/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #include #include #include #include #include #include #include #include #include #include #include "OpenGLRenderer.h" #include "DeferredDisplayList.h" #include "DisplayListRenderer.h" #include "PathTessellator.h" #include "Properties.h" #include "Vector.h" namespace android { namespace uirenderer { /////////////////////////////////////////////////////////////////////////////// // Defines /////////////////////////////////////////////////////////////////////////////// #define RAD_TO_DEG (180.0f / 3.14159265f) #define MIN_ANGLE 0.001f #define ALPHA_THRESHOLD 0 #define FILTER(paint) (!paint || paint->isFilterBitmap() ? GL_LINEAR : GL_NEAREST) /////////////////////////////////////////////////////////////////////////////// // Globals /////////////////////////////////////////////////////////////////////////////// /** * Structure mapping Skia xfermodes to OpenGL blending factors. */ struct Blender { SkXfermode::Mode mode; GLenum src; GLenum dst; }; // struct Blender // In this array, the index of each Blender equals the value of the first // entry. For instance, gBlends[1] == gBlends[SkXfermode::kSrc_Mode] static const Blender gBlends[] = { { SkXfermode::kClear_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrc_Mode, GL_ONE, GL_ZERO }, { SkXfermode::kDst_Mode, GL_ZERO, GL_ONE }, { SkXfermode::kSrcOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE }, { SkXfermode::kSrcIn_Mode, GL_DST_ALPHA, GL_ZERO }, { SkXfermode::kDstIn_Mode, GL_ZERO, GL_SRC_ALPHA }, { SkXfermode::kSrcOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kDstOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrcATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA }, { SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kPlus_Mode, GL_ONE, GL_ONE }, { SkXfermode::kModulate_Mode, GL_ZERO, GL_SRC_COLOR }, { SkXfermode::kScreen_Mode, GL_ONE, GL_ONE_MINUS_SRC_COLOR } }; // This array contains the swapped version of each SkXfermode. For instance // this array's SrcOver blending mode is actually DstOver. You can refer to // createLayer() for more information on the purpose of this array. static const Blender gBlendsSwap[] = { { SkXfermode::kClear_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrc_Mode, GL_ZERO, GL_ONE }, { SkXfermode::kDst_Mode, GL_ONE, GL_ZERO }, { SkXfermode::kSrcOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE }, { SkXfermode::kDstOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrcIn_Mode, GL_ZERO, GL_SRC_ALPHA }, { SkXfermode::kDstIn_Mode, GL_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrcOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrcATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA }, { SkXfermode::kDstATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kPlus_Mode, GL_ONE, GL_ONE }, { SkXfermode::kModulate_Mode, GL_DST_COLOR, GL_ZERO }, { SkXfermode::kScreen_Mode, GL_ONE_MINUS_DST_COLOR, GL_ONE } }; /////////////////////////////////////////////////////////////////////////////// // Constructors/destructor /////////////////////////////////////////////////////////////////////////////// OpenGLRenderer::OpenGLRenderer(): mCaches(Caches::getInstance()), mExtensions(Extensions::getInstance()) { mDrawModifiers.mShader = NULL; mDrawModifiers.mColorFilter = NULL; mDrawModifiers.mHasShadow = false; mDrawModifiers.mHasDrawFilter = false; memcpy(mMeshVertices, gMeshVertices, sizeof(gMeshVertices)); mFirstSnapshot = new Snapshot; mFrameStarted = false; mScissorOptimizationDisabled = false; } OpenGLRenderer::~OpenGLRenderer() { // The context has already been destroyed at this point, do not call // GL APIs. All GL state should be kept in Caches.h } void OpenGLRenderer::initProperties() { char property[PROPERTY_VALUE_MAX]; if (property_get(PROPERTY_DISABLE_SCISSOR_OPTIMIZATION, property, "false")) { mScissorOptimizationDisabled = !strcasecmp(property, "true"); INIT_LOGD(" Scissor optimization %s", mScissorOptimizationDisabled ? "disabled" : "enabled"); } else { INIT_LOGD(" Scissor optimization enabled"); } } /////////////////////////////////////////////////////////////////////////////// // Setup /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setName(const char* name) { if (name) { mName.setTo(name); } else { mName.clear(); } } const char* OpenGLRenderer::getName() const { return mName.string(); } bool OpenGLRenderer::isDeferred() { return false; } void OpenGLRenderer::setViewport(int width, int height) { initViewport(width, height); glDisable(GL_DITHER); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glEnableVertexAttribArray(Program::kBindingPosition); } void OpenGLRenderer::initViewport(int width, int height) { mOrthoMatrix.loadOrtho(0, width, height, 0, -1, 1); mWidth = width; mHeight = height; mFirstSnapshot->height = height; mFirstSnapshot->viewport.set(0, 0, width, height); } void OpenGLRenderer::setupFrameState(float left, float top, float right, float bottom, bool opaque) { mCaches.clearGarbage(); mOpaque = opaque; mSnapshot = new Snapshot(mFirstSnapshot, SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); mSnapshot->fbo = getTargetFbo(); mSaveCount = 1; mSnapshot->setClip(left, top, right, bottom); mTilingClip.set(left, top, right, bottom); } status_t OpenGLRenderer::startFrame() { if (mFrameStarted) return DrawGlInfo::kStatusDone; mFrameStarted = true; mDirtyClip = true; discardFramebuffer(mTilingClip.left, mTilingClip.top, mTilingClip.right, mTilingClip.bottom); glViewport(0, 0, mWidth, mHeight); // Functors break the tiling extension in pretty spectacular ways // This ensures we don't use tiling when a functor is going to be // invoked during the frame mSuppressTiling = mCaches.hasRegisteredFunctors(); startTiling(mSnapshot, true); debugOverdraw(true, true); return clear(mTilingClip.left, mTilingClip.top, mTilingClip.right, mTilingClip.bottom, mOpaque); } status_t OpenGLRenderer::prepare(bool opaque) { return prepareDirty(0.0f, 0.0f, mWidth, mHeight, opaque); } status_t OpenGLRenderer::prepareDirty(float left, float top, float right, float bottom, bool opaque) { setupFrameState(left, top, right, bottom, opaque); // Layer renderers will start the frame immediately // The framebuffer renderer will first defer the display list // for each layer and wait until the first drawing command // to start the frame if (mSnapshot->fbo == 0) { syncState(); updateLayers(); } else { return startFrame(); } return DrawGlInfo::kStatusDone; } void OpenGLRenderer::discardFramebuffer(float left, float top, float right, float bottom) { // If we know that we are going to redraw the entire framebuffer, // perform a discard to let the driver know we don't need to preserve // the back buffer for this frame. if (mExtensions.hasDiscardFramebuffer() && left <= 0.0f && top <= 0.0f && right >= mWidth && bottom >= mHeight) { const bool isFbo = getTargetFbo() == 0; const GLenum attachments[] = { isFbo ? (const GLenum) GL_COLOR_EXT : (const GLenum) GL_COLOR_ATTACHMENT0, isFbo ? (const GLenum) GL_STENCIL_EXT : (const GLenum) GL_STENCIL_ATTACHMENT }; glDiscardFramebufferEXT(GL_FRAMEBUFFER, 1, attachments); } } status_t OpenGLRenderer::clear(float left, float top, float right, float bottom, bool opaque) { if (!opaque) { mCaches.enableScissor(); mCaches.setScissor(left, mSnapshot->height - bottom, right - left, bottom - top); glClear(GL_COLOR_BUFFER_BIT); return DrawGlInfo::kStatusDrew; } mCaches.resetScissor(); return DrawGlInfo::kStatusDone; } void OpenGLRenderer::syncState() { if (mCaches.blend) { glEnable(GL_BLEND); } else { glDisable(GL_BLEND); } } void OpenGLRenderer::startTiling(const sp& s, bool opaque) { if (!mSuppressTiling) { Rect* clip = &mTilingClip; if (s->flags & Snapshot::kFlagFboTarget) { clip = &(s->layer->clipRect); } startTiling(*clip, s->height, opaque); } } void OpenGLRenderer::startTiling(const Rect& clip, int windowHeight, bool opaque) { if (!mSuppressTiling) { mCaches.startTiling(clip.left, windowHeight - clip.bottom, clip.right - clip.left, clip.bottom - clip.top, opaque); } } void OpenGLRenderer::endTiling() { if (!mSuppressTiling) mCaches.endTiling(); } void OpenGLRenderer::finish() { renderOverdraw(); endTiling(); // When finish() is invoked on FBO 0 we've reached the end // of the current frame if (getTargetFbo() == 0) { mCaches.pathCache.trim(); } if (!suppressErrorChecks()) { #if DEBUG_OPENGL GLenum status = GL_NO_ERROR; while ((status = glGetError()) != GL_NO_ERROR) { ALOGD("GL error from OpenGLRenderer: 0x%x", status); switch (status) { case GL_INVALID_ENUM: ALOGE(" GL_INVALID_ENUM"); break; case GL_INVALID_VALUE: ALOGE(" GL_INVALID_VALUE"); break; case GL_INVALID_OPERATION: ALOGE(" GL_INVALID_OPERATION"); break; case GL_OUT_OF_MEMORY: ALOGE(" Out of memory!"); break; } } #endif #if DEBUG_MEMORY_USAGE mCaches.dumpMemoryUsage(); #else if (mCaches.getDebugLevel() & kDebugMemory) { mCaches.dumpMemoryUsage(); } #endif } mFrameStarted = false; } void OpenGLRenderer::interrupt() { if (mCaches.currentProgram) { if (mCaches.currentProgram->isInUse()) { mCaches.currentProgram->remove(); mCaches.currentProgram = NULL; } } mCaches.unbindMeshBuffer(); mCaches.unbindIndicesBuffer(); mCaches.resetVertexPointers(); mCaches.disableTexCoordsVertexArray(); debugOverdraw(false, false); } void OpenGLRenderer::resume() { sp snapshot = (mSnapshot != NULL) ? mSnapshot : mFirstSnapshot; glViewport(0, 0, snapshot->viewport.getWidth(), snapshot->viewport.getHeight()); glBindFramebuffer(GL_FRAMEBUFFER, snapshot->fbo); debugOverdraw(true, false); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); mCaches.scissorEnabled = glIsEnabled(GL_SCISSOR_TEST); mCaches.enableScissor(); mCaches.resetScissor(); dirtyClip(); mCaches.activeTexture(0); mCaches.blend = true; glEnable(GL_BLEND); glBlendFunc(mCaches.lastSrcMode, mCaches.lastDstMode); glBlendEquation(GL_FUNC_ADD); } void OpenGLRenderer::resumeAfterLayer() { sp snapshot = (mSnapshot != NULL) ? mSnapshot : mFirstSnapshot; glViewport(0, 0, snapshot->viewport.getWidth(), snapshot->viewport.getHeight()); glBindFramebuffer(GL_FRAMEBUFFER, snapshot->fbo); debugOverdraw(true, false); mCaches.resetScissor(); dirtyClip(); } void OpenGLRenderer::detachFunctor(Functor* functor) { mFunctors.remove(functor); } void OpenGLRenderer::attachFunctor(Functor* functor) { mFunctors.add(functor); } status_t OpenGLRenderer::invokeFunctors(Rect& dirty) { status_t result = DrawGlInfo::kStatusDone; size_t count = mFunctors.size(); if (count > 0) { interrupt(); SortedVector functors(mFunctors); mFunctors.clear(); DrawGlInfo info; info.clipLeft = 0; info.clipTop = 0; info.clipRight = 0; info.clipBottom = 0; info.isLayer = false; info.width = 0; info.height = 0; memset(info.transform, 0, sizeof(float) * 16); for (size_t i = 0; i < count; i++) { Functor* f = functors.itemAt(i); result |= (*f)(DrawGlInfo::kModeProcess, &info); if (result & DrawGlInfo::kStatusDraw) { Rect localDirty(info.dirtyLeft, info.dirtyTop, info.dirtyRight, info.dirtyBottom); dirty.unionWith(localDirty); } if (result & DrawGlInfo::kStatusInvoke) { mFunctors.add(f); } } resume(); } return result; } status_t OpenGLRenderer::callDrawGLFunction(Functor* functor, Rect& dirty) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; interrupt(); detachFunctor(functor); mCaches.enableScissor(); if (mDirtyClip) { setScissorFromClip(); } Rect clip(*mSnapshot->clipRect); clip.snapToPixelBoundaries(); // Since we don't know what the functor will draw, let's dirty // tne entire clip region if (hasLayer()) { dirtyLayerUnchecked(clip, getRegion()); } DrawGlInfo info; info.clipLeft = clip.left; info.clipTop = clip.top; info.clipRight = clip.right; info.clipBottom = clip.bottom; info.isLayer = hasLayer(); info.width = getSnapshot()->viewport.getWidth(); info.height = getSnapshot()->height; getSnapshot()->transform->copyTo(&info.transform[0]); status_t result = (*functor)(DrawGlInfo::kModeDraw, &info) | DrawGlInfo::kStatusDrew; if (result != DrawGlInfo::kStatusDone) { Rect localDirty(info.dirtyLeft, info.dirtyTop, info.dirtyRight, info.dirtyBottom); dirty.unionWith(localDirty); if (result & DrawGlInfo::kStatusInvoke) { mFunctors.add(functor); } } resume(); return result; } /////////////////////////////////////////////////////////////////////////////// // Debug /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::eventMark(const char* name) const { mCaches.eventMark(0, name); } void OpenGLRenderer::startMark(const char* name) const { mCaches.startMark(0, name); } void OpenGLRenderer::endMark() const { mCaches.endMark(); } void OpenGLRenderer::debugOverdraw(bool enable, bool clear) { if (mCaches.debugOverdraw && getTargetFbo() == 0) { if (clear) { mCaches.disableScissor(); mCaches.stencil.clear(); } if (enable) { mCaches.stencil.enableDebugWrite(); } else { mCaches.stencil.disable(); } } } void OpenGLRenderer::renderOverdraw() { if (mCaches.debugOverdraw && getTargetFbo() == 0) { const Rect* clip = &mTilingClip; mCaches.enableScissor(); mCaches.setScissor(clip->left, mFirstSnapshot->height - clip->bottom, clip->right - clip->left, clip->bottom - clip->top); mCaches.stencil.enableDebugTest(2); drawColor(0x2f0000ff, SkXfermode::kSrcOver_Mode); mCaches.stencil.enableDebugTest(3); drawColor(0x2f00ff00, SkXfermode::kSrcOver_Mode); mCaches.stencil.enableDebugTest(4); drawColor(0x3fff0000, SkXfermode::kSrcOver_Mode); mCaches.stencil.enableDebugTest(4, true); drawColor(0x7fff0000, SkXfermode::kSrcOver_Mode); mCaches.stencil.disable(); } } /////////////////////////////////////////////////////////////////////////////// // Layers /////////////////////////////////////////////////////////////////////////////// bool OpenGLRenderer::updateLayer(Layer* layer, bool inFrame) { if (layer->deferredUpdateScheduled && layer->renderer && layer->displayList && layer->displayList->isRenderable()) { Rect& dirty = layer->dirtyRect; if (inFrame) { endTiling(); debugOverdraw(false, false); } if (CC_UNLIKELY(inFrame || mCaches.drawDeferDisabled)) { OpenGLRenderer* renderer = layer->renderer; renderer->setViewport(layer->layer.getWidth(), layer->layer.getHeight()); renderer->prepareDirty(dirty.left, dirty.top, dirty.right, dirty.bottom, !layer->isBlend()); renderer->drawDisplayList(layer->displayList, dirty, DisplayList::kReplayFlag_ClipChildren); renderer->finish(); } else { layer->defer(); } if (inFrame) { resumeAfterLayer(); startTiling(mSnapshot); } if (CC_UNLIKELY(inFrame || mCaches.drawDeferDisabled)) { dirty.setEmpty(); layer->renderer = NULL; } layer->deferredUpdateScheduled = false; layer->displayList = NULL; layer->debugDrawUpdate = mCaches.debugLayersUpdates; return true; } return false; } void OpenGLRenderer::updateLayers() { // If draw deferring is enabled this method will simply defer // the display list of each individual layer. The layers remain // in the layer updates list which will be cleared by flushLayers(). int count = mLayerUpdates.size(); if (count > 0) { if (CC_UNLIKELY(mCaches.drawDeferDisabled)) { startMark("Layer Updates"); } else { startMark("Defer Layer Updates"); } // Note: it is very important to update the layers in reverse order for (int i = count - 1; i >= 0; i--) { Layer* layer = mLayerUpdates.itemAt(i); updateLayer(layer, false); if (CC_UNLIKELY(mCaches.drawDeferDisabled)) { mCaches.resourceCache.decrementRefcount(layer); } } if (CC_UNLIKELY(mCaches.drawDeferDisabled)) { mLayerUpdates.clear(); glBindFramebuffer(GL_FRAMEBUFFER, getTargetFbo()); } endMark(); } } void OpenGLRenderer::flushLayers() { int count = mLayerUpdates.size(); if (count > 0) { startMark("Apply Layer Updates"); char layerName[12]; // Note: it is very important to update the layers in reverse order for (int i = count - 1; i >= 0; i--) { sprintf(layerName, "Layer #%d", i); startMark(layerName); { Layer* layer = mLayerUpdates.itemAt(i); layer->flush(); mCaches.resourceCache.decrementRefcount(layer); } endMark(); } mLayerUpdates.clear(); glBindFramebuffer(GL_FRAMEBUFFER, getTargetFbo()); endMark(); } } void OpenGLRenderer::pushLayerUpdate(Layer* layer) { if (layer) { mLayerUpdates.push_back(layer); mCaches.resourceCache.incrementRefcount(layer); } } void OpenGLRenderer::clearLayerUpdates() { size_t count = mLayerUpdates.size(); if (count > 0) { mCaches.resourceCache.lock(); for (size_t i = 0; i < count; i++) { mCaches.resourceCache.decrementRefcountLocked(mLayerUpdates.itemAt(i)); } mCaches.resourceCache.unlock(); mLayerUpdates.clear(); } } /////////////////////////////////////////////////////////////////////////////// // State management /////////////////////////////////////////////////////////////////////////////// int OpenGLRenderer::getSaveCount() const { return mSaveCount; } int OpenGLRenderer::save(int flags) { return saveSnapshot(flags); } void OpenGLRenderer::restore() { if (mSaveCount > 1) { restoreSnapshot(); } } void OpenGLRenderer::restoreToCount(int saveCount) { if (saveCount < 1) saveCount = 1; while (mSaveCount > saveCount) { restoreSnapshot(); } } int OpenGLRenderer::saveSnapshot(int flags) { mSnapshot = new Snapshot(mSnapshot, flags); return mSaveCount++; } bool OpenGLRenderer::restoreSnapshot() { bool restoreClip = mSnapshot->flags & Snapshot::kFlagClipSet; bool restoreLayer = mSnapshot->flags & Snapshot::kFlagIsLayer; bool restoreOrtho = mSnapshot->flags & Snapshot::kFlagDirtyOrtho; sp current = mSnapshot; sp previous = mSnapshot->previous; if (restoreOrtho) { Rect& r = previous->viewport; glViewport(r.left, r.top, r.right, r.bottom); mOrthoMatrix.load(current->orthoMatrix); } mSaveCount--; mSnapshot = previous; if (restoreClip) { dirtyClip(); } if (restoreLayer) { endMark(); // Savelayer startMark("ComposeLayer"); composeLayer(current, previous); endMark(); } return restoreClip; } /////////////////////////////////////////////////////////////////////////////// // Layers /////////////////////////////////////////////////////////////////////////////// int OpenGLRenderer::saveLayer(float left, float top, float right, float bottom, int alpha, SkXfermode::Mode mode, int flags) { const GLuint previousFbo = mSnapshot->fbo; const int count = saveSnapshot(flags); if (!mSnapshot->isIgnored()) { createLayer(left, top, right, bottom, alpha, mode, flags, previousFbo); } return count; } void OpenGLRenderer::calculateLayerBoundsAndClip(Rect& bounds, Rect& clip, bool fboLayer) { const Rect untransformedBounds(bounds); currentTransform().mapRect(bounds); // Layers only make sense if they are in the framebuffer's bounds if (bounds.intersect(*mSnapshot->clipRect)) { // We cannot work with sub-pixels in this case bounds.snapToPixelBoundaries(); // When the layer is not an FBO, we may use glCopyTexImage so we // need to make sure the layer does not extend outside the bounds // of the framebuffer if (!bounds.intersect(mSnapshot->previous->viewport)) { bounds.setEmpty(); } else if (fboLayer) { clip.set(bounds); mat4 inverse; inverse.loadInverse(currentTransform()); inverse.mapRect(clip); clip.snapToPixelBoundaries(); if (clip.intersect(untransformedBounds)) { clip.translate(-untransformedBounds.left, -untransformedBounds.top); bounds.set(untransformedBounds); } else { clip.setEmpty(); } } } else { bounds.setEmpty(); } } void OpenGLRenderer::updateSnapshotIgnoreForLayer(const Rect& bounds, const Rect& clip, bool fboLayer, int alpha) { if (bounds.isEmpty() || bounds.getWidth() > mCaches.maxTextureSize || bounds.getHeight() > mCaches.maxTextureSize || (fboLayer && clip.isEmpty())) { mSnapshot->empty = fboLayer; } else { mSnapshot->invisible = mSnapshot->invisible || (alpha <= ALPHA_THRESHOLD && fboLayer); } } int OpenGLRenderer::saveLayerDeferred(float left, float top, float right, float bottom, int alpha, SkXfermode::Mode mode, int flags) { const GLuint previousFbo = mSnapshot->fbo; const int count = saveSnapshot(flags); if (!mSnapshot->isIgnored() && (flags & SkCanvas::kClipToLayer_SaveFlag)) { // initialize the snapshot as though it almost represents an FBO layer so deferred draw // operations will be able to store and restore the current clip and transform info, and // quick rejection will be correct (for display lists) Rect bounds(left, top, right, bottom); Rect clip; calculateLayerBoundsAndClip(bounds, clip, true); updateSnapshotIgnoreForLayer(bounds, clip, true, alpha); if (!mSnapshot->isIgnored()) { mSnapshot->resetTransform(-bounds.left, -bounds.top, 0.0f); mSnapshot->resetClip(clip.left, clip.top, clip.right, clip.bottom); } } return count; } /** * Layers are viewed by Skia are slightly different than layers in image editing * programs (for instance.) When a layer is created, previously created layers * and the frame buffer still receive every drawing command. For instance, if a * layer is created and a shape intersecting the bounds of the layers and the * framebuffer is draw, the shape will be drawn on both (unless the layer was * created with the SkCanvas::kClipToLayer_SaveFlag flag.) * * A way to implement layers is to create an FBO for each layer, backed by an RGBA * texture. Unfortunately, this is inefficient as it requires every primitive to * be drawn n + 1 times, where n is the number of active layers. In practice this * means, for every primitive: * - Switch active frame buffer * - Change viewport, clip and projection matrix * - Issue the drawing * * Switching rendering target n + 1 times per drawn primitive is extremely costly. * To avoid this, layers are implemented in a different way here, at least in the * general case. FBOs are used, as an optimization, when the "clip to layer" flag * is set. When this flag is set we can redirect all drawing operations into a * single FBO. * * This implementation relies on the frame buffer being at least RGBA 8888. When * a layer is created, only a texture is created, not an FBO. The content of the * frame buffer contained within the layer's bounds is copied into this texture * using glCopyTexImage2D(). The layer's region is then cleared(1) in the frame * buffer and drawing continues as normal. This technique therefore treats the * frame buffer as a scratch buffer for the layers. * * To compose the layers back onto the frame buffer, each layer texture * (containing the original frame buffer data) is drawn as a simple quad over * the frame buffer. The trick is that the quad is set as the composition * destination in the blending equation, and the frame buffer becomes the source * of the composition. * * Drawing layers with an alpha value requires an extra step before composition. * An empty quad is drawn over the layer's region in the frame buffer. This quad * is drawn with the rgba color (0,0,0,alpha). The alpha value offered by the * quad is used to multiply the colors in the frame buffer. This is achieved by * changing the GL blend functions for the GL_FUNC_ADD blend equation to * GL_ZERO, GL_SRC_ALPHA. * * Because glCopyTexImage2D() can be slow, an alternative implementation might * be use to draw a single clipped layer. The implementation described above * is correct in every case. * * (1) The frame buffer is actually not cleared right away. To allow the GPU * to potentially optimize series of calls to glCopyTexImage2D, the frame * buffer is left untouched until the first drawing operation. Only when * something actually gets drawn are the layers regions cleared. */ bool OpenGLRenderer::createLayer(float left, float top, float right, float bottom, int alpha, SkXfermode::Mode mode, int flags, GLuint previousFbo) { LAYER_LOGD("Requesting layer %.2fx%.2f", right - left, bottom - top); LAYER_LOGD("Layer cache size = %d", mCaches.layerCache.getSize()); const bool fboLayer = flags & SkCanvas::kClipToLayer_SaveFlag; // Window coordinates of the layer Rect clip; Rect bounds(left, top, right, bottom); calculateLayerBoundsAndClip(bounds, clip, fboLayer); updateSnapshotIgnoreForLayer(bounds, clip, fboLayer, alpha); // Bail out if we won't draw in this snapshot if (mSnapshot->isIgnored()) { return false; } mCaches.activeTexture(0); Layer* layer = mCaches.layerCache.get(bounds.getWidth(), bounds.getHeight()); if (!layer) { return false; } layer->setAlpha(alpha, mode); layer->layer.set(bounds); layer->texCoords.set(0.0f, bounds.getHeight() / float(layer->getHeight()), bounds.getWidth() / float(layer->getWidth()), 0.0f); layer->setColorFilter(mDrawModifiers.mColorFilter); layer->setBlend(true); layer->setDirty(false); // Save the layer in the snapshot mSnapshot->flags |= Snapshot::kFlagIsLayer; mSnapshot->layer = layer; startMark("SaveLayer"); if (fboLayer) { return createFboLayer(layer, bounds, clip, previousFbo); } else { // Copy the framebuffer into the layer layer->bindTexture(); if (!bounds.isEmpty()) { if (layer->isEmpty()) { glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, bounds.left, mSnapshot->height - bounds.bottom, layer->getWidth(), layer->getHeight(), 0); layer->setEmpty(false); } else { glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, bounds.left, mSnapshot->height - bounds.bottom, bounds.getWidth(), bounds.getHeight()); } // Enqueue the buffer coordinates to clear the corresponding region later mLayers.push(new Rect(bounds)); } } return true; } bool OpenGLRenderer::createFboLayer(Layer* layer, Rect& bounds, Rect& clip, GLuint previousFbo) { layer->clipRect.set(clip); layer->setFbo(mCaches.fboCache.get()); mSnapshot->region = &mSnapshot->layer->region; mSnapshot->flags |= Snapshot::kFlagFboTarget | Snapshot::kFlagIsFboLayer | Snapshot::kFlagDirtyOrtho; mSnapshot->fbo = layer->getFbo(); mSnapshot->resetTransform(-bounds.left, -bounds.top, 0.0f); mSnapshot->resetClip(clip.left, clip.top, clip.right, clip.bottom); mSnapshot->viewport.set(0.0f, 0.0f, bounds.getWidth(), bounds.getHeight()); mSnapshot->height = bounds.getHeight(); mSnapshot->orthoMatrix.load(mOrthoMatrix); endTiling(); debugOverdraw(false, false); // Bind texture to FBO glBindFramebuffer(GL_FRAMEBUFFER, layer->getFbo()); layer->bindTexture(); // Initialize the texture if needed if (layer->isEmpty()) { layer->allocateTexture(GL_RGBA, GL_UNSIGNED_BYTE); layer->setEmpty(false); } glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, layer->getTexture(), 0); startTiling(mSnapshot, true); // Clear the FBO, expand the clear region by 1 to get nice bilinear filtering mCaches.enableScissor(); mCaches.setScissor(clip.left - 1.0f, bounds.getHeight() - clip.bottom - 1.0f, clip.getWidth() + 2.0f, clip.getHeight() + 2.0f); glClear(GL_COLOR_BUFFER_BIT); dirtyClip(); // Change the ortho projection glViewport(0, 0, bounds.getWidth(), bounds.getHeight()); mOrthoMatrix.loadOrtho(0.0f, bounds.getWidth(), bounds.getHeight(), 0.0f, -1.0f, 1.0f); return true; } /** * Read the documentation of createLayer() before doing anything in this method. */ void OpenGLRenderer::composeLayer(sp current, sp previous) { if (!current->layer) { ALOGE("Attempting to compose a layer that does not exist"); return; } Layer* layer = current->layer; const Rect& rect = layer->layer; const bool fboLayer = current->flags & Snapshot::kFlagIsFboLayer; if (fboLayer) { endTiling(); // Detach the texture from the FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0); layer->removeFbo(false); // Unbind current FBO and restore previous one glBindFramebuffer(GL_FRAMEBUFFER, previous->fbo); debugOverdraw(true, false); startTiling(previous); } if (!fboLayer && layer->getAlpha() < 255) { drawColorRect(rect.left, rect.top, rect.right, rect.bottom, layer->getAlpha() << 24, SkXfermode::kDstIn_Mode, true); // Required below, composeLayerRect() will divide by 255 layer->setAlpha(255); } mCaches.unbindMeshBuffer(); mCaches.activeTexture(0); // When the layer is stored in an FBO, we can save a bit of fillrate by // drawing only the dirty region if (fboLayer) { dirtyLayer(rect.left, rect.top, rect.right, rect.bottom, *previous->transform); if (layer->getColorFilter()) { setupColorFilter(layer->getColorFilter()); } composeLayerRegion(layer, rect); if (layer->getColorFilter()) { resetColorFilter(); } } else if (!rect.isEmpty()) { dirtyLayer(rect.left, rect.top, rect.right, rect.bottom); composeLayerRect(layer, rect, true); } dirtyClip(); // Failing to add the layer to the cache should happen only if the layer is too large if (!mCaches.layerCache.put(layer)) { LAYER_LOGD("Deleting layer"); Caches::getInstance().resourceCache.decrementRefcount(layer); } } void OpenGLRenderer::drawTextureLayer(Layer* layer, const Rect& rect) { float alpha = layer->getAlpha() / 255.0f * mSnapshot->alpha; setupDraw(); if (layer->getRenderTarget() == GL_TEXTURE_2D) { setupDrawWithTexture(); } else { setupDrawWithExternalTexture(); } setupDrawTextureTransform(); setupDrawColor(alpha, alpha, alpha, alpha); setupDrawColorFilter(); setupDrawBlending(layer->isBlend() || alpha < 1.0f, layer->getMode()); setupDrawProgram(); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); if (layer->getRenderTarget() == GL_TEXTURE_2D) { setupDrawTexture(layer->getTexture()); } else { setupDrawExternalTexture(layer->getTexture()); } if (currentTransform().isPureTranslate() && layer->getWidth() == (uint32_t) rect.getWidth() && layer->getHeight() == (uint32_t) rect.getHeight()) { const float x = (int) floorf(rect.left + currentTransform().getTranslateX() + 0.5f); const float y = (int) floorf(rect.top + currentTransform().getTranslateY() + 0.5f); layer->setFilter(GL_NEAREST); setupDrawModelView(x, y, x + rect.getWidth(), y + rect.getHeight(), true); } else { layer->setFilter(GL_LINEAR); setupDrawModelView(rect.left, rect.top, rect.right, rect.bottom); } setupDrawTextureTransformUniforms(layer->getTexTransform()); setupDrawMesh(&mMeshVertices[0].position[0], &mMeshVertices[0].texture[0]); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); finishDrawTexture(); } void OpenGLRenderer::composeLayerRect(Layer* layer, const Rect& rect, bool swap) { if (!layer->isTextureLayer()) { const Rect& texCoords = layer->texCoords; resetDrawTextureTexCoords(texCoords.left, texCoords.top, texCoords.right, texCoords.bottom); float x = rect.left; float y = rect.top; bool simpleTransform = currentTransform().isPureTranslate() && layer->getWidth() == (uint32_t) rect.getWidth() && layer->getHeight() == (uint32_t) rect.getHeight(); if (simpleTransform) { // When we're swapping, the layer is already in screen coordinates if (!swap) { x = (int) floorf(rect.left + currentTransform().getTranslateX() + 0.5f); y = (int) floorf(rect.top + currentTransform().getTranslateY() + 0.5f); } layer->setFilter(GL_NEAREST, true); } else { layer->setFilter(GL_LINEAR, true); } float alpha = layer->getAlpha() / 255.0f * mSnapshot->alpha; bool blend = layer->isBlend() || alpha < 1.0f; drawTextureMesh(x, y, x + rect.getWidth(), y + rect.getHeight(), layer->getTexture(), alpha, layer->getMode(), blend, &mMeshVertices[0].position[0], &mMeshVertices[0].texture[0], GL_TRIANGLE_STRIP, gMeshCount, swap, swap || simpleTransform); resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); } else { resetDrawTextureTexCoords(0.0f, 1.0f, 1.0f, 0.0f); drawTextureLayer(layer, rect); resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); } } void OpenGLRenderer::composeLayerRegion(Layer* layer, const Rect& rect) { if (layer->region.isRect()) { layer->setRegionAsRect(); composeLayerRect(layer, layer->regionRect); layer->region.clear(); return; } // TODO: See LayerRenderer.cpp::generateMesh() for important // information about this implementation if (CC_LIKELY(!layer->region.isEmpty())) { size_t count; const android::Rect* rects; Region safeRegion; if (CC_LIKELY(hasRectToRectTransform())) { rects = layer->region.getArray(&count); } else { safeRegion = Region::createTJunctionFreeRegion(layer->region); rects = safeRegion.getArray(&count); } const float alpha = layer->getAlpha() / 255.0f * mSnapshot->alpha; const float texX = 1.0f / float(layer->getWidth()); const float texY = 1.0f / float(layer->getHeight()); const float height = rect.getHeight(); setupDraw(); // We must get (and therefore bind) the region mesh buffer // after we setup drawing in case we need to mess with the // stencil buffer in setupDraw() TextureVertex* mesh = mCaches.getRegionMesh(); GLsizei numQuads = 0; setupDrawWithTexture(); setupDrawColor(alpha, alpha, alpha, alpha); setupDrawColorFilter(); setupDrawBlending(layer->isBlend() || alpha < 1.0f, layer->getMode(), false); setupDrawProgram(); setupDrawDirtyRegionsDisabled(); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawTexture(layer->getTexture()); if (currentTransform().isPureTranslate()) { const float x = (int) floorf(rect.left + currentTransform().getTranslateX() + 0.5f); const float y = (int) floorf(rect.top + currentTransform().getTranslateY() + 0.5f); layer->setFilter(GL_NEAREST); setupDrawModelViewTranslate(x, y, x + rect.getWidth(), y + rect.getHeight(), true); } else { layer->setFilter(GL_LINEAR); setupDrawModelViewTranslate(rect.left, rect.top, rect.right, rect.bottom); } setupDrawMeshIndices(&mesh[0].position[0], &mesh[0].texture[0]); for (size_t i = 0; i < count; i++) { const android::Rect* r = &rects[i]; const float u1 = r->left * texX; const float v1 = (height - r->top) * texY; const float u2 = r->right * texX; const float v2 = (height - r->bottom) * texY; // TODO: Reject quads outside of the clip TextureVertex::set(mesh++, r->left, r->top, u1, v1); TextureVertex::set(mesh++, r->right, r->top, u2, v1); TextureVertex::set(mesh++, r->left, r->bottom, u1, v2); TextureVertex::set(mesh++, r->right, r->bottom, u2, v2); numQuads++; if (numQuads >= REGION_MESH_QUAD_COUNT) { glDrawElements(GL_TRIANGLES, numQuads * 6, GL_UNSIGNED_SHORT, NULL); numQuads = 0; mesh = mCaches.getRegionMesh(); } } if (numQuads > 0) { glDrawElements(GL_TRIANGLES, numQuads * 6, GL_UNSIGNED_SHORT, NULL); } finishDrawTexture(); #if DEBUG_LAYERS_AS_REGIONS drawRegionRects(layer->region); #endif layer->region.clear(); } } void OpenGLRenderer::drawRegionRects(const Region& region) { #if DEBUG_LAYERS_AS_REGIONS size_t count; const android::Rect* rects = region.getArray(&count); uint32_t colors[] = { 0x7fff0000, 0x7f00ff00, 0x7f0000ff, 0x7fff00ff, }; int offset = 0; int32_t top = rects[0].top; for (size_t i = 0; i < count; i++) { if (top != rects[i].top) { offset ^= 0x2; top = rects[i].top; } Rect r(rects[i].left, rects[i].top, rects[i].right, rects[i].bottom); drawColorRect(r.left, r.top, r.right, r.bottom, colors[offset + (i & 0x1)], SkXfermode::kSrcOver_Mode); } #endif } void OpenGLRenderer::drawRegionRects(const SkRegion& region, int color, SkXfermode::Mode mode, bool dirty) { int count = 0; Vector rects; SkRegion::Iterator it(region); while (!it.done()) { const SkIRect& r = it.rect(); rects.push(r.fLeft); rects.push(r.fTop); rects.push(r.fRight); rects.push(r.fBottom); count += 4; it.next(); } drawColorRects(rects.array(), count, color, mode, true, dirty, false); } void OpenGLRenderer::dirtyLayer(const float left, const float top, const float right, const float bottom, const mat4 transform) { if (hasLayer()) { Rect bounds(left, top, right, bottom); transform.mapRect(bounds); dirtyLayerUnchecked(bounds, getRegion()); } } void OpenGLRenderer::dirtyLayer(const float left, const float top, const float right, const float bottom) { if (hasLayer()) { Rect bounds(left, top, right, bottom); dirtyLayerUnchecked(bounds, getRegion()); } } void OpenGLRenderer::dirtyLayerUnchecked(Rect& bounds, Region* region) { if (bounds.intersect(*mSnapshot->clipRect)) { bounds.snapToPixelBoundaries(); android::Rect dirty(bounds.left, bounds.top, bounds.right, bounds.bottom); if (!dirty.isEmpty()) { region->orSelf(dirty); } } } void OpenGLRenderer::clearLayerRegions() { const size_t count = mLayers.size(); if (count == 0) return; if (!mSnapshot->isIgnored()) { // Doing several glScissor/glClear here can negatively impact // GPUs with a tiler architecture, instead we draw quads with // the Clear blending mode // The list contains bounds that have already been clipped // against their initial clip rect, and the current clip // is likely different so we need to disable clipping here bool scissorChanged = mCaches.disableScissor(); Vertex mesh[count * 6]; Vertex* vertex = mesh; for (uint32_t i = 0; i < count; i++) { Rect* bounds = mLayers.itemAt(i); Vertex::set(vertex++, bounds->left, bounds->bottom); Vertex::set(vertex++, bounds->left, bounds->top); Vertex::set(vertex++, bounds->right, bounds->top); Vertex::set(vertex++, bounds->left, bounds->bottom); Vertex::set(vertex++, bounds->right, bounds->top); Vertex::set(vertex++, bounds->right, bounds->bottom); delete bounds; } // We must clear the list of dirty rects before we // call setupDraw() to prevent stencil setup to do // the same thing again mLayers.clear(); setupDraw(false); setupDrawColor(0.0f, 0.0f, 0.0f, 1.0f); setupDrawBlending(true, SkXfermode::kClear_Mode); setupDrawProgram(); setupDrawPureColorUniforms(); setupDrawModelViewTranslate(0.0f, 0.0f, 0.0f, 0.0f, true); setupDrawVertices(&mesh[0].position[0]); glDrawArrays(GL_TRIANGLES, 0, count * 6); if (scissorChanged) mCaches.enableScissor(); } else { for (uint32_t i = 0; i < count; i++) { delete mLayers.itemAt(i); } mLayers.clear(); } } /////////////////////////////////////////////////////////////////////////////// // State Deferral /////////////////////////////////////////////////////////////////////////////// bool OpenGLRenderer::storeDisplayState(DeferredDisplayState& state, int stateDeferFlags) { const Rect& currentClip = *(mSnapshot->clipRect); const mat4& currentMatrix = *(mSnapshot->transform); if (stateDeferFlags & kStateDeferFlag_Draw) { // state has bounds initialized in local coordinates if (!state.mBounds.isEmpty()) { currentMatrix.mapRect(state.mBounds); if (!state.mBounds.intersect(currentClip)) { // quick rejected return true; } } else { state.mBounds.set(currentClip); } } if (stateDeferFlags & kStateDeferFlag_Clip) { state.mClip.set(currentClip); } else { state.mClip.setEmpty(); } // Transform, drawModifiers, and alpha always deferred, since they are used by state operations // (Note: saveLayer/restore use colorFilter and alpha, so we just save restore everything) state.mMatrix.load(currentMatrix); state.mDrawModifiers = mDrawModifiers; state.mAlpha = mSnapshot->alpha; return false; } void OpenGLRenderer::restoreDisplayState(const DeferredDisplayState& state) { currentTransform().load(state.mMatrix); mDrawModifiers = state.mDrawModifiers; mSnapshot->alpha = state.mAlpha; if (!state.mClip.isEmpty()) { mSnapshot->setClip(state.mClip.left, state.mClip.top, state.mClip.right, state.mClip.bottom); dirtyClip(); } } /////////////////////////////////////////////////////////////////////////////// // Transforms /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::translate(float dx, float dy) { currentTransform().translate(dx, dy, 0.0f); } void OpenGLRenderer::rotate(float degrees) { currentTransform().rotate(degrees, 0.0f, 0.0f, 1.0f); } void OpenGLRenderer::scale(float sx, float sy) { currentTransform().scale(sx, sy, 1.0f); } void OpenGLRenderer::skew(float sx, float sy) { currentTransform().skew(sx, sy); } void OpenGLRenderer::setMatrix(SkMatrix* matrix) { if (matrix) { currentTransform().load(*matrix); } else { currentTransform().loadIdentity(); } } bool OpenGLRenderer::hasRectToRectTransform() { return CC_LIKELY(currentTransform().rectToRect()); } void OpenGLRenderer::getMatrix(SkMatrix* matrix) { currentTransform().copyTo(*matrix); } void OpenGLRenderer::concatMatrix(SkMatrix* matrix) { SkMatrix transform; currentTransform().copyTo(transform); transform.preConcat(*matrix); currentTransform().load(transform); } /////////////////////////////////////////////////////////////////////////////// // Clipping /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setScissorFromClip() { Rect clip(*mSnapshot->clipRect); clip.snapToPixelBoundaries(); if (mCaches.setScissor(clip.left, mSnapshot->height - clip.bottom, clip.getWidth(), clip.getHeight())) { mDirtyClip = false; } } void OpenGLRenderer::ensureStencilBuffer() { // Thanks to the mismatch between EGL and OpenGL ES FBO we // cannot attach a stencil buffer to fbo0 dynamically. Let's // just hope we have one when hasLayer() returns false. if (hasLayer()) { attachStencilBufferToLayer(mSnapshot->layer); } } void OpenGLRenderer::attachStencilBufferToLayer(Layer* layer) { // The layer's FBO is already bound when we reach this stage if (!layer->getStencilRenderBuffer()) { // GL_QCOM_tiled_rendering doesn't like it if a renderbuffer // is attached after we initiated tiling. We must turn it off, // attach the new render buffer then turn tiling back on endTiling(); RenderBuffer* buffer = mCaches.renderBufferCache.get( Stencil::getSmallestStencilFormat(), layer->getWidth(), layer->getHeight()); layer->setStencilRenderBuffer(buffer); startTiling(layer->clipRect, layer->layer.getHeight()); } } void OpenGLRenderer::setStencilFromClip() { if (!mCaches.debugOverdraw) { if (!mSnapshot->clipRegion->isEmpty()) { // NOTE: The order here is important, we must set dirtyClip to false // before any draw call to avoid calling back into this method mDirtyClip = false; ensureStencilBuffer(); mCaches.stencil.enableWrite(); // Clear the stencil but first make sure we restrict drawing // to the region's bounds bool resetScissor = mCaches.enableScissor(); if (resetScissor) { // The scissor was not set so we now need to update it setScissorFromClip(); } mCaches.stencil.clear(); if (resetScissor) mCaches.disableScissor(); // NOTE: We could use the region contour path to generate a smaller mesh // Since we are using the stencil we could use the red book path // drawing technique. It might increase bandwidth usage though. // The last parameter is important: we are not drawing in the color buffer // so we don't want to dirty the current layer, if any drawRegionRects(*mSnapshot->clipRegion, 0xff000000, SkXfermode::kSrc_Mode, false); mCaches.stencil.enableTest(); // Draw the region used to generate the stencil if the appropriate debug // mode is enabled if (mCaches.debugStencilClip == Caches::kStencilShowRegion) { drawRegionRects(*mSnapshot->clipRegion, 0x7f0000ff, SkXfermode::kSrcOver_Mode); } } else { mCaches.stencil.disable(); } } } const Rect& OpenGLRenderer::getClipBounds() { return mSnapshot->getLocalClip(); } bool OpenGLRenderer::quickRejectNoScissor(float left, float top, float right, float bottom) { if (mSnapshot->isIgnored()) { return true; } Rect r(left, top, right, bottom); currentTransform().mapRect(r); r.snapToPixelBoundaries(); Rect clipRect(*mSnapshot->clipRect); clipRect.snapToPixelBoundaries(); return !clipRect.intersects(r); } bool OpenGLRenderer::quickRejectNoScissor(float left, float top, float right, float bottom, Rect& transformed, Rect& clip) { if (mSnapshot->isIgnored()) { return true; } transformed.set(left, top, right, bottom); currentTransform().mapRect(transformed); transformed.snapToPixelBoundaries(); clip.set(*mSnapshot->clipRect); clip.snapToPixelBoundaries(); return !clip.intersects(transformed); } bool OpenGLRenderer::quickRejectPreStroke(float left, float top, float right, float bottom, SkPaint* paint) { if (paint->getStyle() != SkPaint::kFill_Style) { float outset = paint->getStrokeWidth() * 0.5f; return quickReject(left - outset, top - outset, right + outset, bottom + outset); } else { return quickReject(left, top, right, bottom); } } bool OpenGLRenderer::quickReject(float left, float top, float right, float bottom) { if (mSnapshot->isIgnored() || bottom <= top || right <= left) { return true; } Rect r(left, top, right, bottom); currentTransform().mapRect(r); r.snapToPixelBoundaries(); Rect clipRect(*mSnapshot->clipRect); clipRect.snapToPixelBoundaries(); bool rejected = !clipRect.intersects(r); if (!isDeferred() && !rejected) { mCaches.setScissorEnabled(mScissorOptimizationDisabled || !clipRect.contains(r)); } return rejected; } void OpenGLRenderer::debugClip() { #if DEBUG_CLIP_REGIONS if (!isDeferred() && !mSnapshot->clipRegion->isEmpty()) { drawRegionRects(*mSnapshot->clipRegion, 0x7f00ff00, SkXfermode::kSrcOver_Mode); } #endif } bool OpenGLRenderer::clipRect(float left, float top, float right, float bottom, SkRegion::Op op) { if (CC_LIKELY(currentTransform().rectToRect())) { bool clipped = mSnapshot->clip(left, top, right, bottom, op); if (clipped) { dirtyClip(); } return !mSnapshot->clipRect->isEmpty(); } SkPath path; path.addRect(left, top, right, bottom); return clipPath(&path, op); } bool OpenGLRenderer::clipPath(SkPath* path, SkRegion::Op op) { SkMatrix transform; currentTransform().copyTo(transform); SkPath transformed; path->transform(transform, &transformed); SkRegion clip; if (!mSnapshot->clipRegion->isEmpty()) { clip.setRegion(*mSnapshot->clipRegion); } else { Rect* bounds = mSnapshot->clipRect; clip.setRect(bounds->left, bounds->top, bounds->right, bounds->bottom); } SkRegion region; region.setPath(transformed, clip); bool clipped = mSnapshot->clipRegionTransformed(region, op); if (clipped) { dirtyClip(); } return !mSnapshot->clipRect->isEmpty(); } bool OpenGLRenderer::clipRegion(SkRegion* region, SkRegion::Op op) { bool clipped = mSnapshot->clipRegionTransformed(*region, op); if (clipped) { dirtyClip(); } return !mSnapshot->clipRect->isEmpty(); } Rect* OpenGLRenderer::getClipRect() { return mSnapshot->clipRect; } /////////////////////////////////////////////////////////////////////////////// // Drawing commands /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setupDraw(bool clear) { // TODO: It would be best if we could do this before quickReject() // changes the scissor test state if (clear) clearLayerRegions(); // Make sure setScissor & setStencil happen at the beginning of // this method if (mDirtyClip) { if (mCaches.scissorEnabled) { setScissorFromClip(); } setStencilFromClip(); } mDescription.reset(); mSetShaderColor = false; mColorSet = false; mColorA = mColorR = mColorG = mColorB = 0.0f; mTextureUnit = 0; mTrackDirtyRegions = true; // Enable debug highlight when what we're about to draw is tested against // the stencil buffer and if stencil highlight debugging is on mDescription.hasDebugHighlight = !mCaches.debugOverdraw && mCaches.debugStencilClip == Caches::kStencilShowHighlight && mCaches.stencil.isTestEnabled(); } void OpenGLRenderer::setupDrawWithTexture(bool isAlpha8) { mDescription.hasTexture = true; mDescription.hasAlpha8Texture = isAlpha8; } void OpenGLRenderer::setupDrawWithTextureAndColor(bool isAlpha8) { mDescription.hasTexture = true; mDescription.hasColors = true; mDescription.hasAlpha8Texture = isAlpha8; } void OpenGLRenderer::setupDrawWithExternalTexture() { mDescription.hasExternalTexture = true; } void OpenGLRenderer::setupDrawNoTexture() { mCaches.disableTexCoordsVertexArray(); } void OpenGLRenderer::setupDrawAA() { mDescription.isAA = true; } void OpenGLRenderer::setupDrawPoint(float pointSize) { mDescription.isPoint = true; mDescription.pointSize = pointSize; } void OpenGLRenderer::setupDrawColor(int color, int alpha) { mColorA = alpha / 255.0f; mColorR = mColorA * ((color >> 16) & 0xFF) / 255.0f; mColorG = mColorA * ((color >> 8) & 0xFF) / 255.0f; mColorB = mColorA * ((color ) & 0xFF) / 255.0f; mColorSet = true; mSetShaderColor = mDescription.setColor(mColorR, mColorG, mColorB, mColorA); } void OpenGLRenderer::setupDrawAlpha8Color(int color, int alpha) { mColorA = alpha / 255.0f; mColorR = mColorA * ((color >> 16) & 0xFF) / 255.0f; mColorG = mColorA * ((color >> 8) & 0xFF) / 255.0f; mColorB = mColorA * ((color ) & 0xFF) / 255.0f; mColorSet = true; mSetShaderColor = mDescription.setAlpha8Color(mColorR, mColorG, mColorB, mColorA); } void OpenGLRenderer::setupDrawTextGamma(const SkPaint* paint) { mCaches.fontRenderer->describe(mDescription, paint); } void OpenGLRenderer::setupDrawColor(float r, float g, float b, float a) { mColorA = a; mColorR = r; mColorG = g; mColorB = b; mColorSet = true; mSetShaderColor = mDescription.setColor(r, g, b, a); } void OpenGLRenderer::setupDrawShader() { if (mDrawModifiers.mShader) { mDrawModifiers.mShader->describe(mDescription, mExtensions); } } void OpenGLRenderer::setupDrawColorFilter() { if (mDrawModifiers.mColorFilter) { mDrawModifiers.mColorFilter->describe(mDescription, mExtensions); } } void OpenGLRenderer::accountForClear(SkXfermode::Mode mode) { if (mColorSet && mode == SkXfermode::kClear_Mode) { mColorA = 1.0f; mColorR = mColorG = mColorB = 0.0f; mSetShaderColor = mDescription.modulate = true; } } void OpenGLRenderer::setupDrawBlending(SkXfermode::Mode mode, bool swapSrcDst) { // When the blending mode is kClear_Mode, we need to use a modulate color // argb=1,0,0,0 accountForClear(mode); bool blend = (mColorSet && mColorA < 1.0f) || (mDrawModifiers.mShader && mDrawModifiers.mShader->blend()); chooseBlending(blend, mode, mDescription, swapSrcDst); } void OpenGLRenderer::setupDrawBlending(bool blend, SkXfermode::Mode mode, bool swapSrcDst) { // When the blending mode is kClear_Mode, we need to use a modulate color // argb=1,0,0,0 accountForClear(mode); blend |= (mColorSet && mColorA < 1.0f) || (mDrawModifiers.mShader && mDrawModifiers.mShader->blend()) || (mDrawModifiers.mColorFilter && mDrawModifiers.mColorFilter->blend()); chooseBlending(blend, mode, mDescription, swapSrcDst); } void OpenGLRenderer::setupDrawProgram() { useProgram(mCaches.programCache.get(mDescription)); } void OpenGLRenderer::setupDrawDirtyRegionsDisabled() { mTrackDirtyRegions = false; } void OpenGLRenderer::setupDrawModelViewTranslate(float left, float top, float right, float bottom, bool ignoreTransform) { mModelView.loadTranslate(left, top, 0.0f); if (!ignoreTransform) { mCaches.currentProgram->set(mOrthoMatrix, mModelView, currentTransform()); if (mTrackDirtyRegions) dirtyLayer(left, top, right, bottom, currentTransform()); } else { mCaches.currentProgram->set(mOrthoMatrix, mModelView, mat4::identity()); if (mTrackDirtyRegions) dirtyLayer(left, top, right, bottom); } } void OpenGLRenderer::setupDrawModelViewIdentity(bool offset) { mCaches.currentProgram->set(mOrthoMatrix, mat4::identity(), currentTransform(), offset); } void OpenGLRenderer::setupDrawModelView(float left, float top, float right, float bottom, bool ignoreTransform, bool ignoreModelView) { if (!ignoreModelView) { mModelView.loadTranslate(left, top, 0.0f); mModelView.scale(right - left, bottom - top, 1.0f); } else { mModelView.loadIdentity(); } bool dirty = right - left > 0.0f && bottom - top > 0.0f; if (!ignoreTransform) { mCaches.currentProgram->set(mOrthoMatrix, mModelView, currentTransform()); if (mTrackDirtyRegions && dirty) { dirtyLayer(left, top, right, bottom, currentTransform()); } } else { mCaches.currentProgram->set(mOrthoMatrix, mModelView, mat4::identity()); if (mTrackDirtyRegions && dirty) dirtyLayer(left, top, right, bottom); } } void OpenGLRenderer::setupDrawPointUniforms() { int slot = mCaches.currentProgram->getUniform("pointSize"); glUniform1f(slot, mDescription.pointSize); } void OpenGLRenderer::setupDrawColorUniforms() { if ((mColorSet && !mDrawModifiers.mShader) || (mDrawModifiers.mShader && mSetShaderColor)) { mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA); } } void OpenGLRenderer::setupDrawPureColorUniforms() { if (mSetShaderColor) { mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA); } } void OpenGLRenderer::setupDrawShaderUniforms(bool ignoreTransform) { if (mDrawModifiers.mShader) { if (ignoreTransform) { mModelView.loadInverse(currentTransform()); } mDrawModifiers.mShader->setupProgram(mCaches.currentProgram, mModelView, *mSnapshot, &mTextureUnit); } } void OpenGLRenderer::setupDrawShaderIdentityUniforms() { if (mDrawModifiers.mShader) { mDrawModifiers.mShader->setupProgram(mCaches.currentProgram, mat4::identity(), *mSnapshot, &mTextureUnit); } } void OpenGLRenderer::setupDrawColorFilterUniforms() { if (mDrawModifiers.mColorFilter) { mDrawModifiers.mColorFilter->setupProgram(mCaches.currentProgram); } } void OpenGLRenderer::setupDrawTextGammaUniforms() { mCaches.fontRenderer->setupProgram(mDescription, mCaches.currentProgram); } void OpenGLRenderer::setupDrawSimpleMesh() { bool force = mCaches.bindMeshBuffer(); mCaches.bindPositionVertexPointer(force, 0); mCaches.unbindIndicesBuffer(); } void OpenGLRenderer::setupDrawTexture(GLuint texture) { if (texture) bindTexture(texture); mTextureUnit++; mCaches.enableTexCoordsVertexArray(); } void OpenGLRenderer::setupDrawExternalTexture(GLuint texture) { bindExternalTexture(texture); mTextureUnit++; mCaches.enableTexCoordsVertexArray(); } void OpenGLRenderer::setupDrawTextureTransform() { mDescription.hasTextureTransform = true; } void OpenGLRenderer::setupDrawTextureTransformUniforms(mat4& transform) { glUniformMatrix4fv(mCaches.currentProgram->getUniform("mainTextureTransform"), 1, GL_FALSE, &transform.data[0]); } void OpenGLRenderer::setupDrawMesh(GLvoid* vertices, GLvoid* texCoords, GLuint vbo) { bool force = false; if (!vertices) { force = mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo); } else { force = mCaches.unbindMeshBuffer(); } mCaches.bindPositionVertexPointer(force, vertices); if (mCaches.currentProgram->texCoords >= 0) { mCaches.bindTexCoordsVertexPointer(force, texCoords); } mCaches.unbindIndicesBuffer(); } void OpenGLRenderer::setupDrawMesh(GLvoid* vertices, GLvoid* texCoords, GLvoid* colors) { bool force = mCaches.unbindMeshBuffer(); GLsizei stride = sizeof(ColorTextureVertex); mCaches.bindPositionVertexPointer(force, vertices, stride); if (mCaches.currentProgram->texCoords >= 0) { mCaches.bindTexCoordsVertexPointer(force, texCoords, stride); } int slot = mCaches.currentProgram->getAttrib("colors"); if (slot >= 0) { glEnableVertexAttribArray(slot); glVertexAttribPointer(slot, 4, GL_FLOAT, GL_FALSE, stride, colors); } mCaches.unbindIndicesBuffer(); } void OpenGLRenderer::setupDrawMeshIndices(GLvoid* vertices, GLvoid* texCoords) { bool force = mCaches.unbindMeshBuffer(); mCaches.bindPositionVertexPointer(force, vertices); if (mCaches.currentProgram->texCoords >= 0) { mCaches.bindTexCoordsVertexPointer(force, texCoords); } } void OpenGLRenderer::setupDrawVertices(GLvoid* vertices) { bool force = mCaches.unbindMeshBuffer(); mCaches.bindPositionVertexPointer(force, vertices, gVertexStride); mCaches.unbindIndicesBuffer(); } void OpenGLRenderer::finishDrawTexture() { } /////////////////////////////////////////////////////////////////////////////// // Drawing /////////////////////////////////////////////////////////////////////////////// status_t OpenGLRenderer::drawDisplayList(DisplayList* displayList, Rect& dirty, int32_t replayFlags) { // All the usual checks and setup operations (quickReject, setupDraw, etc.) // will be performed by the display list itself if (displayList && displayList->isRenderable()) { if (CC_UNLIKELY(mCaches.drawDeferDisabled)) { startFrame(); ReplayStateStruct replayStruct(*this, dirty, replayFlags); displayList->replay(replayStruct, 0); return replayStruct.mDrawGlStatus; } DeferredDisplayList deferredList; DeferStateStruct deferStruct(deferredList, *this, replayFlags); displayList->defer(deferStruct, 0); flushLayers(); startFrame(); return deferredList.flush(*this, dirty); } return DrawGlInfo::kStatusDone; } void OpenGLRenderer::outputDisplayList(DisplayList* displayList) { if (displayList) { displayList->output(1); } } void OpenGLRenderer::drawAlphaBitmap(Texture* texture, float left, float top, SkPaint* paint) { int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); int color = paint != NULL ? paint->getColor() : 0; float x = left; float y = top; texture->setWrap(GL_CLAMP_TO_EDGE, true); bool ignoreTransform = false; if (currentTransform().isPureTranslate()) { x = (int) floorf(left + currentTransform().getTranslateX() + 0.5f); y = (int) floorf(top + currentTransform().getTranslateY() + 0.5f); ignoreTransform = true; texture->setFilter(GL_NEAREST, true); } else { texture->setFilter(FILTER(paint), true); } drawAlpha8TextureMesh(x, y, x + texture->width, y + texture->height, texture->id, paint != NULL, color, alpha, mode, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount, ignoreTransform); } status_t OpenGLRenderer::drawBitmap(SkBitmap* bitmap, float left, float top, SkPaint* paint) { const float right = left + bitmap->width(); const float bottom = top + bitmap->height(); if (quickReject(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) { drawAlphaBitmap(texture, left, top, paint); } else { drawTextureRect(left, top, right, bottom, texture, paint); } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmap(SkBitmap* bitmap, SkMatrix* matrix, SkPaint* paint) { Rect r(0.0f, 0.0f, bitmap->width(), bitmap->height()); const mat4 transform(*matrix); transform.mapRect(r); if (quickReject(r.left, r.top, r.right, r.bottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); // This could be done in a cheaper way, all we need is pass the matrix // to the vertex shader. The save/restore is a bit overkill. save(SkCanvas::kMatrix_SaveFlag); concatMatrix(matrix); if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) { drawAlphaBitmap(texture, 0.0f, 0.0f, paint); } else { drawTextureRect(0.0f, 0.0f, bitmap->width(), bitmap->height(), texture, paint); } restore(); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmapData(SkBitmap* bitmap, float left, float top, SkPaint* paint) { const float right = left + bitmap->width(); const float bottom = top + bitmap->height(); if (quickReject(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.getTransient(bitmap); const AutoTexture autoCleanup(texture); if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) { drawAlphaBitmap(texture, left, top, paint); } else { drawTextureRect(left, top, right, bottom, texture, paint); } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmapMesh(SkBitmap* bitmap, int meshWidth, int meshHeight, float* vertices, int* colors, SkPaint* paint) { if (!vertices || mSnapshot->isIgnored()) { return DrawGlInfo::kStatusDone; } float left = FLT_MAX; float top = FLT_MAX; float right = FLT_MIN; float bottom = FLT_MIN; const uint32_t count = meshWidth * meshHeight * 6; ColorTextureVertex mesh[count]; ColorTextureVertex* vertex = mesh; bool cleanupColors = false; if (!colors) { uint32_t colorsCount = (meshWidth + 1) * (meshHeight + 1); colors = new int[colorsCount]; memset(colors, 0xff, colorsCount * sizeof(int)); cleanupColors = true; } for (int32_t y = 0; y < meshHeight; y++) { for (int32_t x = 0; x < meshWidth; x++) { uint32_t i = (y * (meshWidth + 1) + x) * 2; float u1 = float(x) / meshWidth; float u2 = float(x + 1) / meshWidth; float v1 = float(y) / meshHeight; float v2 = float(y + 1) / meshHeight; int ax = i + (meshWidth + 1) * 2; int ay = ax + 1; int bx = i; int by = bx + 1; int cx = i + 2; int cy = cx + 1; int dx = i + (meshWidth + 1) * 2 + 2; int dy = dx + 1; ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]); ColorTextureVertex::set(vertex++, vertices[ax], vertices[ay], u1, v2, colors[ax / 2]); ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]); ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]); ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]); ColorTextureVertex::set(vertex++, vertices[cx], vertices[cy], u2, v1, colors[cx / 2]); left = fminf(left, fminf(vertices[ax], fminf(vertices[bx], vertices[cx]))); top = fminf(top, fminf(vertices[ay], fminf(vertices[by], vertices[cy]))); right = fmaxf(right, fmaxf(vertices[ax], fmaxf(vertices[bx], vertices[cx]))); bottom = fmaxf(bottom, fmaxf(vertices[ay], fmaxf(vertices[by], vertices[cy]))); } } if (quickReject(left, top, right, bottom)) { if (cleanupColors) delete[] colors; return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) { if (cleanupColors) delete[] colors; return DrawGlInfo::kStatusDone; } const AutoTexture autoCleanup(texture); texture->setWrap(GL_CLAMP_TO_EDGE, true); texture->setFilter(FILTER(paint), true); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); float a = alpha / 255.0f; if (hasLayer()) { dirtyLayer(left, top, right, bottom, currentTransform()); } setupDraw(); setupDrawWithTextureAndColor(); setupDrawColor(a, a, a, a); setupDrawColorFilter(); setupDrawBlending(true, mode, false); setupDrawProgram(); setupDrawDirtyRegionsDisabled(); setupDrawModelView(0.0f, 0.0f, 1.0f, 1.0f, false); setupDrawTexture(texture->id); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawMesh(&mesh[0].position[0], &mesh[0].texture[0], &mesh[0].color[0]); glDrawArrays(GL_TRIANGLES, 0, count); finishDrawTexture(); int slot = mCaches.currentProgram->getAttrib("colors"); if (slot >= 0) { glDisableVertexAttribArray(slot); } if (cleanupColors) delete[] colors; return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmap(SkBitmap* bitmap, float srcLeft, float srcTop, float srcRight, float srcBottom, float dstLeft, float dstTop, float dstRight, float dstBottom, SkPaint* paint) { if (quickReject(dstLeft, dstTop, dstRight, dstBottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); const float width = texture->width; const float height = texture->height; const float u1 = fmax(0.0f, srcLeft / width); const float v1 = fmax(0.0f, srcTop / height); const float u2 = fmin(1.0f, srcRight / width); const float v2 = fmin(1.0f, srcBottom / height); mCaches.unbindMeshBuffer(); resetDrawTextureTexCoords(u1, v1, u2, v2); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); texture->setWrap(GL_CLAMP_TO_EDGE, true); float scaleX = (dstRight - dstLeft) / (srcRight - srcLeft); float scaleY = (dstBottom - dstTop) / (srcBottom - srcTop); bool scaled = scaleX != 1.0f || scaleY != 1.0f; // Apply a scale transform on the canvas only when a shader is in use // Skia handles the ratio between the dst and src rects as a scale factor // when a shader is set bool useScaleTransform = mDrawModifiers.mShader && scaled; bool ignoreTransform = false; if (CC_LIKELY(currentTransform().isPureTranslate() && !useScaleTransform)) { float x = (int) floorf(dstLeft + currentTransform().getTranslateX() + 0.5f); float y = (int) floorf(dstTop + currentTransform().getTranslateY() + 0.5f); dstRight = x + (dstRight - dstLeft); dstBottom = y + (dstBottom - dstTop); dstLeft = x; dstTop = y; texture->setFilter(scaled ? FILTER(paint) : GL_NEAREST, true); ignoreTransform = true; } else { texture->setFilter(FILTER(paint), true); } if (CC_UNLIKELY(useScaleTransform)) { save(SkCanvas::kMatrix_SaveFlag); translate(dstLeft, dstTop); scale(scaleX, scaleY); dstLeft = 0.0f; dstTop = 0.0f; dstRight = srcRight - srcLeft; dstBottom = srcBottom - srcTop; } if (CC_UNLIKELY(bitmap->getConfig() == SkBitmap::kA8_Config)) { int color = paint ? paint->getColor() : 0; drawAlpha8TextureMesh(dstLeft, dstTop, dstRight, dstBottom, texture->id, paint != NULL, color, alpha, mode, &mMeshVertices[0].position[0], &mMeshVertices[0].texture[0], GL_TRIANGLE_STRIP, gMeshCount, ignoreTransform); } else { drawTextureMesh(dstLeft, dstTop, dstRight, dstBottom, texture->id, alpha / 255.0f, mode, texture->blend, &mMeshVertices[0].position[0], &mMeshVertices[0].texture[0], GL_TRIANGLE_STRIP, gMeshCount, false, ignoreTransform); } if (CC_UNLIKELY(useScaleTransform)) { restore(); } resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawPatch(SkBitmap* bitmap, const int32_t* xDivs, const int32_t* yDivs, const uint32_t* colors, uint32_t width, uint32_t height, int8_t numColors, float left, float top, float right, float bottom, SkPaint* paint) { int alpha; SkXfermode::Mode mode; getAlphaAndModeDirect(paint, &alpha, &mode); return drawPatch(bitmap, xDivs, yDivs, colors, width, height, numColors, left, top, right, bottom, alpha, mode); } status_t OpenGLRenderer::drawPatch(SkBitmap* bitmap, const int32_t* xDivs, const int32_t* yDivs, const uint32_t* colors, uint32_t width, uint32_t height, int8_t numColors, float left, float top, float right, float bottom, int alpha, SkXfermode::Mode mode) { if (quickReject(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } alpha *= mSnapshot->alpha; const Patch* mesh = mCaches.patchCache.get(bitmap->width(), bitmap->height(), right - left, bottom - top, xDivs, yDivs, colors, width, height, numColors); if (CC_LIKELY(mesh && mesh->verticesCount > 0)) { mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); texture->setWrap(GL_CLAMP_TO_EDGE, true); texture->setFilter(GL_LINEAR, true); const bool pureTranslate = currentTransform().isPureTranslate(); // Mark the current layer dirty where we are going to draw the patch if (hasLayer() && mesh->hasEmptyQuads) { const float offsetX = left + currentTransform().getTranslateX(); const float offsetY = top + currentTransform().getTranslateY(); const size_t count = mesh->quads.size(); for (size_t i = 0; i < count; i++) { const Rect& bounds = mesh->quads.itemAt(i); if (CC_LIKELY(pureTranslate)) { const float x = (int) floorf(bounds.left + offsetX + 0.5f); const float y = (int) floorf(bounds.top + offsetY + 0.5f); dirtyLayer(x, y, x + bounds.getWidth(), y + bounds.getHeight()); } else { dirtyLayer(left + bounds.left, top + bounds.top, left + bounds.right, top + bounds.bottom, currentTransform()); } } } if (CC_LIKELY(pureTranslate)) { const float x = (int) floorf(left + currentTransform().getTranslateX() + 0.5f); const float y = (int) floorf(top + currentTransform().getTranslateY() + 0.5f); drawTextureMesh(x, y, x + right - left, y + bottom - top, texture->id, alpha / 255.0f, mode, texture->blend, (GLvoid*) 0, (GLvoid*) gMeshTextureOffset, GL_TRIANGLES, mesh->verticesCount, false, true, mesh->meshBuffer, true, !mesh->hasEmptyQuads); } else { drawTextureMesh(left, top, right, bottom, texture->id, alpha / 255.0f, mode, texture->blend, (GLvoid*) 0, (GLvoid*) gMeshTextureOffset, GL_TRIANGLES, mesh->verticesCount, false, false, mesh->meshBuffer, true, !mesh->hasEmptyQuads); } } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawVertexBuffer(const VertexBuffer& vertexBuffer, SkPaint* paint, bool useOffset) { if (!vertexBuffer.getSize()) { // no vertices to draw return DrawGlInfo::kStatusDone; } int color = paint->getColor(); SkXfermode::Mode mode = getXfermode(paint->getXfermode()); bool isAA = paint->isAntiAlias(); setupDraw(); setupDrawNoTexture(); if (isAA) setupDrawAA(); setupDrawColor(color, ((color >> 24) & 0xFF) * mSnapshot->alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(isAA, mode); setupDrawProgram(); setupDrawModelViewIdentity(useOffset); setupDrawColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderIdentityUniforms(); void* vertices = vertexBuffer.getBuffer(); bool force = mCaches.unbindMeshBuffer(); mCaches.bindPositionVertexPointer(true, vertices, isAA ? gAlphaVertexStride : gVertexStride); mCaches.resetTexCoordsVertexPointer(); mCaches.unbindIndicesBuffer(); int alphaSlot = -1; if (isAA) { void* alphaCoords = ((GLbyte*) vertices) + gVertexAlphaOffset; alphaSlot = mCaches.currentProgram->getAttrib("vtxAlpha"); // TODO: avoid enable/disable in back to back uses of the alpha attribute glEnableVertexAttribArray(alphaSlot); glVertexAttribPointer(alphaSlot, 1, GL_FLOAT, GL_FALSE, gAlphaVertexStride, alphaCoords); } glDrawArrays(GL_TRIANGLE_STRIP, 0, vertexBuffer.getSize()); if (isAA) { glDisableVertexAttribArray(alphaSlot); } return DrawGlInfo::kStatusDrew; } /** * Renders a convex path via tessellation. For AA paths, this function uses a similar approach to * that of AA lines in the drawLines() function. We expand the convex path by a half pixel in * screen space in all directions. However, instead of using a fragment shader to compute the * translucency of the color from its position, we simply use a varying parameter to define how far * a given pixel is from the edge. For non-AA paths, the expansion and alpha varying are not used. * * Doesn't yet support joins, caps, or path effects. */ status_t OpenGLRenderer::drawConvexPath(const SkPath& path, SkPaint* paint) { VertexBuffer vertexBuffer; // TODO: try clipping large paths to viewport PathTessellator::tessellatePath(path, paint, mSnapshot->transform, vertexBuffer); if (hasLayer()) { SkRect bounds = path.getBounds(); PathTessellator::expandBoundsForStroke(bounds, paint, false); dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, currentTransform()); } return drawVertexBuffer(vertexBuffer, paint); } /** * We create tristrips for the lines much like shape stroke tessellation, using a per-vertex alpha * and additional geometry for defining an alpha slope perimeter. * * Using GL_LINES can be difficult because the rasterization rules for those lines produces some * unexpected results, and may vary between hardware devices. Previously we used a varying-base * in-shader alpha region, but found it to be taxing on some GPUs. * * TODO: try using a fixed input buffer for non-capped lines as in text rendering. this may reduce * memory transfer by removing need for degenerate vertices. */ status_t OpenGLRenderer::drawLines(float* points, int count, SkPaint* paint) { if (mSnapshot->isIgnored() || count < 4) return DrawGlInfo::kStatusDone; count &= ~0x3; // round down to nearest four VertexBuffer buffer; SkRect bounds; PathTessellator::tessellateLines(points, count, paint, mSnapshot->transform, bounds, buffer); if (quickReject(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom)) { return DrawGlInfo::kStatusDone; } dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, currentTransform()); bool useOffset = !paint->isAntiAlias(); return drawVertexBuffer(buffer, paint, useOffset); } status_t OpenGLRenderer::drawPoints(float* points, int count, SkPaint* paint) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; // TODO: The paint's cap style defines whether the points are square or circular // TODO: Handle AA for round points // A stroke width of 0 has a special meaning in Skia: // it draws an unscaled 1px point float strokeWidth = paint->getStrokeWidth(); const bool isHairLine = paint->getStrokeWidth() == 0.0f; if (isHairLine) { // Now that we know it's hairline, we can set the effective width, to be used later strokeWidth = 1.0f; } const float halfWidth = strokeWidth / 2; int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); int verticesCount = count >> 1; int generatedVerticesCount = 0; TextureVertex pointsData[verticesCount]; TextureVertex* vertex = &pointsData[0]; // TODO: We should optimize this method to not generate vertices for points // that lie outside of the clip. mCaches.enableScissor(); setupDraw(); setupDrawNoTexture(); setupDrawPoint(strokeWidth); setupDrawColor(paint->getColor(), alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(mode); setupDrawProgram(); setupDrawModelViewIdentity(true); setupDrawColorUniforms(); setupDrawColorFilterUniforms(); setupDrawPointUniforms(); setupDrawShaderIdentityUniforms(); setupDrawMesh(vertex); for (int i = 0; i < count; i += 2) { TextureVertex::set(vertex++, points[i], points[i + 1], 0.0f, 0.0f); generatedVerticesCount++; float left = points[i] - halfWidth; float right = points[i] + halfWidth; float top = points[i + 1] - halfWidth; float bottom = points [i + 1] + halfWidth; dirtyLayer(left, top, right, bottom, currentTransform()); } glDrawArrays(GL_POINTS, 0, generatedVerticesCount); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawColor(int color, SkXfermode::Mode mode) { // No need to check against the clip, we fill the clip region if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; Rect& clip(*mSnapshot->clipRect); clip.snapToPixelBoundaries(); drawColorRect(clip.left, clip.top, clip.right, clip.bottom, color, mode, true); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawShape(float left, float top, const PathTexture* texture, SkPaint* paint) { if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); const float x = left + texture->left - texture->offset; const float y = top + texture->top - texture->offset; drawPathTexture(texture, x, y, paint); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawRoundRect(float left, float top, float right, float bottom, float rx, float ry, SkPaint* p) { if (mSnapshot->isIgnored() || quickRejectPreStroke(left, top, right, bottom, p) || (p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) { return DrawGlInfo::kStatusDone; } if (p->getPathEffect() != 0) { mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.getRoundRect( right - left, bottom - top, rx, ry, p); return drawShape(left, top, texture, p); } SkPath path; SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { float outset = p->getStrokeWidth() / 2; rect.outset(outset, outset); rx += outset; ry += outset; } path.addRoundRect(rect, rx, ry); return drawConvexPath(path, p); } status_t OpenGLRenderer::drawCircle(float x, float y, float radius, SkPaint* p) { if (mSnapshot->isIgnored() || quickRejectPreStroke(x - radius, y - radius, x + radius, y + radius, p) || (p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) { return DrawGlInfo::kStatusDone; } if (p->getPathEffect() != 0) { mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.getCircle(radius, p); return drawShape(x - radius, y - radius, texture, p); } SkPath path; if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { path.addCircle(x, y, radius + p->getStrokeWidth() / 2); } else { path.addCircle(x, y, radius); } return drawConvexPath(path, p); } status_t OpenGLRenderer::drawOval(float left, float top, float right, float bottom, SkPaint* p) { if (mSnapshot->isIgnored() || quickRejectPreStroke(left, top, right, bottom, p) || (p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) { return DrawGlInfo::kStatusDone; } if (p->getPathEffect() != 0) { mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.getOval(right - left, bottom - top, p); return drawShape(left, top, texture, p); } SkPath path; SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2); } path.addOval(rect); return drawConvexPath(path, p); } status_t OpenGLRenderer::drawArc(float left, float top, float right, float bottom, float startAngle, float sweepAngle, bool useCenter, SkPaint* p) { if (mSnapshot->isIgnored() || quickRejectPreStroke(left, top, right, bottom, p) || (p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) { return DrawGlInfo::kStatusDone; } if (fabs(sweepAngle) >= 360.0f) { return drawOval(left, top, right, bottom, p); } // TODO: support fills (accounting for concavity if useCenter && sweepAngle > 180) if (p->getStyle() != SkPaint::kStroke_Style || p->getPathEffect() != 0 || useCenter) { mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.getArc(right - left, bottom - top, startAngle, sweepAngle, useCenter, p); return drawShape(left, top, texture, p); } SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2); } SkPath path; if (useCenter) { path.moveTo(rect.centerX(), rect.centerY()); } path.arcTo(rect, startAngle, sweepAngle, !useCenter); if (useCenter) { path.close(); } return drawConvexPath(path, p); } // See SkPaintDefaults.h #define SkPaintDefaults_MiterLimit SkIntToScalar(4) status_t OpenGLRenderer::drawRect(float left, float top, float right, float bottom, SkPaint* p) { if (mSnapshot->isIgnored() || quickRejectPreStroke(left, top, right, bottom, p) || (p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) { return DrawGlInfo::kStatusDone; } if (p->getStyle() != SkPaint::kFill_Style) { // only fill style is supported by drawConvexPath, since others have to handle joins if (p->getPathEffect() != 0 || p->getStrokeJoin() != SkPaint::kMiter_Join || p->getStrokeMiter() != SkPaintDefaults_MiterLimit) { mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.getRect(right - left, bottom - top, p); return drawShape(left, top, texture, p); } SkPath path; SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2); } path.addRect(rect); return drawConvexPath(path, p); } if (p->isAntiAlias() && !currentTransform().isSimple()) { SkPath path; path.addRect(left, top, right, bottom); return drawConvexPath(path, p); } else { drawColorRect(left, top, right, bottom, p->getColor(), getXfermode(p->getXfermode())); return DrawGlInfo::kStatusDrew; } } void OpenGLRenderer::drawTextShadow(SkPaint* paint, const char* text, int bytesCount, int count, const float* positions, FontRenderer& fontRenderer, int alpha, SkXfermode::Mode mode, float x, float y) { mCaches.activeTexture(0); // NOTE: The drop shadow will not perform gamma correction // if shader-based correction is enabled mCaches.dropShadowCache.setFontRenderer(fontRenderer); const ShadowTexture* shadow = mCaches.dropShadowCache.get( paint, text, bytesCount, count, mDrawModifiers.mShadowRadius, positions); const AutoTexture autoCleanup(shadow); const float sx = x - shadow->left + mDrawModifiers.mShadowDx; const float sy = y - shadow->top + mDrawModifiers.mShadowDy; const int shadowAlpha = ((mDrawModifiers.mShadowColor >> 24) & 0xFF) * mSnapshot->alpha; int shadowColor = mDrawModifiers.mShadowColor; if (mDrawModifiers.mShader) { shadowColor = 0xffffffff; } setupDraw(); setupDrawWithTexture(true); setupDrawAlpha8Color(shadowColor, shadowAlpha < 255 ? shadowAlpha : alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); setupDrawModelView(sx, sy, sx + shadow->width, sy + shadow->height); setupDrawTexture(shadow->id); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderUniforms(); setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); } bool OpenGLRenderer::canSkipText(const SkPaint* paint) const { float alpha = (mDrawModifiers.mHasShadow ? 1.0f : paint->getAlpha()) * mSnapshot->alpha; return alpha == 0.0f && getXfermode(paint->getXfermode()) == SkXfermode::kSrcOver_Mode; } class TextSetupFunctor: public Functor { public: TextSetupFunctor(OpenGLRenderer& renderer, float x, float y, bool pureTranslate, int alpha, SkXfermode::Mode mode, SkPaint* paint): Functor(), renderer(renderer), x(x), y(y), pureTranslate(pureTranslate), alpha(alpha), mode(mode), paint(paint) { } ~TextSetupFunctor() { } status_t operator ()(int what, void* data) { renderer.setupDraw(); renderer.setupDrawTextGamma(paint); renderer.setupDrawDirtyRegionsDisabled(); renderer.setupDrawWithTexture(true); renderer.setupDrawAlpha8Color(paint->getColor(), alpha); renderer.setupDrawColorFilter(); renderer.setupDrawShader(); renderer.setupDrawBlending(true, mode); renderer.setupDrawProgram(); renderer.setupDrawModelView(x, y, x, y, pureTranslate, true); // Calling setupDrawTexture with the name 0 will enable the // uv attributes and increase the texture unit count // texture binding will be performed by the font renderer as // needed renderer.setupDrawTexture(0); renderer.setupDrawPureColorUniforms(); renderer.setupDrawColorFilterUniforms(); renderer.setupDrawShaderUniforms(pureTranslate); renderer.setupDrawTextGammaUniforms(); return NO_ERROR; } OpenGLRenderer& renderer; float x; float y; bool pureTranslate; int alpha; SkXfermode::Mode mode; SkPaint* paint; }; status_t OpenGLRenderer::drawPosText(const char* text, int bytesCount, int count, const float* positions, SkPaint* paint) { if (text == NULL || count == 0 || mSnapshot->isIgnored() || canSkipText(paint)) { return DrawGlInfo::kStatusDone; } // NOTE: Skia does not support perspective transform on drawPosText yet if (!currentTransform().isSimple()) { return DrawGlInfo::kStatusDone; } float x = 0.0f; float y = 0.0f; const bool pureTranslate = currentTransform().isPureTranslate(); if (pureTranslate) { x = (int) floorf(x + currentTransform().getTranslateX() + 0.5f); y = (int) floorf(y + currentTransform().getTranslateY() + 0.5f); } FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint); fontRenderer.setFont(paint, mat4::identity()); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); if (CC_UNLIKELY(mDrawModifiers.mHasShadow)) { drawTextShadow(paint, text, bytesCount, count, positions, fontRenderer, alpha, mode, 0.0f, 0.0f); } // Pick the appropriate texture filtering bool linearFilter = currentTransform().changesBounds(); if (pureTranslate && !linearFilter) { linearFilter = fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f; } fontRenderer.setTextureFiltering(linearFilter); const Rect* clip = pureTranslate ? mSnapshot->clipRect : &mSnapshot->getLocalClip(); Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); const bool hasActiveLayer = hasLayer(); TextSetupFunctor functor(*this, x, y, pureTranslate, alpha, mode, paint); if (fontRenderer.renderPosText(paint, clip, text, 0, bytesCount, count, x, y, positions, hasActiveLayer ? &bounds : NULL, &functor)) { if (hasActiveLayer) { if (!pureTranslate) { currentTransform().mapRect(bounds); } dirtyLayerUnchecked(bounds, getRegion()); } } return DrawGlInfo::kStatusDrew; } mat4 OpenGLRenderer::findBestFontTransform(const mat4& transform) const { mat4 fontTransform; if (CC_LIKELY(transform.isPureTranslate())) { fontTransform = mat4::identity(); } else { if (CC_UNLIKELY(transform.isPerspective())) { fontTransform = mat4::identity(); } else { float sx, sy; currentTransform().decomposeScale(sx, sy); fontTransform.loadScale(sx, sy, 1.0f); } } return fontTransform; } status_t OpenGLRenderer::drawText(const char* text, int bytesCount, int count, float x, float y, const float* positions, SkPaint* paint, float length) { if (text == NULL || count == 0 || mSnapshot->isIgnored() || canSkipText(paint)) { return DrawGlInfo::kStatusDone; } if (length < 0.0f) length = paint->measureText(text, bytesCount); switch (paint->getTextAlign()) { case SkPaint::kCenter_Align: x -= length / 2.0f; break; case SkPaint::kRight_Align: x -= length; break; default: break; } SkPaint::FontMetrics metrics; paint->getFontMetrics(&metrics, 0.0f); if (quickReject(x, y + metrics.fTop, x + length, y + metrics.fBottom)) { return DrawGlInfo::kStatusDone; } const float oldX = x; const float oldY = y; const mat4& transform = currentTransform(); const bool pureTranslate = transform.isPureTranslate(); if (CC_LIKELY(pureTranslate)) { x = (int) floorf(x + transform.getTranslateX() + 0.5f); y = (int) floorf(y + transform.getTranslateY() + 0.5f); } int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint); if (CC_UNLIKELY(mDrawModifiers.mHasShadow)) { fontRenderer.setFont(paint, mat4::identity()); drawTextShadow(paint, text, bytesCount, count, positions, fontRenderer, alpha, mode, oldX, oldY); } const bool hasActiveLayer = hasLayer(); // We only pass a partial transform to the font renderer. That partial // matrix defines how glyphs are rasterized. Typically we want glyphs // to be rasterized at their final size on screen, which means the partial // matrix needs to take the scale factor into account. // When a partial matrix is used to transform glyphs during rasterization, // the mesh is generated with the inverse transform (in the case of scale, // the mesh is generated at 1.0 / scale for instance.) This allows us to // apply the full transform matrix at draw time in the vertex shader. // Applying the full matrix in the shader is the easiest way to handle // rotation and perspective and allows us to always generated quads in the // font renderer which greatly simplifies the code, clipping in particular. mat4 fontTransform = findBestFontTransform(transform); fontRenderer.setFont(paint, fontTransform); // Pick the appropriate texture filtering bool linearFilter = !pureTranslate || fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f; fontRenderer.setTextureFiltering(linearFilter); // TODO: Implement better clipping for scaled/rotated text const Rect* clip = !pureTranslate ? NULL : mSnapshot->clipRect; Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); bool status; TextSetupFunctor functor(*this, x, y, pureTranslate, alpha, mode, paint); if (CC_UNLIKELY(paint->getTextAlign() != SkPaint::kLeft_Align)) { SkPaint paintCopy(*paint); paintCopy.setTextAlign(SkPaint::kLeft_Align); status = fontRenderer.renderPosText(&paintCopy, clip, text, 0, bytesCount, count, x, y, positions, hasActiveLayer ? &bounds : NULL, &functor); } else { status = fontRenderer.renderPosText(paint, clip, text, 0, bytesCount, count, x, y, positions, hasActiveLayer ? &bounds : NULL, &functor); } if (status && hasActiveLayer) { if (!pureTranslate) { transform.mapRect(bounds); } dirtyLayerUnchecked(bounds, getRegion()); } drawTextDecorations(text, bytesCount, length, oldX, oldY, paint); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawTextOnPath(const char* text, int bytesCount, int count, SkPath* path, float hOffset, float vOffset, SkPaint* paint) { if (text == NULL || count == 0 || mSnapshot->isIgnored() || canSkipText(paint)) { return DrawGlInfo::kStatusDone; } FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint); fontRenderer.setFont(paint, mat4::identity()); fontRenderer.setTextureFiltering(true); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); setupDraw(); setupDrawTextGamma(paint); setupDrawDirtyRegionsDisabled(); setupDrawWithTexture(true); setupDrawAlpha8Color(paint->getColor(), alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); setupDrawModelView(0.0f, 0.0f, 0.0f, 0.0f, false, true); // Calling setupDrawTexture with the name 0 will enable the // uv attributes and increase the texture unit count // texture binding will be performed by the font renderer as // needed setupDrawTexture(0); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderUniforms(false); setupDrawTextGammaUniforms(); const Rect* clip = &mSnapshot->getLocalClip(); Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); const bool hasActiveLayer = hasLayer(); if (fontRenderer.renderTextOnPath(paint, clip, text, 0, bytesCount, count, path, hOffset, vOffset, hasActiveLayer ? &bounds : NULL)) { if (hasActiveLayer) { currentTransform().mapRect(bounds); dirtyLayerUnchecked(bounds, getRegion()); } } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawPath(SkPath* path, SkPaint* paint) { if (mSnapshot->isIgnored()) return DrawGlInfo::kStatusDone; mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.get(path, paint); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); const float x = texture->left - texture->offset; const float y = texture->top - texture->offset; drawPathTexture(texture, x, y, paint); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawLayer(Layer* layer, float x, float y) { if (!layer) { return DrawGlInfo::kStatusDone; } mat4* transform = NULL; if (layer->isTextureLayer()) { transform = &layer->getTransform(); if (!transform->isIdentity()) { save(0); currentTransform().multiply(*transform); } } Rect transformed; Rect clip; const bool rejected = quickRejectNoScissor(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight(), transformed, clip); if (rejected) { if (transform && !transform->isIdentity()) { restore(); } return DrawGlInfo::kStatusDone; } updateLayer(layer, true); mCaches.setScissorEnabled(mScissorOptimizationDisabled || !clip.contains(transformed)); mCaches.activeTexture(0); if (CC_LIKELY(!layer->region.isEmpty())) { SkiaColorFilter* oldFilter = mDrawModifiers.mColorFilter; mDrawModifiers.mColorFilter = layer->getColorFilter(); if (layer->region.isRect()) { composeLayerRect(layer, layer->regionRect); } else if (layer->mesh) { const float a = layer->getAlpha() / 255.0f * mSnapshot->alpha; setupDraw(); setupDrawWithTexture(); setupDrawColor(a, a, a, a); setupDrawColorFilter(); setupDrawBlending(layer->isBlend() || a < 1.0f, layer->getMode(), false); setupDrawProgram(); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawTexture(layer->getTexture()); if (CC_LIKELY(currentTransform().isPureTranslate())) { int tx = (int) floorf(x + currentTransform().getTranslateX() + 0.5f); int ty = (int) floorf(y + currentTransform().getTranslateY() + 0.5f); layer->setFilter(GL_NEAREST); setupDrawModelViewTranslate(tx, ty, tx + layer->layer.getWidth(), ty + layer->layer.getHeight(), true); } else { layer->setFilter(GL_LINEAR); setupDrawModelViewTranslate(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight()); } setupDrawMesh(&layer->mesh[0].position[0], &layer->mesh[0].texture[0]); glDrawElements(GL_TRIANGLES, layer->meshElementCount, GL_UNSIGNED_SHORT, layer->meshIndices); finishDrawTexture(); #if DEBUG_LAYERS_AS_REGIONS drawRegionRects(layer->region); #endif } mDrawModifiers.mColorFilter = oldFilter; if (layer->debugDrawUpdate) { layer->debugDrawUpdate = false; drawColorRect(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight(), 0x7f00ff00, SkXfermode::kSrcOver_Mode); } } if (transform && !transform->isIdentity()) { restore(); } return DrawGlInfo::kStatusDrew; } /////////////////////////////////////////////////////////////////////////////// // Shaders /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetShader() { mDrawModifiers.mShader = NULL; } void OpenGLRenderer::setupShader(SkiaShader* shader) { mDrawModifiers.mShader = shader; if (mDrawModifiers.mShader) { mDrawModifiers.mShader->set(&mCaches.textureCache, &mCaches.gradientCache); } } /////////////////////////////////////////////////////////////////////////////// // Color filters /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetColorFilter() { mDrawModifiers.mColorFilter = NULL; } void OpenGLRenderer::setupColorFilter(SkiaColorFilter* filter) { mDrawModifiers.mColorFilter = filter; } /////////////////////////////////////////////////////////////////////////////// // Drop shadow /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetShadow() { mDrawModifiers.mHasShadow = false; } void OpenGLRenderer::setupShadow(float radius, float dx, float dy, int color) { mDrawModifiers.mHasShadow = true; mDrawModifiers.mShadowRadius = radius; mDrawModifiers.mShadowDx = dx; mDrawModifiers.mShadowDy = dy; mDrawModifiers.mShadowColor = color; } /////////////////////////////////////////////////////////////////////////////// // Draw filters /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetPaintFilter() { mDrawModifiers.mHasDrawFilter = false; } void OpenGLRenderer::setupPaintFilter(int clearBits, int setBits) { mDrawModifiers.mHasDrawFilter = true; mDrawModifiers.mPaintFilterClearBits = clearBits & SkPaint::kAllFlags; mDrawModifiers.mPaintFilterSetBits = setBits & SkPaint::kAllFlags; } SkPaint* OpenGLRenderer::filterPaint(SkPaint* paint) { if (CC_LIKELY(!mDrawModifiers.mHasDrawFilter || !paint)) { return paint; } uint32_t flags = paint->getFlags(); mFilteredPaint = *paint; mFilteredPaint.setFlags((flags & ~mDrawModifiers.mPaintFilterClearBits) | mDrawModifiers.mPaintFilterSetBits); return &mFilteredPaint; } /////////////////////////////////////////////////////////////////////////////// // Drawing implementation /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::drawPathTexture(const PathTexture* texture, float x, float y, SkPaint* paint) { if (quickReject(x, y, x + texture->width, y + texture->height)) { return; } int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); setupDraw(); setupDrawWithTexture(true); setupDrawAlpha8Color(paint->getColor(), alpha); setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); setupDrawModelView(x, y, x + texture->width, y + texture->height); setupDrawTexture(texture->id); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderUniforms(); setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); finishDrawTexture(); } // Same values used by Skia #define kStdStrikeThru_Offset (-6.0f / 21.0f) #define kStdUnderline_Offset (1.0f / 9.0f) #define kStdUnderline_Thickness (1.0f / 18.0f) void OpenGLRenderer::drawTextDecorations(const char* text, int bytesCount, float length, float x, float y, SkPaint* paint) { // Handle underline and strike-through uint32_t flags = paint->getFlags(); if (flags & (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag)) { SkPaint paintCopy(*paint); float underlineWidth = length; // If length is > 0.0f, we already measured the text for the text alignment if (length <= 0.0f) { underlineWidth = paintCopy.measureText(text, bytesCount); } if (CC_LIKELY(underlineWidth > 0.0f)) { const float textSize = paintCopy.getTextSize(); const float strokeWidth = fmax(textSize * kStdUnderline_Thickness, 1.0f); const float left = x; float top = 0.0f; int linesCount = 0; if (flags & SkPaint::kUnderlineText_Flag) linesCount++; if (flags & SkPaint::kStrikeThruText_Flag) linesCount++; const int pointsCount = 4 * linesCount; float points[pointsCount]; int currentPoint = 0; if (flags & SkPaint::kUnderlineText_Flag) { top = y + textSize * kStdUnderline_Offset; points[currentPoint++] = left; points[currentPoint++] = top; points[currentPoint++] = left + underlineWidth; points[currentPoint++] = top; } if (flags & SkPaint::kStrikeThruText_Flag) { top = y + textSize * kStdStrikeThru_Offset; points[currentPoint++] = left; points[currentPoint++] = top; points[currentPoint++] = left + underlineWidth; points[currentPoint++] = top; } paintCopy.setStrokeWidth(strokeWidth); drawLines(&points[0], pointsCount, &paintCopy); } } } status_t OpenGLRenderer::drawRects(const float* rects, int count, SkPaint* paint) { if (mSnapshot->isIgnored()) { return DrawGlInfo::kStatusDone; } int color = paint->getColor(); // If a shader is set, preserve only the alpha if (mDrawModifiers.mShader) { color |= 0x00ffffff; } SkXfermode::Mode mode = getXfermode(paint->getXfermode()); return drawColorRects(rects, count, color, mode); } status_t OpenGLRenderer::drawColorRects(const float* rects, int count, int color, SkXfermode::Mode mode, bool ignoreTransform, bool dirty, bool clip) { if (count == 0) { return DrawGlInfo::kStatusDone; } float left = FLT_MAX; float top = FLT_MAX; float right = FLT_MIN; float bottom = FLT_MIN; int vertexCount = 0; Vertex mesh[count * 6]; Vertex* vertex = mesh; for (int index = 0; index < count; index += 4) { float l = rects[index + 0]; float t = rects[index + 1]; float r = rects[index + 2]; float b = rects[index + 3]; Vertex::set(vertex++, l, b); Vertex::set(vertex++, l, t); Vertex::set(vertex++, r, t); Vertex::set(vertex++, l, b); Vertex::set(vertex++, r, t); Vertex::set(vertex++, r, b); vertexCount += 6; left = fminf(left, l); top = fminf(top, t); right = fmaxf(right, r); bottom = fmaxf(bottom, b); } if (clip && quickReject(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } setupDraw(); setupDrawNoTexture(); setupDrawColor(color, ((color >> 24) & 0xFF) * mSnapshot->alpha); setupDrawShader(); setupDrawColorFilter(); setupDrawBlending(mode); setupDrawProgram(); setupDrawDirtyRegionsDisabled(); setupDrawModelView(0.0f, 0.0f, 1.0f, 1.0f, ignoreTransform, true); setupDrawColorUniforms(); setupDrawShaderUniforms(); setupDrawColorFilterUniforms(); setupDrawVertices((GLvoid*) &mesh[0].position[0]); if (dirty && hasLayer()) { dirtyLayer(left, top, right, bottom, currentTransform()); } glDrawArrays(GL_TRIANGLES, 0, vertexCount); return DrawGlInfo::kStatusDrew; } void OpenGLRenderer::drawColorRect(float left, float top, float right, float bottom, int color, SkXfermode::Mode mode, bool ignoreTransform) { // If a shader is set, preserve only the alpha if (mDrawModifiers.mShader) { color |= 0x00ffffff; } setupDraw(); setupDrawNoTexture(); setupDrawColor(color, ((color >> 24) & 0xFF) * mSnapshot->alpha); setupDrawShader(); setupDrawColorFilter(); setupDrawBlending(mode); setupDrawProgram(); setupDrawModelView(left, top, right, bottom, ignoreTransform); setupDrawColorUniforms(); setupDrawShaderUniforms(ignoreTransform); setupDrawColorFilterUniforms(); setupDrawSimpleMesh(); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); } void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom, Texture* texture, SkPaint* paint) { int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); texture->setWrap(GL_CLAMP_TO_EDGE, true); if (CC_LIKELY(currentTransform().isPureTranslate())) { const float x = (int) floorf(left + currentTransform().getTranslateX() + 0.5f); const float y = (int) floorf(top + currentTransform().getTranslateY() + 0.5f); texture->setFilter(GL_NEAREST, true); drawTextureMesh(x, y, x + texture->width, y + texture->height, texture->id, alpha / 255.0f, mode, texture->blend, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount, false, true); } else { texture->setFilter(FILTER(paint), true); drawTextureMesh(left, top, right, bottom, texture->id, alpha / 255.0f, mode, texture->blend, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount); } } void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom, GLuint texture, float alpha, SkXfermode::Mode mode, bool blend) { drawTextureMesh(left, top, right, bottom, texture, alpha, mode, blend, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount); } void OpenGLRenderer::drawTextureMesh(float left, float top, float right, float bottom, GLuint texture, float alpha, SkXfermode::Mode mode, bool blend, GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount, bool swapSrcDst, bool ignoreTransform, GLuint vbo, bool ignoreScale, bool dirty) { setupDraw(); setupDrawWithTexture(); setupDrawColor(alpha, alpha, alpha, alpha); setupDrawColorFilter(); setupDrawBlending(blend, mode, swapSrcDst); setupDrawProgram(); if (!dirty) setupDrawDirtyRegionsDisabled(); if (!ignoreScale) { setupDrawModelView(left, top, right, bottom, ignoreTransform); } else { setupDrawModelViewTranslate(left, top, right, bottom, ignoreTransform); } setupDrawTexture(texture); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawMesh(vertices, texCoords, vbo); glDrawArrays(drawMode, 0, elementsCount); finishDrawTexture(); } void OpenGLRenderer::drawAlpha8TextureMesh(float left, float top, float right, float bottom, GLuint texture, bool hasColor, int color, int alpha, SkXfermode::Mode mode, GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount, bool ignoreTransform, bool dirty) { setupDraw(); setupDrawWithTexture(true); if (hasColor) { setupDrawAlpha8Color(color, alpha); } setupDrawColorFilter(); setupDrawShader(); setupDrawBlending(true, mode); setupDrawProgram(); if (!dirty) setupDrawDirtyRegionsDisabled(); setupDrawModelView(left, top, right, bottom, ignoreTransform); setupDrawTexture(texture); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(); setupDrawShaderUniforms(); setupDrawMesh(vertices, texCoords); glDrawArrays(drawMode, 0, elementsCount); finishDrawTexture(); } void OpenGLRenderer::chooseBlending(bool blend, SkXfermode::Mode mode, ProgramDescription& description, bool swapSrcDst) { blend = blend || mode != SkXfermode::kSrcOver_Mode; if (blend) { // These blend modes are not supported by OpenGL directly and have // to be implemented using shaders. Since the shader will perform // the blending, turn blending off here // If the blend mode cannot be implemented using shaders, fall // back to the default SrcOver blend mode instead if (CC_UNLIKELY(mode > SkXfermode::kScreen_Mode)) { if (CC_UNLIKELY(mExtensions.hasFramebufferFetch())) { description.framebufferMode = mode; description.swapSrcDst = swapSrcDst; if (mCaches.blend) { glDisable(GL_BLEND); mCaches.blend = false; } return; } else { mode = SkXfermode::kSrcOver_Mode; } } if (!mCaches.blend) { glEnable(GL_BLEND); } GLenum sourceMode = swapSrcDst ? gBlendsSwap[mode].src : gBlends[mode].src; GLenum destMode = swapSrcDst ? gBlendsSwap[mode].dst : gBlends[mode].dst; if (sourceMode != mCaches.lastSrcMode || destMode != mCaches.lastDstMode) { glBlendFunc(sourceMode, destMode); mCaches.lastSrcMode = sourceMode; mCaches.lastDstMode = destMode; } } else if (mCaches.blend) { glDisable(GL_BLEND); } mCaches.blend = blend; } bool OpenGLRenderer::useProgram(Program* program) { if (!program->isInUse()) { if (mCaches.currentProgram != NULL) mCaches.currentProgram->remove(); program->use(); mCaches.currentProgram = program; return false; } return true; } void OpenGLRenderer::resetDrawTextureTexCoords(float u1, float v1, float u2, float v2) { TextureVertex* v = &mMeshVertices[0]; TextureVertex::setUV(v++, u1, v1); TextureVertex::setUV(v++, u2, v1); TextureVertex::setUV(v++, u1, v2); TextureVertex::setUV(v++, u2, v2); } void OpenGLRenderer::getAlphaAndMode(SkPaint* paint, int* alpha, SkXfermode::Mode* mode) { getAlphaAndModeDirect(paint, alpha, mode); *alpha *= mSnapshot->alpha; } }; // namespace uirenderer }; // namespace android