/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #include #include #include "Caches.h" #include "DisplayListRenderer.h" #include "Properties.h" #include "LayerRenderer.h" #include "ShadowTessellator.h" #include "RenderState.h" namespace android { #ifdef USE_OPENGL_RENDERER using namespace uirenderer; ANDROID_SINGLETON_STATIC_INSTANCE(Caches); #endif namespace uirenderer { /////////////////////////////////////////////////////////////////////////////// // Macros /////////////////////////////////////////////////////////////////////////////// #if DEBUG_CACHE_FLUSH #define FLUSH_LOGD(...) ALOGD(__VA_ARGS__) #else #define FLUSH_LOGD(...) #endif /////////////////////////////////////////////////////////////////////////////// // Constructors/destructor /////////////////////////////////////////////////////////////////////////////// Caches::Caches(): Singleton(), mExtensions(Extensions::getInstance()), mInitialized(false), mRenderState(NULL) { init(); initFont(); initConstraints(); initProperties(); initStaticProperties(); initExtensions(); initTempProperties(); mDebugLevel = readDebugLevel(); ALOGD("Enabling debug mode %d", mDebugLevel); } bool Caches::init() { if (mInitialized) return false; ATRACE_NAME("Caches::init"); glGenBuffers(1, &meshBuffer); glBindBuffer(GL_ARRAY_BUFFER, meshBuffer); glBufferData(GL_ARRAY_BUFFER, sizeof(gMeshVertices), gMeshVertices, GL_STATIC_DRAW); mCurrentBuffer = meshBuffer; mCurrentIndicesBuffer = 0; mCurrentPositionPointer = this; mCurrentPositionStride = 0; mCurrentTexCoordsPointer = this; mCurrentPixelBuffer = 0; mTexCoordsArrayEnabled = false; glDisable(GL_SCISSOR_TEST); scissorEnabled = false; mScissorX = mScissorY = mScissorWidth = mScissorHeight = 0; glActiveTexture(gTextureUnits[0]); mTextureUnit = 0; mRegionMesh = NULL; mMeshIndices = 0; mShadowStripsIndices = 0; blend = false; lastSrcMode = GL_ZERO; lastDstMode = GL_ZERO; currentProgram = NULL; mFunctorsCount = 0; debugLayersUpdates = false; debugOverdraw = false; debugStencilClip = kStencilHide; patchCache.init(*this); mInitialized = true; resetBoundTextures(); return true; } void Caches::initFont() { fontRenderer = GammaFontRenderer::createRenderer(); } void Caches::initExtensions() { if (mExtensions.hasDebugMarker()) { eventMark = glInsertEventMarkerEXT; startMark = glPushGroupMarkerEXT; endMark = glPopGroupMarkerEXT; } else { eventMark = eventMarkNull; startMark = startMarkNull; endMark = endMarkNull; } if (mExtensions.hasDebugLabel() && (drawDeferDisabled || drawReorderDisabled)) { setLabel = glLabelObjectEXT; getLabel = glGetObjectLabelEXT; } else { setLabel = setLabelNull; getLabel = getLabelNull; } } void Caches::initConstraints() { GLint maxTextureUnits; glGetIntegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS, &maxTextureUnits); if (maxTextureUnits < REQUIRED_TEXTURE_UNITS_COUNT) { ALOGW("At least %d texture units are required!", REQUIRED_TEXTURE_UNITS_COUNT); } glGetIntegerv(GL_MAX_TEXTURE_SIZE, &maxTextureSize); } void Caches::initStaticProperties() { gpuPixelBuffersEnabled = false; // OpenGL ES 3.0+ specific features if (mExtensions.hasPixelBufferObjects()) { char property[PROPERTY_VALUE_MAX]; if (property_get(PROPERTY_ENABLE_GPU_PIXEL_BUFFERS, property, "true") > 0) { gpuPixelBuffersEnabled = !strcmp(property, "true"); } } } bool Caches::initProperties() { bool prevDebugLayersUpdates = debugLayersUpdates; bool prevDebugOverdraw = debugOverdraw; StencilClipDebug prevDebugStencilClip = debugStencilClip; char property[PROPERTY_VALUE_MAX]; if (property_get(PROPERTY_DEBUG_LAYERS_UPDATES, property, NULL) > 0) { INIT_LOGD(" Layers updates debug enabled: %s", property); debugLayersUpdates = !strcmp(property, "true"); } else { debugLayersUpdates = false; } debugOverdraw = false; if (property_get(PROPERTY_DEBUG_OVERDRAW, property, NULL) > 0) { INIT_LOGD(" Overdraw debug enabled: %s", property); if (!strcmp(property, "show")) { debugOverdraw = true; mOverdrawDebugColorSet = kColorSet_Default; } else if (!strcmp(property, "show_deuteranomaly")) { debugOverdraw = true; mOverdrawDebugColorSet = kColorSet_Deuteranomaly; } } // See Properties.h for valid values if (property_get(PROPERTY_DEBUG_STENCIL_CLIP, property, NULL) > 0) { INIT_LOGD(" Stencil clip debug enabled: %s", property); if (!strcmp(property, "hide")) { debugStencilClip = kStencilHide; } else if (!strcmp(property, "highlight")) { debugStencilClip = kStencilShowHighlight; } else if (!strcmp(property, "region")) { debugStencilClip = kStencilShowRegion; } } else { debugStencilClip = kStencilHide; } if (property_get(PROPERTY_DISABLE_DRAW_DEFER, property, "false")) { drawDeferDisabled = !strcasecmp(property, "true"); INIT_LOGD(" Draw defer %s", drawDeferDisabled ? "disabled" : "enabled"); } else { drawDeferDisabled = false; INIT_LOGD(" Draw defer enabled"); } if (property_get(PROPERTY_DISABLE_DRAW_REORDER, property, "false")) { drawReorderDisabled = !strcasecmp(property, "true"); INIT_LOGD(" Draw reorder %s", drawReorderDisabled ? "disabled" : "enabled"); } else { drawReorderDisabled = false; INIT_LOGD(" Draw reorder enabled"); } return (prevDebugLayersUpdates != debugLayersUpdates) || (prevDebugOverdraw != debugOverdraw) || (prevDebugStencilClip != debugStencilClip); } void Caches::terminate() { if (!mInitialized) return; glDeleteBuffers(1, &meshBuffer); mCurrentBuffer = 0; glDeleteBuffers(1, &mMeshIndices); delete[] mRegionMesh; mMeshIndices = 0; mRegionMesh = NULL; glDeleteBuffers(1, &mShadowStripsIndices); mShadowStripsIndices = 0; fboCache.clear(); programCache.clear(); currentProgram = NULL; assetAtlas.terminate(); patchCache.clear(); clearGarbage(); mInitialized = false; } /////////////////////////////////////////////////////////////////////////////// // Debug /////////////////////////////////////////////////////////////////////////////// uint32_t Caches::getOverdrawColor(uint32_t amount) const { static uint32_t sOverdrawColors[2][4] = { { 0x2f0000ff, 0x2f00ff00, 0x3fff0000, 0x7fff0000 }, { 0x2f0000ff, 0x4fffff00, 0x5fff8ad8, 0x7fff0000 } }; if (amount < 1) amount = 1; if (amount > 4) amount = 4; return sOverdrawColors[mOverdrawDebugColorSet][amount - 1]; } void Caches::dumpMemoryUsage() { String8 stringLog; dumpMemoryUsage(stringLog); ALOGD("%s", stringLog.string()); } void Caches::dumpMemoryUsage(String8 &log) { uint32_t total = 0; log.appendFormat("Current memory usage / total memory usage (bytes):\n"); log.appendFormat(" TextureCache %8d / %8d\n", textureCache.getSize(), textureCache.getMaxSize()); log.appendFormat(" LayerCache %8d / %8d (numLayers = %zu)\n", layerCache.getSize(), layerCache.getMaxSize(), layerCache.getCount()); if (mRenderState) { int memused = 0; for (std::set::iterator it = mRenderState->mActiveLayers.begin(); it != mRenderState->mActiveLayers.end(); it++) { const Layer* layer = *it; log.appendFormat(" Layer size %dx%d; isTextureLayer()=%d; texid=%u fbo=%u; refs=%d\n", layer->getWidth(), layer->getHeight(), layer->isTextureLayer(), layer->getTexture(), layer->getFbo(), layer->getStrongCount()); memused += layer->getWidth() * layer->getHeight() * 4; } log.appendFormat(" Layers total %8d (numLayers = %zu)\n", memused, mRenderState->mActiveLayers.size()); total += memused; } log.appendFormat(" RenderBufferCache %8d / %8d\n", renderBufferCache.getSize(), renderBufferCache.getMaxSize()); log.appendFormat(" GradientCache %8d / %8d\n", gradientCache.getSize(), gradientCache.getMaxSize()); log.appendFormat(" PathCache %8d / %8d\n", pathCache.getSize(), pathCache.getMaxSize()); log.appendFormat(" TessellationCache %8d / %8d\n", tessellationCache.getSize(), tessellationCache.getMaxSize()); log.appendFormat(" TextDropShadowCache %8d / %8d\n", dropShadowCache.getSize(), dropShadowCache.getMaxSize()); log.appendFormat(" PatchCache %8d / %8d\n", patchCache.getSize(), patchCache.getMaxSize()); for (uint32_t i = 0; i < fontRenderer->getFontRendererCount(); i++) { const uint32_t sizeA8 = fontRenderer->getFontRendererSize(i, GL_ALPHA); const uint32_t sizeRGBA = fontRenderer->getFontRendererSize(i, GL_RGBA); log.appendFormat(" FontRenderer %d A8 %8d / %8d\n", i, sizeA8, sizeA8); log.appendFormat(" FontRenderer %d RGBA %8d / %8d\n", i, sizeRGBA, sizeRGBA); log.appendFormat(" FontRenderer %d total %8d / %8d\n", i, sizeA8 + sizeRGBA, sizeA8 + sizeRGBA); } log.appendFormat("Other:\n"); log.appendFormat(" FboCache %8d / %8d\n", fboCache.getSize(), fboCache.getMaxSize()); total += textureCache.getSize(); total += renderBufferCache.getSize(); total += gradientCache.getSize(); total += pathCache.getSize(); total += tessellationCache.getSize(); total += dropShadowCache.getSize(); total += patchCache.getSize(); for (uint32_t i = 0; i < fontRenderer->getFontRendererCount(); i++) { total += fontRenderer->getFontRendererSize(i, GL_ALPHA); total += fontRenderer->getFontRendererSize(i, GL_RGBA); } log.appendFormat("Total memory usage:\n"); log.appendFormat(" %d bytes, %.2f MB\n", total, total / 1024.0f / 1024.0f); } /////////////////////////////////////////////////////////////////////////////// // Memory management /////////////////////////////////////////////////////////////////////////////// void Caches::clearGarbage() { textureCache.clearGarbage(); pathCache.clearGarbage(); patchCache.clearGarbage(); } void Caches::flush(FlushMode mode) { FLUSH_LOGD("Flushing caches (mode %d)", mode); // We must stop tasks before clearing caches if (mode > kFlushMode_Layers) { tasks.stop(); } switch (mode) { case kFlushMode_Full: textureCache.clear(); patchCache.clear(); dropShadowCache.clear(); gradientCache.clear(); fontRenderer->clear(); fboCache.clear(); dither.clear(); // fall through case kFlushMode_Moderate: fontRenderer->flush(); textureCache.flush(); pathCache.clear(); tessellationCache.clear(); // fall through case kFlushMode_Layers: layerCache.clear(); renderBufferCache.clear(); break; } clearGarbage(); glFinish(); } /////////////////////////////////////////////////////////////////////////////// // VBO /////////////////////////////////////////////////////////////////////////////// bool Caches::bindMeshBuffer() { return bindMeshBuffer(meshBuffer); } bool Caches::bindMeshBuffer(const GLuint buffer) { if (mCurrentBuffer != buffer) { glBindBuffer(GL_ARRAY_BUFFER, buffer); mCurrentBuffer = buffer; return true; } return false; } bool Caches::unbindMeshBuffer() { if (mCurrentBuffer) { glBindBuffer(GL_ARRAY_BUFFER, 0); mCurrentBuffer = 0; return true; } return false; } bool Caches::bindIndicesBufferInternal(const GLuint buffer) { if (mCurrentIndicesBuffer != buffer) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, buffer); mCurrentIndicesBuffer = buffer; return true; } return false; } bool Caches::bindQuadIndicesBuffer() { if (!mMeshIndices) { uint16_t* regionIndices = new uint16_t[gMaxNumberOfQuads * 6]; for (uint32_t i = 0; i < gMaxNumberOfQuads; i++) { uint16_t quad = i * 4; int index = i * 6; regionIndices[index ] = quad; // top-left regionIndices[index + 1] = quad + 1; // top-right regionIndices[index + 2] = quad + 2; // bottom-left regionIndices[index + 3] = quad + 2; // bottom-left regionIndices[index + 4] = quad + 1; // top-right regionIndices[index + 5] = quad + 3; // bottom-right } glGenBuffers(1, &mMeshIndices); bool force = bindIndicesBufferInternal(mMeshIndices); glBufferData(GL_ELEMENT_ARRAY_BUFFER, gMaxNumberOfQuads * 6 * sizeof(uint16_t), regionIndices, GL_STATIC_DRAW); delete[] regionIndices; return force; } return bindIndicesBufferInternal(mMeshIndices); } bool Caches::bindShadowIndicesBuffer() { if (!mShadowStripsIndices) { uint16_t* shadowIndices = new uint16_t[MAX_SHADOW_INDEX_COUNT]; ShadowTessellator::generateShadowIndices(shadowIndices); glGenBuffers(1, &mShadowStripsIndices); bool force = bindIndicesBufferInternal(mShadowStripsIndices); glBufferData(GL_ELEMENT_ARRAY_BUFFER, MAX_SHADOW_INDEX_COUNT * sizeof(uint16_t), shadowIndices, GL_STATIC_DRAW); delete[] shadowIndices; return force; } return bindIndicesBufferInternal(mShadowStripsIndices); } bool Caches::unbindIndicesBuffer() { if (mCurrentIndicesBuffer) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); mCurrentIndicesBuffer = 0; return true; } return false; } /////////////////////////////////////////////////////////////////////////////// // PBO /////////////////////////////////////////////////////////////////////////////// bool Caches::bindPixelBuffer(const GLuint buffer) { if (mCurrentPixelBuffer != buffer) { glBindBuffer(GL_PIXEL_UNPACK_BUFFER, buffer); mCurrentPixelBuffer = buffer; return true; } return false; } bool Caches::unbindPixelBuffer() { if (mCurrentPixelBuffer) { glBindBuffer(GL_PIXEL_UNPACK_BUFFER, 0); mCurrentPixelBuffer = 0; return true; } return false; } /////////////////////////////////////////////////////////////////////////////// // Meshes and textures /////////////////////////////////////////////////////////////////////////////// void Caches::bindPositionVertexPointer(bool force, const GLvoid* vertices, GLsizei stride) { if (force || vertices != mCurrentPositionPointer || stride != mCurrentPositionStride) { GLuint slot = currentProgram->position; glVertexAttribPointer(slot, 2, GL_FLOAT, GL_FALSE, stride, vertices); mCurrentPositionPointer = vertices; mCurrentPositionStride = stride; } } void Caches::bindTexCoordsVertexPointer(bool force, const GLvoid* vertices, GLsizei stride) { if (force || vertices != mCurrentTexCoordsPointer || stride != mCurrentTexCoordsStride) { GLuint slot = currentProgram->texCoords; glVertexAttribPointer(slot, 2, GL_FLOAT, GL_FALSE, stride, vertices); mCurrentTexCoordsPointer = vertices; mCurrentTexCoordsStride = stride; } } void Caches::resetVertexPointers() { mCurrentPositionPointer = this; mCurrentTexCoordsPointer = this; } void Caches::resetTexCoordsVertexPointer() { mCurrentTexCoordsPointer = this; } void Caches::enableTexCoordsVertexArray() { if (!mTexCoordsArrayEnabled) { glEnableVertexAttribArray(Program::kBindingTexCoords); mCurrentTexCoordsPointer = this; mTexCoordsArrayEnabled = true; } } void Caches::disableTexCoordsVertexArray() { if (mTexCoordsArrayEnabled) { glDisableVertexAttribArray(Program::kBindingTexCoords); mTexCoordsArrayEnabled = false; } } void Caches::activeTexture(GLuint textureUnit) { if (mTextureUnit != textureUnit) { glActiveTexture(gTextureUnits[textureUnit]); mTextureUnit = textureUnit; } } void Caches::resetActiveTexture() { mTextureUnit = -1; } void Caches::bindTexture(GLuint texture) { if (mBoundTextures[mTextureUnit] != texture) { glBindTexture(GL_TEXTURE_2D, texture); mBoundTextures[mTextureUnit] = texture; } } void Caches::bindTexture(GLenum target, GLuint texture) { if (target == GL_TEXTURE_2D) { bindTexture(texture); } else { // GLConsumer directly calls glBindTexture() with // target=GL_TEXTURE_EXTERNAL_OES, don't cache this target // since the cached state could be stale glBindTexture(target, texture); } } void Caches::deleteTexture(GLuint texture) { // When glDeleteTextures() is called on a currently bound texture, // OpenGL ES specifies that the texture is then considered unbound // Consider the following series of calls: // // glGenTextures -> creates texture name 2 // glBindTexture(2) // glDeleteTextures(2) -> 2 is now unbound // glGenTextures -> can return 2 again // // If we don't call glBindTexture(2) after the second glGenTextures // call, any texture operation will be performed on the default // texture (name=0) unbindTexture(texture); glDeleteTextures(1, &texture); } void Caches::resetBoundTextures() { memset(mBoundTextures, 0, REQUIRED_TEXTURE_UNITS_COUNT * sizeof(GLuint)); } void Caches::unbindTexture(GLuint texture) { for (int i = 0; i < REQUIRED_TEXTURE_UNITS_COUNT; i++) { if (mBoundTextures[i] == texture) { mBoundTextures[i] = 0; } } } /////////////////////////////////////////////////////////////////////////////// // Scissor /////////////////////////////////////////////////////////////////////////////// bool Caches::setScissor(GLint x, GLint y, GLint width, GLint height) { if (scissorEnabled && (x != mScissorX || y != mScissorY || width != mScissorWidth || height != mScissorHeight)) { if (x < 0) { width += x; x = 0; } if (y < 0) { height += y; y = 0; } if (width < 0) { width = 0; } if (height < 0) { height = 0; } glScissor(x, y, width, height); mScissorX = x; mScissorY = y; mScissorWidth = width; mScissorHeight = height; return true; } return false; } bool Caches::enableScissor() { if (!scissorEnabled) { glEnable(GL_SCISSOR_TEST); scissorEnabled = true; resetScissor(); return true; } return false; } bool Caches::disableScissor() { if (scissorEnabled) { glDisable(GL_SCISSOR_TEST); scissorEnabled = false; return true; } return false; } void Caches::setScissorEnabled(bool enabled) { if (scissorEnabled != enabled) { if (enabled) glEnable(GL_SCISSOR_TEST); else glDisable(GL_SCISSOR_TEST); scissorEnabled = enabled; } } void Caches::resetScissor() { mScissorX = mScissorY = mScissorWidth = mScissorHeight = 0; } /////////////////////////////////////////////////////////////////////////////// // Tiling /////////////////////////////////////////////////////////////////////////////// void Caches::startTiling(GLuint x, GLuint y, GLuint width, GLuint height, bool discard) { if (mExtensions.hasTiledRendering() && !debugOverdraw) { glStartTilingQCOM(x, y, width, height, (discard ? GL_NONE : GL_COLOR_BUFFER_BIT0_QCOM)); } } void Caches::endTiling() { if (mExtensions.hasTiledRendering() && !debugOverdraw) { glEndTilingQCOM(GL_COLOR_BUFFER_BIT0_QCOM); } } bool Caches::hasRegisteredFunctors() { return mFunctorsCount > 0; } void Caches::registerFunctors(uint32_t functorCount) { mFunctorsCount += functorCount; } void Caches::unregisterFunctors(uint32_t functorCount) { if (functorCount > mFunctorsCount) { mFunctorsCount = 0; } else { mFunctorsCount -= functorCount; } } /////////////////////////////////////////////////////////////////////////////// // Regions /////////////////////////////////////////////////////////////////////////////// TextureVertex* Caches::getRegionMesh() { // Create the mesh, 2 triangles and 4 vertices per rectangle in the region if (!mRegionMesh) { mRegionMesh = new TextureVertex[gMaxNumberOfQuads * 4]; } return mRegionMesh; } /////////////////////////////////////////////////////////////////////////////// // Temporary Properties /////////////////////////////////////////////////////////////////////////////// void Caches::initTempProperties() { propertyLightDiameter = -1.0f; propertyLightPosY = -1.0f; propertyLightPosZ = -1.0f; propertyAmbientRatio = -1.0f; propertyAmbientShadowStrength = -1; propertySpotShadowStrength = -1; } void Caches::setTempProperty(const char* name, const char* value) { ALOGD("setting property %s to %s", name, value); if (!strcmp(name, "ambientRatio")) { propertyAmbientRatio = fmin(fmax(atof(value), 0.0), 10.0); ALOGD("ambientRatio = %.2f", propertyAmbientRatio); return; } else if (!strcmp(name, "lightDiameter")) { propertyLightDiameter = fmin(fmax(atof(value), 0.0), 3000.0); ALOGD("lightDiameter = %.2f", propertyLightDiameter); return; } else if (!strcmp(name, "lightPosY")) { propertyLightPosY = fmin(fmax(atof(value), 0.0), 3000.0); ALOGD("lightPos Y = %.2f", propertyLightPosY); return; } else if (!strcmp(name, "lightPosZ")) { propertyLightPosZ = fmin(fmax(atof(value), 0.0), 3000.0); ALOGD("lightPos Z = %.2f", propertyLightPosZ); return; } else if (!strcmp(name, "ambientShadowStrength")) { propertyAmbientShadowStrength = atoi(value); ALOGD("ambient shadow strength = 0x%x out of 0xff", propertyAmbientShadowStrength); return; } else if (!strcmp(name, "spotShadowStrength")) { propertySpotShadowStrength = atoi(value); ALOGD("spot shadow strength = 0x%x out of 0xff", propertySpotShadowStrength); return; } ALOGD(" failed"); } }; // namespace uirenderer }; // namespace android