. Vector2 delta = p2 - p1; if (delta.length() != 0) { delta.normalize(); // Calculate the normal , which is CCW 90 rotate to the delta. normal.x = - delta.y; normal.y = delta.x; } } }; // namespace uirenderer }; // namespace android