/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_HWUI_DISPLAY_OPERATION_H #define ANDROID_HWUI_DISPLAY_OPERATION_H #ifndef LOG_TAG #define LOG_TAG "OpenGLRenderer" #endif #include #include #include "OpenGLRenderer.h" #include "AssetAtlas.h" #include "DeferredDisplayList.h" #include "DisplayListRenderer.h" #include "UvMapper.h" #include "utils/LinearAllocator.h" #define CRASH() do { \ *(int *)(uintptr_t) 0xbbadbeef = 0; \ ((void(*)())0)(); /* More reliable, but doesn't say BBADBEEF */ \ } while(false) // Use OP_LOG for logging with arglist, OP_LOGS if just printing char* #define OP_LOGS(s) OP_LOG("%s", (s)) #define OP_LOG(s, ...) ALOGD( "%*s" s, level * 2, "", __VA_ARGS__ ) namespace android { namespace uirenderer { /** * Structure for storing canvas operations when they are recorded into a DisplayList, so that they * may be replayed to an OpenGLRenderer. * * To avoid individual memory allocations, DisplayListOps may only be allocated into a * LinearAllocator's managed memory buffers. Each pointer held by a DisplayListOp is either a * pointer into memory also allocated in the LinearAllocator (mostly for text and float buffers) or * references a externally refcounted object (Sk... and Skia... objects). ~DisplayListOp() is * never called as LinearAllocators are simply discarded, so no memory management should be done in * this class. */ class DisplayListOp { public: // These objects should always be allocated with a LinearAllocator, and never destroyed/deleted. // standard new() intentionally not implemented, and delete/deconstructor should never be used. virtual ~DisplayListOp() { CRASH(); } static void operator delete(void* ptr) { CRASH(); } /** static void* operator new(size_t size); PURPOSELY OMITTED **/ static void* operator new(size_t size, LinearAllocator& allocator) { return allocator.alloc(size); } enum OpLogFlag { kOpLogFlag_Recurse = 0x1, kOpLogFlag_JSON = 0x2 // TODO: add? }; virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level, bool useQuickReject) = 0; virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level, bool useQuickReject) = 0; virtual void output(int level, uint32_t logFlags = 0) const = 0; // NOTE: it would be nice to declare constants and overriding the implementation in each op to // point at the constants, but that seems to require a .cpp file virtual const char* name() = 0; /** * Stores the relevant canvas state of the object between deferral and replay (if the canvas * state supports being stored) See OpenGLRenderer::simpleClipAndState() * * TODO: don't reserve space for StateOps that won't be deferred */ DeferredDisplayState state; }; class StateOp : public DisplayListOp { public: StateOp() {}; virtual ~StateOp() {} virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level, bool useQuickReject) { // default behavior only affects immediate, deferrable state, issue directly to renderer applyState(deferStruct.mRenderer, saveCount); } /** * State operations are applied directly to the renderer, but can cause the deferred drawing op * list to flush */ virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level, bool useQuickReject) { applyState(replayStruct.mRenderer, saveCount); } virtual void applyState(OpenGLRenderer& renderer, int saveCount) const = 0; }; class DrawOp : public DisplayListOp { friend class MergingDrawBatch; public: DrawOp(SkPaint* paint) : mPaint(paint), mQuickRejected(false) {} virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level, bool useQuickReject) { if (mQuickRejected && CC_LIKELY(useQuickReject)) { return; } if (getLocalBounds(state.mBounds)) { // valid empty bounds, don't bother deferring if (state.mBounds.isEmpty()) return; } else { // empty bounds signify bounds can't be calculated state.mBounds.setEmpty(); } deferStruct.mDeferredList.addDrawOp(deferStruct.mRenderer, this); } virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level, bool useQuickReject) { if (mQuickRejected && CC_LIKELY(useQuickReject)) { return; } replayStruct.mDrawGlStatus |= applyDraw(replayStruct.mRenderer, replayStruct.mDirty); } virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) = 0; /** * Draw multiple instances of an operation, must be overidden for operations that merge * * Currently guarantees certain similarities between ops (see MergingDrawBatch::canMergeWith), * and pure translation transformations. Other guarantees of similarity should be enforced by * reducing which operations are tagged as mergeable. */ virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty, const Vector& ops, const Rect& bounds) { status_t status = DrawGlInfo::kStatusDone; for (unsigned int i = 0; i < ops.size(); i++) { renderer.restoreDisplayState(ops[i]->state, true); status |= ops[i]->applyDraw(renderer, dirty); } return status; } /** * When this method is invoked the state field is initialized to have the * final rendering state. We can thus use it to process data as it will be * used at draw time. * * Additionally, this method allows subclasses to provide defer-time preferences for batching * and merging. * * if a subclass can set deferInfo.mergeable to true, it should implement multiDraw() */ virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) {} /** * Query the conservative, local bounds (unmapped) bounds of the op. * * returns true if bounds exist */ virtual bool getLocalBounds(Rect& localBounds) { return false; } // TODO: better refine localbounds usage void setQuickRejected(bool quickRejected) { mQuickRejected = quickRejected; } bool getQuickRejected() { return mQuickRejected; } inline int getPaintAlpha() { return OpenGLRenderer::getAlphaDirect(mPaint); } inline float strokeWidthOutset() { float width = mPaint->getStrokeWidth(); if (width == 0) return 0.5f; // account for hairline return width * 0.5f; } protected: SkPaint* getPaint(OpenGLRenderer& renderer) { return renderer.filterPaint(mPaint); } // Helper method for determining op opaqueness. Assumes op fills its bounds in local // coordinates, and that paint's alpha is used inline bool isOpaqueOverBounds() { // ensure that local bounds cover mapped bounds if (!state.mMatrix.isSimple()) return false; // check state/paint for transparency if (state.mDrawModifiers.mShader || state.mAlpha != 1.0f || (mPaint && mPaint->getAlpha() != 0xFF)) return false; SkXfermode::Mode mode = OpenGLRenderer::getXfermodeDirect(mPaint); return (mode == SkXfermode::kSrcOver_Mode || mode == SkXfermode::kSrc_Mode); } SkPaint* mPaint; // should be accessed via getPaint() when applying bool mQuickRejected; }; class DrawBoundedOp : public DrawOp { public: DrawBoundedOp(float left, float top, float right, float bottom, SkPaint* paint) : DrawOp(paint), mLocalBounds(left, top, right, bottom) {} DrawBoundedOp(const Rect& localBounds, SkPaint* paint) : DrawOp(paint), mLocalBounds(localBounds) {} // Calculates bounds as smallest rect encompassing all points // NOTE: requires at least 1 vertex, and doesn't account for stroke size (should be handled in // subclass' constructor) DrawBoundedOp(const float* points, int count, SkPaint* paint) : DrawOp(paint), mLocalBounds(points[0], points[1], points[0], points[1]) { for (int i = 2; i < count; i += 2) { mLocalBounds.left = fminf(mLocalBounds.left, points[i]); mLocalBounds.right = fmaxf(mLocalBounds.right, points[i]); mLocalBounds.top = fminf(mLocalBounds.top, points[i + 1]); mLocalBounds.bottom = fmaxf(mLocalBounds.bottom, points[i + 1]); } } // default empty constructor for bounds, to be overridden in child constructor body DrawBoundedOp(SkPaint* paint): DrawOp(paint) { } bool getLocalBounds(Rect& localBounds) { localBounds.set(mLocalBounds); if (state.mDrawModifiers.mHasShadow) { Rect shadow(mLocalBounds); shadow.translate(state.mDrawModifiers.mShadowDx, state.mDrawModifiers.mShadowDy); shadow.outset(state.mDrawModifiers.mShadowRadius); localBounds.unionWith(shadow); } return true; } protected: Rect mLocalBounds; // displayed area in LOCAL coord. doesn't incorporate stroke, so check paint }; /////////////////////////////////////////////////////////////////////////////// // STATE OPERATIONS - these may affect the state of the canvas/renderer, but do // not directly draw or alter output /////////////////////////////////////////////////////////////////////////////// class SaveOp : public StateOp { friend class DisplayList; // give DisplayList private constructor/reinit access public: SaveOp(int flags) : mFlags(flags) {} virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level, bool useQuickReject) { int newSaveCount = deferStruct.mRenderer.save(mFlags); deferStruct.mDeferredList.addSave(deferStruct.mRenderer, this, newSaveCount); } virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.save(mFlags); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Save flags %x", mFlags); } virtual const char* name() { return "Save"; } int getFlags() const { return mFlags; } private: SaveOp() {} DisplayListOp* reinit(int flags) { mFlags = flags; return this; } int mFlags; }; class RestoreToCountOp : public StateOp { friend class DisplayList; // give DisplayList private constructor/reinit access public: RestoreToCountOp(int count) : mCount(count) {} virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level, bool useQuickReject) { deferStruct.mDeferredList.addRestoreToCount(deferStruct.mRenderer, this, saveCount + mCount); deferStruct.mRenderer.restoreToCount(saveCount + mCount); } virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.restoreToCount(saveCount + mCount); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Restore to count %d", mCount); } virtual const char* name() { return "RestoreToCount"; } private: RestoreToCountOp() {} DisplayListOp* reinit(int count) { mCount = count; return this; } int mCount; }; class SaveLayerOp : public StateOp { friend class DisplayList; // give DisplayList private constructor/reinit access public: SaveLayerOp(float left, float top, float right, float bottom, int alpha, SkXfermode::Mode mode, int flags) : mArea(left, top, right, bottom), mAlpha(alpha), mMode(mode), mFlags(flags) {} virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level, bool useQuickReject) { // NOTE: don't bother with actual saveLayer, instead issuing it at flush time int newSaveCount = deferStruct.mRenderer.getSaveCount(); deferStruct.mDeferredList.addSaveLayer(deferStruct.mRenderer, this, newSaveCount); // NOTE: don't issue full saveLayer, since that has side effects/is costly. instead just // setup the snapshot for deferral, and re-issue the op at flush time deferStruct.mRenderer.saveLayerDeferred(mArea.left, mArea.top, mArea.right, mArea.bottom, mAlpha, mMode, mFlags); } virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.saveLayer(mArea.left, mArea.top, mArea.right, mArea.bottom, mAlpha, mMode, mFlags); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("SaveLayer%s of area " RECT_STRING, (isSaveLayerAlpha() ? "Alpha" : ""),RECT_ARGS(mArea)); } virtual const char* name() { return isSaveLayerAlpha() ? "SaveLayerAlpha" : "SaveLayer"; } int getFlags() { return mFlags; } private: // Special case, reserved for direct DisplayList usage SaveLayerOp() {} DisplayListOp* reinit(float left, float top, float right, float bottom, int alpha, SkXfermode::Mode mode, int flags) { mArea.set(left, top, right, bottom); mAlpha = alpha; mMode = mode; mFlags = flags; return this; } bool isSaveLayerAlpha() const { return mAlpha < 255 && mMode == SkXfermode::kSrcOver_Mode; } Rect mArea; int mAlpha; SkXfermode::Mode mMode; int mFlags; }; class TranslateOp : public StateOp { public: TranslateOp(float dx, float dy) : mDx(dx), mDy(dy) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.translate(mDx, mDy); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Translate by %f %f", mDx, mDy); } virtual const char* name() { return "Translate"; } private: float mDx; float mDy; }; class RotateOp : public StateOp { public: RotateOp(float degrees) : mDegrees(degrees) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.rotate(mDegrees); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Rotate by %f degrees", mDegrees); } virtual const char* name() { return "Rotate"; } private: float mDegrees; }; class ScaleOp : public StateOp { public: ScaleOp(float sx, float sy) : mSx(sx), mSy(sy) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.scale(mSx, mSy); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Scale by %f %f", mSx, mSy); } virtual const char* name() { return "Scale"; } private: float mSx; float mSy; }; class SkewOp : public StateOp { public: SkewOp(float sx, float sy) : mSx(sx), mSy(sy) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.skew(mSx, mSy); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Skew by %f %f", mSx, mSy); } virtual const char* name() { return "Skew"; } private: float mSx; float mSy; }; class SetMatrixOp : public StateOp { public: SetMatrixOp(SkMatrix* matrix) : mMatrix(matrix) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.setMatrix(mMatrix); } virtual void output(int level, uint32_t logFlags) const { if (mMatrix) { OP_LOG("SetMatrix " MATRIX_STRING, MATRIX_ARGS(mMatrix)); } else { OP_LOGS("SetMatrix (reset)"); } } virtual const char* name() { return "SetMatrix"; } private: SkMatrix* mMatrix; }; class ConcatMatrixOp : public StateOp { public: ConcatMatrixOp(SkMatrix* matrix) : mMatrix(matrix) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.concatMatrix(mMatrix); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("ConcatMatrix " MATRIX_STRING, MATRIX_ARGS(mMatrix)); } virtual const char* name() { return "ConcatMatrix"; } private: SkMatrix* mMatrix; }; class ClipOp : public StateOp { public: ClipOp(SkRegion::Op op) : mOp(op) {} virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level, bool useQuickReject) { // NOTE: must defer op BEFORE applying state, since it may read clip deferStruct.mDeferredList.addClip(deferStruct.mRenderer, this); // TODO: Can we avoid applying complex clips at defer time? applyState(deferStruct.mRenderer, saveCount); } bool canCauseComplexClip() { return ((mOp != SkRegion::kIntersect_Op) && (mOp != SkRegion::kReplace_Op)) || !isRect(); } protected: ClipOp() {} virtual bool isRect() { return false; } SkRegion::Op mOp; }; class ClipRectOp : public ClipOp { friend class DisplayList; // give DisplayList private constructor/reinit access public: ClipRectOp(float left, float top, float right, float bottom, SkRegion::Op op) : ClipOp(op), mArea(left, top, right, bottom) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.clipRect(mArea.left, mArea.top, mArea.right, mArea.bottom, mOp); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("ClipRect " RECT_STRING, RECT_ARGS(mArea)); } virtual const char* name() { return "ClipRect"; } protected: virtual bool isRect() { return true; } private: ClipRectOp() {} DisplayListOp* reinit(float left, float top, float right, float bottom, SkRegion::Op op) { mOp = op; mArea.set(left, top, right, bottom); return this; } Rect mArea; }; class ClipPathOp : public ClipOp { public: ClipPathOp(SkPath* path, SkRegion::Op op) : ClipOp(op), mPath(path) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.clipPath(mPath, mOp); } virtual void output(int level, uint32_t logFlags) const { SkRect bounds = mPath->getBounds(); OP_LOG("ClipPath bounds " RECT_STRING, bounds.left(), bounds.top(), bounds.right(), bounds.bottom()); } virtual const char* name() { return "ClipPath"; } private: SkPath* mPath; }; class ClipRegionOp : public ClipOp { public: ClipRegionOp(SkRegion* region, SkRegion::Op op) : ClipOp(op), mRegion(region) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.clipRegion(mRegion, mOp); } virtual void output(int level, uint32_t logFlags) const { SkIRect bounds = mRegion->getBounds(); OP_LOG("ClipRegion bounds %d %d %d %d", bounds.left(), bounds.top(), bounds.right(), bounds.bottom()); } virtual const char* name() { return "ClipRegion"; } private: SkRegion* mRegion; }; class ResetShaderOp : public StateOp { public: virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.resetShader(); } virtual void output(int level, uint32_t logFlags) const { OP_LOGS("ResetShader"); } virtual const char* name() { return "ResetShader"; } }; class SetupShaderOp : public StateOp { public: SetupShaderOp(SkiaShader* shader) : mShader(shader) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.setupShader(mShader); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("SetupShader, shader %p", mShader); } virtual const char* name() { return "SetupShader"; } private: SkiaShader* mShader; }; class ResetColorFilterOp : public StateOp { public: virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.resetColorFilter(); } virtual void output(int level, uint32_t logFlags) const { OP_LOGS("ResetColorFilter"); } virtual const char* name() { return "ResetColorFilter"; } }; class SetupColorFilterOp : public StateOp { public: SetupColorFilterOp(SkiaColorFilter* colorFilter) : mColorFilter(colorFilter) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.setupColorFilter(mColorFilter); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("SetupColorFilter, filter %p", mColorFilter); } virtual const char* name() { return "SetupColorFilter"; } private: SkiaColorFilter* mColorFilter; }; class ResetShadowOp : public StateOp { public: virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.resetShadow(); } virtual void output(int level, uint32_t logFlags) const { OP_LOGS("ResetShadow"); } virtual const char* name() { return "ResetShadow"; } }; class SetupShadowOp : public StateOp { public: SetupShadowOp(float radius, float dx, float dy, int color) : mRadius(radius), mDx(dx), mDy(dy), mColor(color) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.setupShadow(mRadius, mDx, mDy, mColor); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("SetupShadow, radius %f, %f, %f, color %#x", mRadius, mDx, mDy, mColor); } virtual const char* name() { return "SetupShadow"; } private: float mRadius; float mDx; float mDy; int mColor; }; class ResetPaintFilterOp : public StateOp { public: virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.resetPaintFilter(); } virtual void output(int level, uint32_t logFlags) const { OP_LOGS("ResetPaintFilter"); } virtual const char* name() { return "ResetPaintFilter"; } }; class SetupPaintFilterOp : public StateOp { public: SetupPaintFilterOp(int clearBits, int setBits) : mClearBits(clearBits), mSetBits(setBits) {} virtual void applyState(OpenGLRenderer& renderer, int saveCount) const { renderer.setupPaintFilter(mClearBits, mSetBits); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("SetupPaintFilter, clear %#x, set %#x", mClearBits, mSetBits); } virtual const char* name() { return "SetupPaintFilter"; } private: int mClearBits; int mSetBits; }; /////////////////////////////////////////////////////////////////////////////// // DRAW OPERATIONS - these are operations that can draw to the canvas's device /////////////////////////////////////////////////////////////////////////////// class DrawBitmapOp : public DrawBoundedOp { public: DrawBitmapOp(SkBitmap* bitmap, float left, float top, SkPaint* paint) : DrawBoundedOp(left, top, left + bitmap->width(), top + bitmap->height(), paint), mBitmap(bitmap), mAtlas(Caches::getInstance().assetAtlas) { mEntry = mAtlas.getEntry(bitmap); if (mEntry) { mEntryGenerationId = mAtlas.getGenerationId(); mUvMapper = mEntry->uvMapper; } } virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawBitmap(mBitmap, mLocalBounds.left, mLocalBounds.top, getPaint(renderer)); } AssetAtlas::Entry* getAtlasEntry() { // The atlas entry is stale, let's get a new one if (mEntry && mEntryGenerationId != mAtlas.getGenerationId()) { mEntryGenerationId = mAtlas.getGenerationId(); mEntry = mAtlas.getEntry(mBitmap); mUvMapper = mEntry->uvMapper; } return mEntry; } #define SET_TEXTURE(ptr, posRect, offsetRect, texCoordsRect, xDim, yDim) \ TextureVertex::set(ptr++, posRect.xDim - offsetRect.left, posRect.yDim - offsetRect.top, \ texCoordsRect.xDim, texCoordsRect.yDim) /** * This multi-draw operation builds a mesh on the stack by generating a quad * for each bitmap in the batch. This method is also responsible for dirtying * the current layer, if any. */ virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty, const Vector& ops, const Rect& bounds) { renderer.restoreDisplayState(state, true); // restore all but the clip TextureVertex vertices[6 * ops.size()]; TextureVertex* vertex = &vertices[0]; const bool hasLayer = renderer.hasLayer(); bool transformed = false; // TODO: manually handle rect clip for bitmaps by adjusting texCoords per op, // and allowing them to be merged in getBatchId() for (unsigned int i = 0; i < ops.size(); i++) { const Rect& opBounds = ops[i]->state.mBounds; // When we reach multiDraw(), the matrix can be either // pureTranslate or simple (translate and/or scale). // If the matrix is not pureTranslate, then we have a scale if (!ops[i]->state.mMatrix.isPureTranslate()) transformed = true; Rect texCoords(0, 0, 1, 1); ((DrawBitmapOp*) ops[i])->mUvMapper.map(texCoords); SET_TEXTURE(vertex, opBounds, bounds, texCoords, left, top); SET_TEXTURE(vertex, opBounds, bounds, texCoords, right, top); SET_TEXTURE(vertex, opBounds, bounds, texCoords, left, bottom); SET_TEXTURE(vertex, opBounds, bounds, texCoords, left, bottom); SET_TEXTURE(vertex, opBounds, bounds, texCoords, right, top); SET_TEXTURE(vertex, opBounds, bounds, texCoords, right, bottom); if (hasLayer) { const Rect& dirty = ops[i]->state.mBounds; renderer.dirtyLayer(dirty.left, dirty.top, dirty.right, dirty.bottom); } } return renderer.drawBitmaps(mBitmap, mEntry, ops.size(), &vertices[0], transformed, bounds, mPaint); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw bitmap %p at %f %f", mBitmap, mLocalBounds.left, mLocalBounds.top); } virtual const char* name() { return "DrawBitmap"; } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap; deferInfo.mergeId = getAtlasEntry() ? (mergeid_t) mEntry->getMergeId() : (mergeid_t) mBitmap; // Don't merge A8 bitmaps - the paint's color isn't compared by mergeId, or in // MergingDrawBatch::canMergeWith() // TODO: support clipped bitmaps by handling them in SET_TEXTURE deferInfo.mergeable = state.mMatrix.isSimple() && !state.mClipSideFlags && OpenGLRenderer::getXfermodeDirect(mPaint) == SkXfermode::kSrcOver_Mode && (mBitmap->getConfig() != SkBitmap::kA8_Config); } const SkBitmap* bitmap() { return mBitmap; } protected: SkBitmap* mBitmap; const AssetAtlas& mAtlas; uint32_t mEntryGenerationId; AssetAtlas::Entry* mEntry; UvMapper mUvMapper; }; class DrawBitmapMatrixOp : public DrawBoundedOp { public: DrawBitmapMatrixOp(SkBitmap* bitmap, SkMatrix* matrix, SkPaint* paint) : DrawBoundedOp(paint), mBitmap(bitmap), mMatrix(matrix) { mLocalBounds.set(0, 0, bitmap->width(), bitmap->height()); const mat4 transform(*matrix); transform.mapRect(mLocalBounds); } virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawBitmap(mBitmap, mMatrix, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw bitmap %p matrix " MATRIX_STRING, mBitmap, MATRIX_ARGS(mMatrix)); } virtual const char* name() { return "DrawBitmapMatrix"; } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap; } private: SkBitmap* mBitmap; SkMatrix* mMatrix; }; class DrawBitmapRectOp : public DrawBoundedOp { public: DrawBitmapRectOp(SkBitmap* bitmap, float srcLeft, float srcTop, float srcRight, float srcBottom, float dstLeft, float dstTop, float dstRight, float dstBottom, SkPaint* paint) : DrawBoundedOp(dstLeft, dstTop, dstRight, dstBottom, paint), mBitmap(bitmap), mSrc(srcLeft, srcTop, srcRight, srcBottom) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawBitmap(mBitmap, mSrc.left, mSrc.top, mSrc.right, mSrc.bottom, mLocalBounds.left, mLocalBounds.top, mLocalBounds.right, mLocalBounds.bottom, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw bitmap %p src="RECT_STRING", dst="RECT_STRING, mBitmap, RECT_ARGS(mSrc), RECT_ARGS(mLocalBounds)); } virtual const char* name() { return "DrawBitmapRect"; } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap; } private: SkBitmap* mBitmap; Rect mSrc; }; class DrawBitmapDataOp : public DrawBitmapOp { public: DrawBitmapDataOp(SkBitmap* bitmap, float left, float top, SkPaint* paint) : DrawBitmapOp(bitmap, left, top, paint) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawBitmapData(mBitmap, mLocalBounds.left, mLocalBounds.top, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw bitmap %p", mBitmap); } virtual const char* name() { return "DrawBitmapData"; } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap; } }; class DrawBitmapMeshOp : public DrawBoundedOp { public: DrawBitmapMeshOp(SkBitmap* bitmap, int meshWidth, int meshHeight, float* vertices, int* colors, SkPaint* paint) : DrawBoundedOp(vertices, 2 * (meshWidth + 1) * (meshHeight + 1), paint), mBitmap(bitmap), mMeshWidth(meshWidth), mMeshHeight(meshHeight), mVertices(vertices), mColors(colors) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawBitmapMesh(mBitmap, mMeshWidth, mMeshHeight, mVertices, mColors, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw bitmap %p mesh %d x %d", mBitmap, mMeshWidth, mMeshHeight); } virtual const char* name() { return "DrawBitmapMesh"; } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { deferInfo.batchId = DeferredDisplayList::kOpBatch_Bitmap; } private: SkBitmap* mBitmap; int mMeshWidth; int mMeshHeight; float* mVertices; int* mColors; }; class DrawPatchOp : public DrawBoundedOp { public: DrawPatchOp(SkBitmap* bitmap, Res_png_9patch* patch, float left, float top, float right, float bottom, SkPaint* paint) : DrawBoundedOp(left, top, right, bottom, paint), mBitmap(bitmap), mPatch(patch), mGenerationId(0), mMesh(NULL), mAtlas(Caches::getInstance().assetAtlas) { mEntry = mAtlas.getEntry(bitmap); if (mEntry) { mEntryGenerationId = mAtlas.getGenerationId(); } }; AssetAtlas::Entry* getAtlasEntry() { // The atlas entry is stale, let's get a new one if (mEntry && mEntryGenerationId != mAtlas.getGenerationId()) { mEntryGenerationId = mAtlas.getGenerationId(); mEntry = mAtlas.getEntry(mBitmap); } return mEntry; } const Patch* getMesh(OpenGLRenderer& renderer) { if (!mMesh || renderer.getCaches().patchCache.getGenerationId() != mGenerationId) { PatchCache& cache = renderer.getCaches().patchCache; mMesh = cache.get(getAtlasEntry(), mBitmap->width(), mBitmap->height(), mLocalBounds.getWidth(), mLocalBounds.getHeight(), mPatch); mGenerationId = cache.getGenerationId(); } return mMesh; } /** * This multi-draw operation builds an indexed mesh on the stack by copying * and transforming the vertices of each 9-patch in the batch. This method * is also responsible for dirtying the current layer, if any. */ virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty, const Vector& ops, const Rect& bounds) { renderer.restoreDisplayState(state, true); // Batches will usually contain a small number of items so it's // worth performing a first iteration to count the exact number // of vertices we need in the new mesh uint32_t totalVertices = 0; for (unsigned int i = 0; i < ops.size(); i++) { totalVertices += ((DrawPatchOp*) ops[i])->getMesh(renderer)->verticesCount; } const bool hasLayer = renderer.hasLayer(); uint32_t indexCount = 0; TextureVertex vertices[totalVertices]; TextureVertex* vertex = &vertices[0]; // Create a mesh that contains the transformed vertices for all the // 9-patch objects that are part of the batch. Note that onDefer() // enforces ops drawn by this function to have a pure translate or // identity matrix for (unsigned int i = 0; i < ops.size(); i++) { DrawPatchOp* patchOp = (DrawPatchOp*) ops[i]; const Patch* opMesh = patchOp->getMesh(renderer); uint32_t vertexCount = opMesh->verticesCount; if (vertexCount == 0) continue; // We use the bounds to know where to translate our vertices // Using patchOp->state.mBounds wouldn't work because these // bounds are clipped const float tx = (int) floorf(patchOp->state.mMatrix.getTranslateX() + patchOp->mLocalBounds.left + 0.5f); const float ty = (int) floorf(patchOp->state.mMatrix.getTranslateY() + patchOp->mLocalBounds.top + 0.5f); // Copy & transform all the vertices for the current operation TextureVertex* opVertices = opMesh->vertices; for (uint32_t j = 0; j < vertexCount; j++, opVertices++) { TextureVertex::set(vertex++, opVertices->position[0] + tx, opVertices->position[1] + ty, opVertices->texture[0], opVertices->texture[1]); } // Dirty the current layer if possible. When the 9-patch does not // contain empty quads we can take a shortcut and simply set the // dirty rect to the object's bounds. if (hasLayer) { if (!opMesh->hasEmptyQuads) { renderer.dirtyLayer(tx, ty, tx + patchOp->mLocalBounds.getWidth(), ty + patchOp->mLocalBounds.getHeight()); } else { const size_t count = opMesh->quads.size(); for (size_t i = 0; i < count; i++) { const Rect& quadBounds = opMesh->quads[i]; const float x = tx + quadBounds.left; const float y = ty + quadBounds.top; renderer.dirtyLayer(x, y, x + quadBounds.getWidth(), y + quadBounds.getHeight()); } } } indexCount += opMesh->indexCount; } return renderer.drawPatches(mBitmap, getAtlasEntry(), &vertices[0], indexCount, getPaint(renderer)); } virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { // We're not calling the public variant of drawPatch() here // This method won't perform the quickReject() since we've already done it at this point return renderer.drawPatch(mBitmap, getMesh(renderer), getAtlasEntry(), mLocalBounds.left, mLocalBounds.top, mLocalBounds.right, mLocalBounds.bottom, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw patch "RECT_STRING, RECT_ARGS(mLocalBounds)); } virtual const char* name() { return "DrawPatch"; } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { deferInfo.batchId = DeferredDisplayList::kOpBatch_Patch; deferInfo.mergeId = getAtlasEntry() ? (mergeid_t) mEntry->getMergeId() : (mergeid_t) mBitmap; deferInfo.mergeable = state.mMatrix.isPureTranslate() && OpenGLRenderer::getXfermodeDirect(mPaint) == SkXfermode::kSrcOver_Mode; deferInfo.opaqueOverBounds = isOpaqueOverBounds() && mBitmap->isOpaque(); } private: SkBitmap* mBitmap; Res_png_9patch* mPatch; uint32_t mGenerationId; const Patch* mMesh; const AssetAtlas& mAtlas; uint32_t mEntryGenerationId; AssetAtlas::Entry* mEntry; }; class DrawColorOp : public DrawOp { public: DrawColorOp(int color, SkXfermode::Mode mode) : DrawOp(0), mColor(color), mMode(mode) {}; virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawColor(mColor, mMode); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw color %#x, mode %d", mColor, mMode); } virtual const char* name() { return "DrawColor"; } private: int mColor; SkXfermode::Mode mMode; }; class DrawStrokableOp : public DrawBoundedOp { public: DrawStrokableOp(float left, float top, float right, float bottom, SkPaint* paint) : DrawBoundedOp(left, top, right, bottom, paint) {}; bool getLocalBounds(Rect& localBounds) { localBounds.set(mLocalBounds); if (mPaint && mPaint->getStyle() != SkPaint::kFill_Style) { localBounds.outset(strokeWidthOutset()); } return true; } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { if (mPaint->getPathEffect()) { deferInfo.batchId = DeferredDisplayList::kOpBatch_AlphaMaskTexture; } else { deferInfo.batchId = mPaint->isAntiAlias() ? DeferredDisplayList::kOpBatch_AlphaVertices : DeferredDisplayList::kOpBatch_Vertices; } } }; class DrawRectOp : public DrawStrokableOp { public: DrawRectOp(float left, float top, float right, float bottom, SkPaint* paint) : DrawStrokableOp(left, top, right, bottom, paint) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawRect(mLocalBounds.left, mLocalBounds.top, mLocalBounds.right, mLocalBounds.bottom, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Rect "RECT_STRING, RECT_ARGS(mLocalBounds)); } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { DrawStrokableOp::onDefer(renderer, deferInfo); deferInfo.opaqueOverBounds = isOpaqueOverBounds() && mPaint->getStyle() == SkPaint::kFill_Style; } virtual const char* name() { return "DrawRect"; } }; class DrawRectsOp : public DrawBoundedOp { public: DrawRectsOp(const float* rects, int count, SkPaint* paint) : DrawBoundedOp(rects, count, paint), mRects(rects), mCount(count) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawRects(mRects, mCount, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Rects count %d", mCount); } virtual const char* name() { return "DrawRects"; } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { deferInfo.batchId = DeferredDisplayList::kOpBatch_Vertices; } private: const float* mRects; int mCount; }; class DrawRoundRectOp : public DrawStrokableOp { public: DrawRoundRectOp(float left, float top, float right, float bottom, float rx, float ry, SkPaint* paint) : DrawStrokableOp(left, top, right, bottom, paint), mRx(rx), mRy(ry) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawRoundRect(mLocalBounds.left, mLocalBounds.top, mLocalBounds.right, mLocalBounds.bottom, mRx, mRy, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw RoundRect "RECT_STRING", rx %f, ry %f", RECT_ARGS(mLocalBounds), mRx, mRy); } virtual const char* name() { return "DrawRoundRect"; } private: float mRx; float mRy; }; class DrawCircleOp : public DrawStrokableOp { public: DrawCircleOp(float x, float y, float radius, SkPaint* paint) : DrawStrokableOp(x - radius, y - radius, x + radius, y + radius, paint), mX(x), mY(y), mRadius(radius) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawCircle(mX, mY, mRadius, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Circle x %f, y %f, r %f", mX, mY, mRadius); } virtual const char* name() { return "DrawCircle"; } private: float mX; float mY; float mRadius; }; class DrawOvalOp : public DrawStrokableOp { public: DrawOvalOp(float left, float top, float right, float bottom, SkPaint* paint) : DrawStrokableOp(left, top, right, bottom, paint) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawOval(mLocalBounds.left, mLocalBounds.top, mLocalBounds.right, mLocalBounds.bottom, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Oval "RECT_STRING, RECT_ARGS(mLocalBounds)); } virtual const char* name() { return "DrawOval"; } }; class DrawArcOp : public DrawStrokableOp { public: DrawArcOp(float left, float top, float right, float bottom, float startAngle, float sweepAngle, bool useCenter, SkPaint* paint) : DrawStrokableOp(left, top, right, bottom, paint), mStartAngle(startAngle), mSweepAngle(sweepAngle), mUseCenter(useCenter) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawArc(mLocalBounds.left, mLocalBounds.top, mLocalBounds.right, mLocalBounds.bottom, mStartAngle, mSweepAngle, mUseCenter, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Arc "RECT_STRING", start %f, sweep %f, useCenter %d", RECT_ARGS(mLocalBounds), mStartAngle, mSweepAngle, mUseCenter); } virtual const char* name() { return "DrawArc"; } private: float mStartAngle; float mSweepAngle; bool mUseCenter; }; class DrawPathOp : public DrawBoundedOp { public: DrawPathOp(SkPath* path, SkPaint* paint) : DrawBoundedOp(paint), mPath(path) { float left, top, offset; uint32_t width, height; PathCache::computePathBounds(path, paint, left, top, offset, width, height); left -= offset; top -= offset; mLocalBounds.set(left, top, left + width, top + height); } virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawPath(mPath, getPaint(renderer)); } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { SkPaint* paint = getPaint(renderer); renderer.getCaches().pathCache.precache(mPath, paint); deferInfo.batchId = DeferredDisplayList::kOpBatch_AlphaMaskTexture; } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Path %p in "RECT_STRING, mPath, RECT_ARGS(mLocalBounds)); } virtual const char* name() { return "DrawPath"; } private: SkPath* mPath; }; class DrawLinesOp : public DrawBoundedOp { public: DrawLinesOp(float* points, int count, SkPaint* paint) : DrawBoundedOp(points, count, paint), mPoints(points), mCount(count) { mLocalBounds.outset(strokeWidthOutset()); } virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawLines(mPoints, mCount, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Lines count %d", mCount); } virtual const char* name() { return "DrawLines"; } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { deferInfo.batchId = mPaint->isAntiAlias() ? DeferredDisplayList::kOpBatch_AlphaVertices : DeferredDisplayList::kOpBatch_Vertices; } protected: float* mPoints; int mCount; }; class DrawPointsOp : public DrawLinesOp { public: DrawPointsOp(float* points, int count, SkPaint* paint) : DrawLinesOp(points, count, paint) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawPoints(mPoints, mCount, getPaint(renderer)); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Points count %d", mCount); } virtual const char* name() { return "DrawPoints"; } }; class DrawSomeTextOp : public DrawOp { public: DrawSomeTextOp(const char* text, int bytesCount, int count, SkPaint* paint) : DrawOp(paint), mText(text), mBytesCount(bytesCount), mCount(count) {}; virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw some text, %d bytes", mBytesCount); } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { SkPaint* paint = getPaint(renderer); FontRenderer& fontRenderer = renderer.getCaches().fontRenderer->getFontRenderer(paint); fontRenderer.precache(paint, mText, mCount, mat4::identity()); deferInfo.batchId = mPaint->getColor() == 0xff000000 ? DeferredDisplayList::kOpBatch_Text : DeferredDisplayList::kOpBatch_ColorText; } protected: const char* mText; int mBytesCount; int mCount; }; class DrawTextOnPathOp : public DrawSomeTextOp { public: DrawTextOnPathOp(const char* text, int bytesCount, int count, SkPath* path, float hOffset, float vOffset, SkPaint* paint) : DrawSomeTextOp(text, bytesCount, count, paint), mPath(path), mHOffset(hOffset), mVOffset(vOffset) { /* TODO: inherit from DrawBounded and init mLocalBounds */ } virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawTextOnPath(mText, mBytesCount, mCount, mPath, mHOffset, mVOffset, getPaint(renderer)); } virtual const char* name() { return "DrawTextOnPath"; } private: SkPath* mPath; float mHOffset; float mVOffset; }; class DrawPosTextOp : public DrawSomeTextOp { public: DrawPosTextOp(const char* text, int bytesCount, int count, const float* positions, SkPaint* paint) : DrawSomeTextOp(text, bytesCount, count, paint), mPositions(positions) { /* TODO: inherit from DrawBounded and init mLocalBounds */ } virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawPosText(mText, mBytesCount, mCount, mPositions, getPaint(renderer)); } virtual const char* name() { return "DrawPosText"; } private: const float* mPositions; }; class DrawTextOp : public DrawBoundedOp { public: DrawTextOp(const char* text, int bytesCount, int count, float x, float y, const float* positions, SkPaint* paint, float totalAdvance, const Rect& bounds) : DrawBoundedOp(bounds, paint), mText(text), mBytesCount(bytesCount), mCount(count), mX(x), mY(y), mPositions(positions), mTotalAdvance(totalAdvance) { memset(&mPrecacheTransform.data[0], 0xff, 16 * sizeof(float)); } virtual void onDefer(OpenGLRenderer& renderer, DeferInfo& deferInfo) { SkPaint* paint = getPaint(renderer); FontRenderer& fontRenderer = renderer.getCaches().fontRenderer->getFontRenderer(paint); const mat4& transform = renderer.findBestFontTransform(state.mMatrix); if (mPrecacheTransform != transform) { fontRenderer.precache(paint, mText, mCount, transform); mPrecacheTransform = transform; } deferInfo.batchId = mPaint->getColor() == 0xff000000 ? DeferredDisplayList::kOpBatch_Text : DeferredDisplayList::kOpBatch_ColorText; deferInfo.mergeId = (mergeid_t)mPaint->getColor(); // don't merge decorated text - the decorations won't draw in order bool noDecorations = !(mPaint->getFlags() & (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag)); deferInfo.mergeable = state.mMatrix.isPureTranslate() && noDecorations && OpenGLRenderer::getXfermodeDirect(mPaint) == SkXfermode::kSrcOver_Mode; } virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { Rect bounds; getLocalBounds(bounds); return renderer.drawText(mText, mBytesCount, mCount, mX, mY, mPositions, getPaint(renderer), mTotalAdvance, bounds); } virtual status_t multiDraw(OpenGLRenderer& renderer, Rect& dirty, const Vector& ops, const Rect& bounds) { status_t status = DrawGlInfo::kStatusDone; for (unsigned int i = 0; i < ops.size(); i++) { DrawOpMode drawOpMode = (i == ops.size() - 1) ? kDrawOpMode_Flush : kDrawOpMode_Defer; renderer.restoreDisplayState(ops[i]->state, true); // restore all but the clip DrawTextOp& op = *((DrawTextOp*)ops[i]); // quickReject() will not occure in drawText() so we can use mLocalBounds // directly, we do not need to account for shadow by calling getLocalBounds() status |= renderer.drawText(op.mText, op.mBytesCount, op.mCount, op.mX, op.mY, op.mPositions, op.getPaint(renderer), op.mTotalAdvance, op.mLocalBounds, drawOpMode); } return status; } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Text of count %d, bytes %d", mCount, mBytesCount); } virtual const char* name() { return "DrawText"; } private: const char* mText; int mBytesCount; int mCount; float mX; float mY; const float* mPositions; float mTotalAdvance; mat4 mPrecacheTransform; }; /////////////////////////////////////////////////////////////////////////////// // SPECIAL DRAW OPERATIONS /////////////////////////////////////////////////////////////////////////////// class DrawFunctorOp : public DrawOp { public: DrawFunctorOp(Functor* functor) : DrawOp(0), mFunctor(functor) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { renderer.startMark("GL functor"); status_t ret = renderer.callDrawGLFunction(mFunctor, dirty); renderer.endMark(); return ret; } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Functor %p", mFunctor); } virtual const char* name() { return "DrawFunctor"; } private: Functor* mFunctor; }; class DrawDisplayListOp : public DrawBoundedOp { public: DrawDisplayListOp(DisplayList* displayList, int flags) : DrawBoundedOp(0, 0, displayList->getWidth(), displayList->getHeight(), 0), mDisplayList(displayList), mFlags(flags) {} virtual void defer(DeferStateStruct& deferStruct, int saveCount, int level, bool useQuickReject) { if (mDisplayList && mDisplayList->isRenderable()) { mDisplayList->defer(deferStruct, level + 1); } } virtual void replay(ReplayStateStruct& replayStruct, int saveCount, int level, bool useQuickReject) { if (mDisplayList && mDisplayList->isRenderable()) { mDisplayList->replay(replayStruct, level + 1); } } // NOT USED since replay() is overridden virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return DrawGlInfo::kStatusDone; } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Display List %p, flags %#x", mDisplayList, mFlags); if (mDisplayList && (logFlags & kOpLogFlag_Recurse)) { mDisplayList->output(level + 1); } } virtual const char* name() { return "DrawDisplayList"; } private: DisplayList* mDisplayList; int mFlags; }; class DrawLayerOp : public DrawOp { public: DrawLayerOp(Layer* layer, float x, float y) : DrawOp(0), mLayer(layer), mX(x), mY(y) {} virtual status_t applyDraw(OpenGLRenderer& renderer, Rect& dirty) { return renderer.drawLayer(mLayer, mX, mY); } virtual void output(int level, uint32_t logFlags) const { OP_LOG("Draw Layer %p at %f %f", mLayer, mX, mY); } virtual const char* name() { return "DrawLayer"; } private: Layer* mLayer; float mX; float mY; }; }; // namespace uirenderer }; // namespace android #endif // ANDROID_HWUI_DISPLAY_OPERATION_H