/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #include #include #include #include #include #include #include #include #include #include #include "OpenGLRenderer.h" #include "DeferredDisplayList.h" #include "DisplayListRenderer.h" #include "Fence.h" #include "PathTessellator.h" #include "Properties.h" #include "ShadowTessellator.h" #include "SkiaShader.h" #include "utils/GLUtils.h" #include "Vector.h" #include "VertexBuffer.h" namespace android { namespace uirenderer { /////////////////////////////////////////////////////////////////////////////// // Defines /////////////////////////////////////////////////////////////////////////////// #define RAD_TO_DEG (180.0f / 3.14159265f) #define MIN_ANGLE 0.001f #define ALPHA_THRESHOLD 0 static GLenum getFilter(const SkPaint* paint) { if (!paint || paint->getFilterLevel() != SkPaint::kNone_FilterLevel) { return GL_LINEAR; } return GL_NEAREST; } /////////////////////////////////////////////////////////////////////////////// // Globals /////////////////////////////////////////////////////////////////////////////// /** * Structure mapping Skia xfermodes to OpenGL blending factors. */ struct Blender { SkXfermode::Mode mode; GLenum src; GLenum dst; }; // struct Blender // In this array, the index of each Blender equals the value of the first // entry. For instance, gBlends[1] == gBlends[SkXfermode::kSrc_Mode] static const Blender gBlends[] = { { SkXfermode::kClear_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrc_Mode, GL_ONE, GL_ZERO }, { SkXfermode::kDst_Mode, GL_ZERO, GL_ONE }, { SkXfermode::kSrcOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE }, { SkXfermode::kSrcIn_Mode, GL_DST_ALPHA, GL_ZERO }, { SkXfermode::kDstIn_Mode, GL_ZERO, GL_SRC_ALPHA }, { SkXfermode::kSrcOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kDstOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrcATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA }, { SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kPlus_Mode, GL_ONE, GL_ONE }, { SkXfermode::kModulate_Mode, GL_ZERO, GL_SRC_COLOR }, { SkXfermode::kScreen_Mode, GL_ONE, GL_ONE_MINUS_SRC_COLOR } }; // This array contains the swapped version of each SkXfermode. For instance // this array's SrcOver blending mode is actually DstOver. You can refer to // createLayer() for more information on the purpose of this array. static const Blender gBlendsSwap[] = { { SkXfermode::kClear_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrc_Mode, GL_ZERO, GL_ONE }, { SkXfermode::kDst_Mode, GL_ONE, GL_ZERO }, { SkXfermode::kSrcOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE }, { SkXfermode::kDstOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrcIn_Mode, GL_ZERO, GL_SRC_ALPHA }, { SkXfermode::kDstIn_Mode, GL_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrcOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrcATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA }, { SkXfermode::kDstATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kPlus_Mode, GL_ONE, GL_ONE }, { SkXfermode::kModulate_Mode, GL_DST_COLOR, GL_ZERO }, { SkXfermode::kScreen_Mode, GL_ONE_MINUS_DST_COLOR, GL_ONE } }; /////////////////////////////////////////////////////////////////////////////// // Functions /////////////////////////////////////////////////////////////////////////////// template static inline T min(T a, T b) { return a < b ? a : b; } /////////////////////////////////////////////////////////////////////////////// // Constructors/destructor /////////////////////////////////////////////////////////////////////////////// OpenGLRenderer::OpenGLRenderer(): mCaches(Caches::getInstance()), mExtensions(Extensions::getInstance()) { // *set* draw modifiers to be 0 memset(&mDrawModifiers, 0, sizeof(mDrawModifiers)); mDrawModifiers.mOverrideLayerAlpha = 1.0f; memcpy(mMeshVertices, gMeshVertices, sizeof(gMeshVertices)); mFrameStarted = false; mCountOverdraw = false; mScissorOptimizationDisabled = false; } OpenGLRenderer::~OpenGLRenderer() { // The context has already been destroyed at this point, do not call // GL APIs. All GL state should be kept in Caches.h } void OpenGLRenderer::initProperties() { char property[PROPERTY_VALUE_MAX]; if (property_get(PROPERTY_DISABLE_SCISSOR_OPTIMIZATION, property, "false")) { mScissorOptimizationDisabled = !strcasecmp(property, "true"); INIT_LOGD(" Scissor optimization %s", mScissorOptimizationDisabled ? "disabled" : "enabled"); } else { INIT_LOGD(" Scissor optimization enabled"); } } /////////////////////////////////////////////////////////////////////////////// // Setup /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::onViewportInitialized() { glDisable(GL_DITHER); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glEnableVertexAttribArray(Program::kBindingPosition); } void OpenGLRenderer::setupFrameState(float left, float top, float right, float bottom, bool opaque) { mCaches.clearGarbage(); initializeSaveStack(left, top, right, bottom); mOpaque = opaque; mTilingClip.set(left, top, right, bottom); } status_t OpenGLRenderer::startFrame() { if (mFrameStarted) return DrawGlInfo::kStatusDone; mFrameStarted = true; mDirtyClip = true; discardFramebuffer(mTilingClip.left, mTilingClip.top, mTilingClip.right, mTilingClip.bottom); glViewport(0, 0, getWidth(), getHeight()); // Functors break the tiling extension in pretty spectacular ways // This ensures we don't use tiling when a functor is going to be // invoked during the frame mSuppressTiling = mCaches.hasRegisteredFunctors(); startTilingCurrentClip(true); debugOverdraw(true, true); return clear(mTilingClip.left, mTilingClip.top, mTilingClip.right, mTilingClip.bottom, mOpaque); } status_t OpenGLRenderer::prepareDirty(float left, float top, float right, float bottom, bool opaque) { setupFrameState(left, top, right, bottom, opaque); // Layer renderers will start the frame immediately // The framebuffer renderer will first defer the display list // for each layer and wait until the first drawing command // to start the frame if (currentSnapshot()->fbo == 0) { syncState(); updateLayers(); } else { return startFrame(); } return DrawGlInfo::kStatusDone; } void OpenGLRenderer::discardFramebuffer(float left, float top, float right, float bottom) { // If we know that we are going to redraw the entire framebuffer, // perform a discard to let the driver know we don't need to preserve // the back buffer for this frame. if (mExtensions.hasDiscardFramebuffer() && left <= 0.0f && top <= 0.0f && right >= getWidth() && bottom >= getHeight()) { const bool isFbo = getTargetFbo() == 0; const GLenum attachments[] = { isFbo ? (const GLenum) GL_COLOR_EXT : (const GLenum) GL_COLOR_ATTACHMENT0, isFbo ? (const GLenum) GL_STENCIL_EXT : (const GLenum) GL_STENCIL_ATTACHMENT }; glDiscardFramebufferEXT(GL_FRAMEBUFFER, 1, attachments); } } status_t OpenGLRenderer::clear(float left, float top, float right, float bottom, bool opaque) { if (!opaque || mCountOverdraw) { mCaches.enableScissor(); mCaches.setScissor(left, getViewportHeight() - bottom, right - left, bottom - top); glClear(GL_COLOR_BUFFER_BIT); return DrawGlInfo::kStatusDrew; } mCaches.resetScissor(); return DrawGlInfo::kStatusDone; } void OpenGLRenderer::syncState() { if (mCaches.blend) { glEnable(GL_BLEND); } else { glDisable(GL_BLEND); } } void OpenGLRenderer::startTilingCurrentClip(bool opaque) { if (!mSuppressTiling) { const Snapshot* snapshot = currentSnapshot(); const Rect* clip = &mTilingClip; if (snapshot->flags & Snapshot::kFlagFboTarget) { clip = &(snapshot->layer->clipRect); } startTiling(*clip, getViewportHeight(), opaque); } } void OpenGLRenderer::startTiling(const Rect& clip, int windowHeight, bool opaque) { if (!mSuppressTiling) { mCaches.startTiling(clip.left, windowHeight - clip.bottom, clip.right - clip.left, clip.bottom - clip.top, opaque); } } void OpenGLRenderer::endTiling() { if (!mSuppressTiling) mCaches.endTiling(); } void OpenGLRenderer::finish() { renderOverdraw(); endTiling(); // When finish() is invoked on FBO 0 we've reached the end // of the current frame if (getTargetFbo() == 0) { mCaches.pathCache.trim(); } if (!suppressErrorChecks()) { #if DEBUG_OPENGL GLUtils::dumpGLErrors(); #endif #if DEBUG_MEMORY_USAGE mCaches.dumpMemoryUsage(); #else if (mCaches.getDebugLevel() & kDebugMemory) { mCaches.dumpMemoryUsage(); } #endif } if (mCountOverdraw) { countOverdraw(); } mFrameStarted = false; } void OpenGLRenderer::interrupt() { if (mCaches.currentProgram) { if (mCaches.currentProgram->isInUse()) { mCaches.currentProgram->remove(); mCaches.currentProgram = NULL; } } mCaches.resetActiveTexture(); mCaches.unbindMeshBuffer(); mCaches.unbindIndicesBuffer(); mCaches.resetVertexPointers(); mCaches.disableTexCoordsVertexArray(); debugOverdraw(false, false); } void OpenGLRenderer::resume() { const Snapshot* snapshot = currentSnapshot(); glViewport(0, 0, getViewportWidth(), getViewportHeight()); glBindFramebuffer(GL_FRAMEBUFFER, snapshot->fbo); debugOverdraw(true, false); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); mCaches.scissorEnabled = glIsEnabled(GL_SCISSOR_TEST); mCaches.enableScissor(); mCaches.resetScissor(); dirtyClip(); mCaches.activeTexture(0); mCaches.resetBoundTextures(); mCaches.blend = true; glEnable(GL_BLEND); glBlendFunc(mCaches.lastSrcMode, mCaches.lastDstMode); glBlendEquation(GL_FUNC_ADD); } void OpenGLRenderer::resumeAfterLayer() { glViewport(0, 0, getViewportWidth(), getViewportHeight()); glBindFramebuffer(GL_FRAMEBUFFER, currentSnapshot()->fbo); debugOverdraw(true, false); mCaches.resetScissor(); dirtyClip(); } status_t OpenGLRenderer::callDrawGLFunction(Functor* functor, Rect& dirty) { if (currentSnapshot()->isIgnored()) return DrawGlInfo::kStatusDone; Rect clip(*currentClipRect()); clip.snapToPixelBoundaries(); // Since we don't know what the functor will draw, let's dirty // the entire clip region if (hasLayer()) { dirtyLayerUnchecked(clip, getRegion()); } DrawGlInfo info; info.clipLeft = clip.left; info.clipTop = clip.top; info.clipRight = clip.right; info.clipBottom = clip.bottom; info.isLayer = hasLayer(); info.width = getViewportWidth(); info.height = getViewportHeight(); currentTransform()->copyTo(&info.transform[0]); bool dirtyClip = mDirtyClip; // setup GL state for functor if (mDirtyClip) { setStencilFromClip(); // can issue draws, so must precede enableScissor()/interrupt() } if (mCaches.enableScissor() || dirtyClip) { setScissorFromClip(); } interrupt(); // call functor immediately after GL state setup (*functor)(DrawGlInfo::kModeDraw, &info); resume(); return DrawGlInfo::kStatusDrew; } /////////////////////////////////////////////////////////////////////////////// // Debug /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::eventMark(const char* name) const { mCaches.eventMark(0, name); } void OpenGLRenderer::startMark(const char* name) const { mCaches.startMark(0, name); } void OpenGLRenderer::endMark() const { mCaches.endMark(); } void OpenGLRenderer::debugOverdraw(bool enable, bool clear) { if (mCaches.debugOverdraw && getTargetFbo() == 0) { if (clear) { mCaches.disableScissor(); mCaches.stencil.clear(); } if (enable) { mCaches.stencil.enableDebugWrite(); } else { mCaches.stencil.disable(); } } } void OpenGLRenderer::renderOverdraw() { if (mCaches.debugOverdraw && getTargetFbo() == 0) { const Rect* clip = &mTilingClip; mCaches.enableScissor(); mCaches.setScissor(clip->left, firstSnapshot()->getViewportHeight() - clip->bottom, clip->right - clip->left, clip->bottom - clip->top); // 1x overdraw mCaches.stencil.enableDebugTest(2); drawColor(mCaches.getOverdrawColor(1), SkXfermode::kSrcOver_Mode); // 2x overdraw mCaches.stencil.enableDebugTest(3); drawColor(mCaches.getOverdrawColor(2), SkXfermode::kSrcOver_Mode); // 3x overdraw mCaches.stencil.enableDebugTest(4); drawColor(mCaches.getOverdrawColor(3), SkXfermode::kSrcOver_Mode); // 4x overdraw and higher mCaches.stencil.enableDebugTest(4, true); drawColor(mCaches.getOverdrawColor(4), SkXfermode::kSrcOver_Mode); mCaches.stencil.disable(); } } void OpenGLRenderer::countOverdraw() { size_t count = getWidth() * getHeight(); uint32_t* buffer = new uint32_t[count]; glReadPixels(0, 0, getWidth(), getHeight(), GL_RGBA, GL_UNSIGNED_BYTE, &buffer[0]); size_t total = 0; for (size_t i = 0; i < count; i++) { total += buffer[i] & 0xff; } mOverdraw = total / float(count); delete[] buffer; } /////////////////////////////////////////////////////////////////////////////// // Layers /////////////////////////////////////////////////////////////////////////////// bool OpenGLRenderer::updateLayer(Layer* layer, bool inFrame) { if (layer->deferredUpdateScheduled && layer->renderer && layer->displayList.get() && layer->displayList->isRenderable()) { ATRACE_CALL(); Rect& dirty = layer->dirtyRect; if (inFrame) { endTiling(); debugOverdraw(false, false); } if (CC_UNLIKELY(inFrame || mCaches.drawDeferDisabled)) { layer->render(); } else { layer->defer(); } if (inFrame) { resumeAfterLayer(); startTilingCurrentClip(); } layer->debugDrawUpdate = mCaches.debugLayersUpdates; layer->hasDrawnSinceUpdate = false; return true; } return false; } void OpenGLRenderer::updateLayers() { // If draw deferring is enabled this method will simply defer // the display list of each individual layer. The layers remain // in the layer updates list which will be cleared by flushLayers(). int count = mLayerUpdates.size(); if (count > 0) { if (CC_UNLIKELY(mCaches.drawDeferDisabled)) { startMark("Layer Updates"); } else { startMark("Defer Layer Updates"); } // Note: it is very important to update the layers in order for (int i = 0; i < count; i++) { Layer* layer = mLayerUpdates.itemAt(i); updateLayer(layer, false); if (CC_UNLIKELY(mCaches.drawDeferDisabled)) { mCaches.resourceCache.decrementRefcount(layer); } } if (CC_UNLIKELY(mCaches.drawDeferDisabled)) { mLayerUpdates.clear(); glBindFramebuffer(GL_FRAMEBUFFER, getTargetFbo()); } endMark(); } } void OpenGLRenderer::flushLayers() { int count = mLayerUpdates.size(); if (count > 0) { startMark("Apply Layer Updates"); char layerName[12]; // Note: it is very important to update the layers in order for (int i = 0; i < count; i++) { sprintf(layerName, "Layer #%d", i); startMark(layerName); ATRACE_BEGIN("flushLayer"); Layer* layer = mLayerUpdates.itemAt(i); layer->flush(); ATRACE_END(); mCaches.resourceCache.decrementRefcount(layer); endMark(); } mLayerUpdates.clear(); glBindFramebuffer(GL_FRAMEBUFFER, getTargetFbo()); endMark(); } } void OpenGLRenderer::pushLayerUpdate(Layer* layer) { if (layer) { // Make sure we don't introduce duplicates. // SortedVector would do this automatically but we need to respect // the insertion order. The linear search is not an issue since // this list is usually very short (typically one item, at most a few) for (int i = mLayerUpdates.size() - 1; i >= 0; i--) { if (mLayerUpdates.itemAt(i) == layer) { return; } } mLayerUpdates.push_back(layer); mCaches.resourceCache.incrementRefcount(layer); } } void OpenGLRenderer::cancelLayerUpdate(Layer* layer) { if (layer) { for (int i = mLayerUpdates.size() - 1; i >= 0; i--) { if (mLayerUpdates.itemAt(i) == layer) { mLayerUpdates.removeAt(i); mCaches.resourceCache.decrementRefcount(layer); break; } } } } void OpenGLRenderer::clearLayerUpdates() { size_t count = mLayerUpdates.size(); if (count > 0) { mCaches.resourceCache.lock(); for (size_t i = 0; i < count; i++) { mCaches.resourceCache.decrementRefcountLocked(mLayerUpdates.itemAt(i)); } mCaches.resourceCache.unlock(); mLayerUpdates.clear(); } } void OpenGLRenderer::flushLayerUpdates() { syncState(); updateLayers(); flushLayers(); // Wait for all the layer updates to be executed AutoFence fence; } /////////////////////////////////////////////////////////////////////////////// // State management /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::onSnapshotRestored(const Snapshot& removed, const Snapshot& restored) { bool restoreViewport = removed.flags & Snapshot::kFlagIsFboLayer; bool restoreClip = removed.flags & Snapshot::kFlagClipSet; bool restoreLayer = removed.flags & Snapshot::kFlagIsLayer; if (restoreViewport) { glViewport(0, 0, getViewportWidth(), getViewportHeight()); } if (restoreClip) { dirtyClip(); } if (restoreLayer) { endMark(); // Savelayer startMark("ComposeLayer"); composeLayer(removed, restored); endMark(); } } /////////////////////////////////////////////////////////////////////////////// // Layers /////////////////////////////////////////////////////////////////////////////// int OpenGLRenderer::saveLayer(float left, float top, float right, float bottom, const SkPaint* paint, int flags, const SkPath* convexMask) { const int count = saveSnapshot(flags); if (!currentSnapshot()->isIgnored()) { createLayer(left, top, right, bottom, paint, flags, convexMask); } return count; } void OpenGLRenderer::calculateLayerBoundsAndClip(Rect& bounds, Rect& clip, bool fboLayer) { const Rect untransformedBounds(bounds); currentTransform()->mapRect(bounds); // Layers only make sense if they are in the framebuffer's bounds if (bounds.intersect(*currentClipRect())) { // We cannot work with sub-pixels in this case bounds.snapToPixelBoundaries(); // When the layer is not an FBO, we may use glCopyTexImage so we // need to make sure the layer does not extend outside the bounds // of the framebuffer const Snapshot& previous = *(currentSnapshot()->previous); Rect previousViewport(0, 0, previous.getViewportWidth(), previous.getViewportHeight()); if (!bounds.intersect(previousViewport)) { bounds.setEmpty(); } else if (fboLayer) { clip.set(bounds); mat4 inverse; inverse.loadInverse(*currentTransform()); inverse.mapRect(clip); clip.snapToPixelBoundaries(); if (clip.intersect(untransformedBounds)) { clip.translate(-untransformedBounds.left, -untransformedBounds.top); bounds.set(untransformedBounds); } else { clip.setEmpty(); } } } else { bounds.setEmpty(); } } void OpenGLRenderer::updateSnapshotIgnoreForLayer(const Rect& bounds, const Rect& clip, bool fboLayer, int alpha) { if (bounds.isEmpty() || bounds.getWidth() > mCaches.maxTextureSize || bounds.getHeight() > mCaches.maxTextureSize || (fboLayer && clip.isEmpty())) { mSnapshot->empty = fboLayer; } else { mSnapshot->invisible = mSnapshot->invisible || (alpha <= ALPHA_THRESHOLD && fboLayer); } } int OpenGLRenderer::saveLayerDeferred(float left, float top, float right, float bottom, const SkPaint* paint, int flags) { const int count = saveSnapshot(flags); if (!currentSnapshot()->isIgnored() && (flags & SkCanvas::kClipToLayer_SaveFlag)) { // initialize the snapshot as though it almost represents an FBO layer so deferred draw // operations will be able to store and restore the current clip and transform info, and // quick rejection will be correct (for display lists) Rect bounds(left, top, right, bottom); Rect clip; calculateLayerBoundsAndClip(bounds, clip, true); updateSnapshotIgnoreForLayer(bounds, clip, true, getAlphaDirect(paint)); if (!currentSnapshot()->isIgnored()) { mSnapshot->resetTransform(-bounds.left, -bounds.top, 0.0f); mSnapshot->resetClip(clip.left, clip.top, clip.right, clip.bottom); mSnapshot->initializeViewport(bounds.getWidth(), bounds.getHeight()); mSnapshot->roundRectClipState = NULL; } } return count; } /** * Layers are viewed by Skia are slightly different than layers in image editing * programs (for instance.) When a layer is created, previously created layers * and the frame buffer still receive every drawing command. For instance, if a * layer is created and a shape intersecting the bounds of the layers and the * framebuffer is draw, the shape will be drawn on both (unless the layer was * created with the SkCanvas::kClipToLayer_SaveFlag flag.) * * A way to implement layers is to create an FBO for each layer, backed by an RGBA * texture. Unfortunately, this is inefficient as it requires every primitive to * be drawn n + 1 times, where n is the number of active layers. In practice this * means, for every primitive: * - Switch active frame buffer * - Change viewport, clip and projection matrix * - Issue the drawing * * Switching rendering target n + 1 times per drawn primitive is extremely costly. * To avoid this, layers are implemented in a different way here, at least in the * general case. FBOs are used, as an optimization, when the "clip to layer" flag * is set. When this flag is set we can redirect all drawing operations into a * single FBO. * * This implementation relies on the frame buffer being at least RGBA 8888. When * a layer is created, only a texture is created, not an FBO. The content of the * frame buffer contained within the layer's bounds is copied into this texture * using glCopyTexImage2D(). The layer's region is then cleared(1) in the frame * buffer and drawing continues as normal. This technique therefore treats the * frame buffer as a scratch buffer for the layers. * * To compose the layers back onto the frame buffer, each layer texture * (containing the original frame buffer data) is drawn as a simple quad over * the frame buffer. The trick is that the quad is set as the composition * destination in the blending equation, and the frame buffer becomes the source * of the composition. * * Drawing layers with an alpha value requires an extra step before composition. * An empty quad is drawn over the layer's region in the frame buffer. This quad * is drawn with the rgba color (0,0,0,alpha). The alpha value offered by the * quad is used to multiply the colors in the frame buffer. This is achieved by * changing the GL blend functions for the GL_FUNC_ADD blend equation to * GL_ZERO, GL_SRC_ALPHA. * * Because glCopyTexImage2D() can be slow, an alternative implementation might * be use to draw a single clipped layer. The implementation described above * is correct in every case. * * (1) The frame buffer is actually not cleared right away. To allow the GPU * to potentially optimize series of calls to glCopyTexImage2D, the frame * buffer is left untouched until the first drawing operation. Only when * something actually gets drawn are the layers regions cleared. */ bool OpenGLRenderer::createLayer(float left, float top, float right, float bottom, const SkPaint* paint, int flags, const SkPath* convexMask) { LAYER_LOGD("Requesting layer %.2fx%.2f", right - left, bottom - top); LAYER_LOGD("Layer cache size = %d", mCaches.layerCache.getSize()); const bool fboLayer = flags & SkCanvas::kClipToLayer_SaveFlag; // Window coordinates of the layer Rect clip; Rect bounds(left, top, right, bottom); calculateLayerBoundsAndClip(bounds, clip, fboLayer); updateSnapshotIgnoreForLayer(bounds, clip, fboLayer, getAlphaDirect(paint)); // Bail out if we won't draw in this snapshot if (currentSnapshot()->isIgnored()) { return false; } mCaches.activeTexture(0); Layer* layer = mCaches.layerCache.get(bounds.getWidth(), bounds.getHeight()); if (!layer) { return false; } layer->setPaint(paint); layer->layer.set(bounds); layer->texCoords.set(0.0f, bounds.getHeight() / float(layer->getHeight()), bounds.getWidth() / float(layer->getWidth()), 0.0f); layer->setBlend(true); layer->setDirty(false); layer->setConvexMask(convexMask); // note: the mask must be cleared before returning to the cache // Save the layer in the snapshot mSnapshot->flags |= Snapshot::kFlagIsLayer; mSnapshot->layer = layer; startMark("SaveLayer"); if (fboLayer) { return createFboLayer(layer, bounds, clip); } else { // Copy the framebuffer into the layer layer->bindTexture(); if (!bounds.isEmpty()) { if (layer->isEmpty()) { // Workaround for some GL drivers. When reading pixels lying outside // of the window we should get undefined values for those pixels. // Unfortunately some drivers will turn the entire target texture black // when reading outside of the window. glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, layer->getWidth(), layer->getHeight(), 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); layer->setEmpty(false); } glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, bounds.left, getViewportHeight() - bounds.bottom, bounds.getWidth(), bounds.getHeight()); // Enqueue the buffer coordinates to clear the corresponding region later mLayers.push(new Rect(bounds)); } } return true; } bool OpenGLRenderer::createFboLayer(Layer* layer, Rect& bounds, Rect& clip) { layer->clipRect.set(clip); layer->setFbo(mCaches.fboCache.get()); mSnapshot->region = &mSnapshot->layer->region; mSnapshot->flags |= Snapshot::kFlagFboTarget | Snapshot::kFlagIsFboLayer; mSnapshot->fbo = layer->getFbo(); mSnapshot->resetTransform(-bounds.left, -bounds.top, 0.0f); mSnapshot->resetClip(clip.left, clip.top, clip.right, clip.bottom); mSnapshot->initializeViewport(bounds.getWidth(), bounds.getHeight()); mSnapshot->roundRectClipState = NULL; endTiling(); debugOverdraw(false, false); // Bind texture to FBO glBindFramebuffer(GL_FRAMEBUFFER, layer->getFbo()); layer->bindTexture(); // Initialize the texture if needed if (layer->isEmpty()) { layer->allocateTexture(); layer->setEmpty(false); } glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, layer->getTexture(), 0); startTilingCurrentClip(true); // Clear the FBO, expand the clear region by 1 to get nice bilinear filtering mCaches.enableScissor(); mCaches.setScissor(clip.left - 1.0f, bounds.getHeight() - clip.bottom - 1.0f, clip.getWidth() + 2.0f, clip.getHeight() + 2.0f); glClear(GL_COLOR_BUFFER_BIT); dirtyClip(); // Change the ortho projection glViewport(0, 0, bounds.getWidth(), bounds.getHeight()); return true; } /** * Read the documentation of createLayer() before doing anything in this method. */ void OpenGLRenderer::composeLayer(const Snapshot& removed, const Snapshot& restored) { if (!removed.layer) { ALOGE("Attempting to compose a layer that does not exist"); return; } Layer* layer = removed.layer; const Rect& rect = layer->layer; const bool fboLayer = removed.flags & Snapshot::kFlagIsFboLayer; bool clipRequired = false; calculateQuickRejectForScissor(rect.left, rect.top, rect.right, rect.bottom, &clipRequired, NULL, false); // safely ignore return, should never be rejected mCaches.setScissorEnabled(mScissorOptimizationDisabled || clipRequired); if (fboLayer) { endTiling(); // Detach the texture from the FBO glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0); layer->removeFbo(false); // Unbind current FBO and restore previous one glBindFramebuffer(GL_FRAMEBUFFER, restored.fbo); debugOverdraw(true, false); startTilingCurrentClip(); } if (!fboLayer && layer->getAlpha() < 255) { SkPaint layerPaint; layerPaint.setAlpha(layer->getAlpha()); layerPaint.setXfermodeMode(SkXfermode::kDstIn_Mode); layerPaint.setColorFilter(layer->getColorFilter()); drawColorRect(rect.left, rect.top, rect.right, rect.bottom, &layerPaint, true); // Required below, composeLayerRect() will divide by 255 layer->setAlpha(255); } mCaches.unbindMeshBuffer(); mCaches.activeTexture(0); // When the layer is stored in an FBO, we can save a bit of fillrate by // drawing only the dirty region if (fboLayer) { dirtyLayer(rect.left, rect.top, rect.right, rect.bottom, *restored.transform); composeLayerRegion(layer, rect); } else if (!rect.isEmpty()) { dirtyLayer(rect.left, rect.top, rect.right, rect.bottom); save(0); // the layer contains screen buffer content that shouldn't be alpha modulated // (and any necessary alpha modulation was handled drawing into the layer) mSnapshot->alpha = 1.0f; composeLayerRect(layer, rect, true); restore(); } dirtyClip(); // Failing to add the layer to the cache should happen only if the layer is too large layer->setConvexMask(NULL); if (!mCaches.layerCache.put(layer)) { LAYER_LOGD("Deleting layer"); Caches::getInstance().resourceCache.decrementRefcount(layer); } } void OpenGLRenderer::drawTextureLayer(Layer* layer, const Rect& rect) { float alpha = getLayerAlpha(layer); setupDraw(); if (layer->getRenderTarget() == GL_TEXTURE_2D) { setupDrawWithTexture(); } else { setupDrawWithExternalTexture(); } setupDrawTextureTransform(); setupDrawColor(alpha, alpha, alpha, alpha); setupDrawColorFilter(layer->getColorFilter()); setupDrawBlending(layer); setupDrawProgram(); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(layer->getColorFilter()); if (layer->getRenderTarget() == GL_TEXTURE_2D) { setupDrawTexture(layer->getTexture()); } else { setupDrawExternalTexture(layer->getTexture()); } if (currentTransform()->isPureTranslate() && !layer->getForceFilter() && layer->getWidth() == (uint32_t) rect.getWidth() && layer->getHeight() == (uint32_t) rect.getHeight()) { const float x = (int) floorf(rect.left + currentTransform()->getTranslateX() + 0.5f); const float y = (int) floorf(rect.top + currentTransform()->getTranslateY() + 0.5f); layer->setFilter(GL_NEAREST); setupDrawModelView(kModelViewMode_TranslateAndScale, false, x, y, x + rect.getWidth(), y + rect.getHeight(), true); } else { layer->setFilter(GL_LINEAR); setupDrawModelView(kModelViewMode_TranslateAndScale, false, rect.left, rect.top, rect.right, rect.bottom); } setupDrawTextureTransformUniforms(layer->getTexTransform()); setupDrawMesh(&mMeshVertices[0].x, &mMeshVertices[0].u); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); } void OpenGLRenderer::composeLayerRect(Layer* layer, const Rect& rect, bool swap) { if (!layer->isTextureLayer()) { const Rect& texCoords = layer->texCoords; resetDrawTextureTexCoords(texCoords.left, texCoords.top, texCoords.right, texCoords.bottom); float x = rect.left; float y = rect.top; bool simpleTransform = currentTransform()->isPureTranslate() && layer->getWidth() == (uint32_t) rect.getWidth() && layer->getHeight() == (uint32_t) rect.getHeight(); if (simpleTransform) { // When we're swapping, the layer is already in screen coordinates if (!swap) { x = (int) floorf(rect.left + currentTransform()->getTranslateX() + 0.5f); y = (int) floorf(rect.top + currentTransform()->getTranslateY() + 0.5f); } layer->setFilter(GL_NEAREST, true); } else { layer->setFilter(GL_LINEAR, true); } SkPaint layerPaint; layerPaint.setAlpha(getLayerAlpha(layer) * 255); layerPaint.setXfermodeMode(layer->getMode()); layerPaint.setColorFilter(layer->getColorFilter()); bool blend = layer->isBlend() || getLayerAlpha(layer) < 1.0f; drawTextureMesh(x, y, x + rect.getWidth(), y + rect.getHeight(), layer->getTexture(), &layerPaint, blend, &mMeshVertices[0].x, &mMeshVertices[0].u, GL_TRIANGLE_STRIP, gMeshCount, swap, swap || simpleTransform); resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); } else { resetDrawTextureTexCoords(0.0f, 1.0f, 1.0f, 0.0f); drawTextureLayer(layer, rect); resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); } } /** * Issues the command X, and if we're composing a save layer to the fbo or drawing a newly updated * hardware layer with overdraw debug on, draws again to the stencil only, so that these draw * operations are correctly counted twice for overdraw. NOTE: assumes composeLayerRegion only used * by saveLayer's restore */ #define DRAW_DOUBLE_STENCIL_IF(COND, DRAW_COMMAND) { \ DRAW_COMMAND; \ if (CC_UNLIKELY(mCaches.debugOverdraw && getTargetFbo() == 0 && COND)) { \ glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE); \ DRAW_COMMAND; \ glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); \ } \ } #define DRAW_DOUBLE_STENCIL(DRAW_COMMAND) DRAW_DOUBLE_STENCIL_IF(true, DRAW_COMMAND) // This class is purely for inspection. It inherits from SkShader, but Skia does not know how to // use it. The OpenGLRenderer will look at it to find its Layer and whether it is opaque. class LayerShader : public SkShader { public: LayerShader(Layer* layer, const SkMatrix* localMatrix) : INHERITED(localMatrix) , mLayer(layer) { } virtual bool asACustomShader(void** data) const { if (data) { *data = static_cast(mLayer); } return true; } virtual bool isOpaque() const { return !mLayer->isBlend(); } protected: virtual void shadeSpan(int x, int y, SkPMColor[], int count) { LOG_ALWAYS_FATAL("LayerShader should never be drawn with raster backend."); } virtual void flatten(SkWriteBuffer&) const { LOG_ALWAYS_FATAL("LayerShader should never be flattened."); } virtual Factory getFactory() const { LOG_ALWAYS_FATAL("LayerShader should never be created from a stream."); return NULL; } private: // Unowned. Layer* mLayer; typedef SkShader INHERITED; }; void OpenGLRenderer::composeLayerRegion(Layer* layer, const Rect& rect) { if (CC_UNLIKELY(layer->region.isEmpty())) return; // nothing to draw if (layer->getConvexMask()) { save(SkCanvas::kClip_SaveFlag | SkCanvas::kMatrix_SaveFlag); // clip to the area of the layer the mask can be larger clipRect(rect.left, rect.top, rect.right, rect.bottom, SkRegion::kIntersect_Op); SkPaint paint; paint.setAntiAlias(true); paint.setColor(SkColorSetARGB(int(getLayerAlpha(layer) * 255), 0, 0, 0)); // create LayerShader to map SaveLayer content into subsequent draw SkMatrix shaderMatrix; shaderMatrix.setTranslate(rect.left, rect.bottom); shaderMatrix.preScale(1, -1); LayerShader layerShader(layer, &shaderMatrix); paint.setShader(&layerShader); // Since the drawing primitive is defined in local drawing space, // we don't need to modify the draw matrix const SkPath* maskPath = layer->getConvexMask(); DRAW_DOUBLE_STENCIL(drawConvexPath(*maskPath, &paint)); paint.setShader(NULL); restore(); return; } if (layer->region.isRect()) { layer->setRegionAsRect(); DRAW_DOUBLE_STENCIL(composeLayerRect(layer, layer->regionRect)); layer->region.clear(); return; } // standard Region based draw size_t count; const android::Rect* rects; Region safeRegion; if (CC_LIKELY(hasRectToRectTransform())) { rects = layer->region.getArray(&count); } else { safeRegion = Region::createTJunctionFreeRegion(layer->region); rects = safeRegion.getArray(&count); } const float alpha = getLayerAlpha(layer); const float texX = 1.0f / float(layer->getWidth()); const float texY = 1.0f / float(layer->getHeight()); const float height = rect.getHeight(); setupDraw(); // We must get (and therefore bind) the region mesh buffer // after we setup drawing in case we need to mess with the // stencil buffer in setupDraw() TextureVertex* mesh = mCaches.getRegionMesh(); uint32_t numQuads = 0; setupDrawWithTexture(); setupDrawColor(alpha, alpha, alpha, alpha); setupDrawColorFilter(layer->getColorFilter()); setupDrawBlending(layer); setupDrawProgram(); setupDrawDirtyRegionsDisabled(); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(layer->getColorFilter()); setupDrawTexture(layer->getTexture()); if (currentTransform()->isPureTranslate()) { const float x = (int) floorf(rect.left + currentTransform()->getTranslateX() + 0.5f); const float y = (int) floorf(rect.top + currentTransform()->getTranslateY() + 0.5f); layer->setFilter(GL_NEAREST); setupDrawModelView(kModelViewMode_Translate, false, x, y, x + rect.getWidth(), y + rect.getHeight(), true); } else { layer->setFilter(GL_LINEAR); setupDrawModelView(kModelViewMode_Translate, false, rect.left, rect.top, rect.right, rect.bottom); } setupDrawMeshIndices(&mesh[0].x, &mesh[0].u); for (size_t i = 0; i < count; i++) { const android::Rect* r = &rects[i]; const float u1 = r->left * texX; const float v1 = (height - r->top) * texY; const float u2 = r->right * texX; const float v2 = (height - r->bottom) * texY; // TODO: Reject quads outside of the clip TextureVertex::set(mesh++, r->left, r->top, u1, v1); TextureVertex::set(mesh++, r->right, r->top, u2, v1); TextureVertex::set(mesh++, r->left, r->bottom, u1, v2); TextureVertex::set(mesh++, r->right, r->bottom, u2, v2); numQuads++; if (numQuads >= gMaxNumberOfQuads) { DRAW_DOUBLE_STENCIL(glDrawElements(GL_TRIANGLES, numQuads * 6, GL_UNSIGNED_SHORT, NULL)); numQuads = 0; mesh = mCaches.getRegionMesh(); } } if (numQuads > 0) { DRAW_DOUBLE_STENCIL(glDrawElements(GL_TRIANGLES, numQuads * 6, GL_UNSIGNED_SHORT, NULL)); } #if DEBUG_LAYERS_AS_REGIONS drawRegionRectsDebug(layer->region); #endif layer->region.clear(); } #if DEBUG_LAYERS_AS_REGIONS void OpenGLRenderer::drawRegionRectsDebug(const Region& region) { size_t count; const android::Rect* rects = region.getArray(&count); uint32_t colors[] = { 0x7fff0000, 0x7f00ff00, 0x7f0000ff, 0x7fff00ff, }; int offset = 0; int32_t top = rects[0].top; for (size_t i = 0; i < count; i++) { if (top != rects[i].top) { offset ^= 0x2; top = rects[i].top; } SkPaint paint; paint.setColor(colors[offset + (i & 0x1)]); Rect r(rects[i].left, rects[i].top, rects[i].right, rects[i].bottom); drawColorRect(r.left, r.top, r.right, r.bottom, paint); } } #endif void OpenGLRenderer::drawRegionRects(const SkRegion& region, const SkPaint& paint, bool dirty) { Vector rects; SkRegion::Iterator it(region); while (!it.done()) { const SkIRect& r = it.rect(); rects.push(r.fLeft); rects.push(r.fTop); rects.push(r.fRight); rects.push(r.fBottom); it.next(); } drawColorRects(rects.array(), rects.size(), &paint, true, dirty, false); } void OpenGLRenderer::dirtyLayer(const float left, const float top, const float right, const float bottom, const mat4 transform) { if (hasLayer()) { Rect bounds(left, top, right, bottom); transform.mapRect(bounds); dirtyLayerUnchecked(bounds, getRegion()); } } void OpenGLRenderer::dirtyLayer(const float left, const float top, const float right, const float bottom) { if (hasLayer()) { Rect bounds(left, top, right, bottom); dirtyLayerUnchecked(bounds, getRegion()); } } void OpenGLRenderer::dirtyLayerUnchecked(Rect& bounds, Region* region) { if (bounds.intersect(*currentClipRect())) { bounds.snapToPixelBoundaries(); android::Rect dirty(bounds.left, bounds.top, bounds.right, bounds.bottom); if (!dirty.isEmpty()) { region->orSelf(dirty); } } } void OpenGLRenderer::issueIndexedQuadDraw(Vertex* mesh, GLsizei quadsCount) { GLsizei elementsCount = quadsCount * 6; while (elementsCount > 0) { GLsizei drawCount = min(elementsCount, (GLsizei) gMaxNumberOfQuads * 6); setupDrawIndexedVertices(&mesh[0].x); glDrawElements(GL_TRIANGLES, drawCount, GL_UNSIGNED_SHORT, NULL); elementsCount -= drawCount; // Though there are 4 vertices in a quad, we use 6 indices per // quad to draw with GL_TRIANGLES mesh += (drawCount / 6) * 4; } } void OpenGLRenderer::clearLayerRegions() { const size_t count = mLayers.size(); if (count == 0) return; if (!currentSnapshot()->isIgnored()) { // Doing several glScissor/glClear here can negatively impact // GPUs with a tiler architecture, instead we draw quads with // the Clear blending mode // The list contains bounds that have already been clipped // against their initial clip rect, and the current clip // is likely different so we need to disable clipping here bool scissorChanged = mCaches.disableScissor(); Vertex mesh[count * 4]; Vertex* vertex = mesh; for (uint32_t i = 0; i < count; i++) { Rect* bounds = mLayers.itemAt(i); Vertex::set(vertex++, bounds->left, bounds->top); Vertex::set(vertex++, bounds->right, bounds->top); Vertex::set(vertex++, bounds->left, bounds->bottom); Vertex::set(vertex++, bounds->right, bounds->bottom); delete bounds; } // We must clear the list of dirty rects before we // call setupDraw() to prevent stencil setup to do // the same thing again mLayers.clear(); SkPaint clearPaint; clearPaint.setXfermodeMode(SkXfermode::kClear_Mode); setupDraw(false); setupDrawColor(0.0f, 0.0f, 0.0f, 1.0f); setupDrawBlending(&clearPaint, true); setupDrawProgram(); setupDrawPureColorUniforms(); setupDrawModelView(kModelViewMode_Translate, false, 0.0f, 0.0f, 0.0f, 0.0f, true); issueIndexedQuadDraw(&mesh[0], count); if (scissorChanged) mCaches.enableScissor(); } else { for (uint32_t i = 0; i < count; i++) { delete mLayers.itemAt(i); } mLayers.clear(); } } /////////////////////////////////////////////////////////////////////////////// // State Deferral /////////////////////////////////////////////////////////////////////////////// bool OpenGLRenderer::storeDisplayState(DeferredDisplayState& state, int stateDeferFlags) { const Rect* currentClip = currentClipRect(); const mat4* currentMatrix = currentTransform(); if (stateDeferFlags & kStateDeferFlag_Draw) { // state has bounds initialized in local coordinates if (!state.mBounds.isEmpty()) { currentMatrix->mapRect(state.mBounds); Rect clippedBounds(state.mBounds); // NOTE: if we ever want to use this clipping info to drive whether the scissor // is used, it should more closely duplicate the quickReject logic (in how it uses // snapToPixelBoundaries) if(!clippedBounds.intersect(*currentClip)) { // quick rejected return true; } state.mClipSideFlags = kClipSide_None; if (!currentClip->contains(state.mBounds)) { int& flags = state.mClipSideFlags; // op partially clipped, so record which sides are clipped for clip-aware merging if (currentClip->left > state.mBounds.left) flags |= kClipSide_Left; if (currentClip->top > state.mBounds.top) flags |= kClipSide_Top; if (currentClip->right < state.mBounds.right) flags |= kClipSide_Right; if (currentClip->bottom < state.mBounds.bottom) flags |= kClipSide_Bottom; } state.mBounds.set(clippedBounds); } else { // Empty bounds implies size unknown. Label op as conservatively clipped to disable // overdraw avoidance (since we don't know what it overlaps) state.mClipSideFlags = kClipSide_ConservativeFull; state.mBounds.set(*currentClip); } } state.mClipValid = (stateDeferFlags & kStateDeferFlag_Clip); if (state.mClipValid) { state.mClip.set(*currentClip); } // Transform, drawModifiers, and alpha always deferred, since they are used by state operations // (Note: saveLayer/restore use colorFilter and alpha, so we just save restore everything) state.mMatrix.load(*currentMatrix); state.mDrawModifiers = mDrawModifiers; state.mAlpha = currentSnapshot()->alpha; // always store/restore, since it's just a pointer state.mRoundRectClipState = currentSnapshot()->roundRectClipState; return false; } void OpenGLRenderer::restoreDisplayState(const DeferredDisplayState& state, bool skipClipRestore) { setMatrix(state.mMatrix); mSnapshot->alpha = state.mAlpha; mDrawModifiers = state.mDrawModifiers; mSnapshot->roundRectClipState = state.mRoundRectClipState; if (state.mClipValid && !skipClipRestore) { mSnapshot->setClip(state.mClip.left, state.mClip.top, state.mClip.right, state.mClip.bottom); dirtyClip(); } } /** * Merged multidraw (such as in drawText and drawBitmaps rely on the fact that no clipping is done * in the draw path. Instead, clipping is done ahead of time - either as a single clip rect (when at * least one op is clipped), or disabled entirely (because no merged op is clipped) * * This method should be called when restoreDisplayState() won't be restoring the clip */ void OpenGLRenderer::setupMergedMultiDraw(const Rect* clipRect) { if (clipRect != NULL) { mSnapshot->setClip(clipRect->left, clipRect->top, clipRect->right, clipRect->bottom); } else { mSnapshot->setClip(0, 0, getWidth(), getHeight()); } dirtyClip(); mCaches.setScissorEnabled(clipRect != NULL || mScissorOptimizationDisabled); } /////////////////////////////////////////////////////////////////////////////// // Clipping /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setScissorFromClip() { Rect clip(*currentClipRect()); clip.snapToPixelBoundaries(); if (mCaches.setScissor(clip.left, getViewportHeight() - clip.bottom, clip.getWidth(), clip.getHeight())) { mDirtyClip = false; } } void OpenGLRenderer::ensureStencilBuffer() { // Thanks to the mismatch between EGL and OpenGL ES FBO we // cannot attach a stencil buffer to fbo0 dynamically. Let's // just hope we have one when hasLayer() returns false. if (hasLayer()) { attachStencilBufferToLayer(currentSnapshot()->layer); } } void OpenGLRenderer::attachStencilBufferToLayer(Layer* layer) { // The layer's FBO is already bound when we reach this stage if (!layer->getStencilRenderBuffer()) { // GL_QCOM_tiled_rendering doesn't like it if a renderbuffer // is attached after we initiated tiling. We must turn it off, // attach the new render buffer then turn tiling back on endTiling(); RenderBuffer* buffer = mCaches.renderBufferCache.get( Stencil::getSmallestStencilFormat(), layer->getWidth(), layer->getHeight()); layer->setStencilRenderBuffer(buffer); startTiling(layer->clipRect, layer->layer.getHeight()); } } void OpenGLRenderer::setStencilFromClip() { if (!mCaches.debugOverdraw) { if (!currentSnapshot()->clipRegion->isEmpty()) { // NOTE: The order here is important, we must set dirtyClip to false // before any draw call to avoid calling back into this method mDirtyClip = false; ensureStencilBuffer(); mCaches.stencil.enableWrite(); // Clear and update the stencil, but first make sure we restrict drawing // to the region's bounds bool resetScissor = mCaches.enableScissor(); if (resetScissor) { // The scissor was not set so we now need to update it setScissorFromClip(); } mCaches.stencil.clear(); // stash and disable the outline clip state, since stencil doesn't account for outline bool storedSkipOutlineClip = mSkipOutlineClip; mSkipOutlineClip = true; SkPaint paint; paint.setColor(0xff000000); paint.setXfermodeMode(SkXfermode::kSrc_Mode); // NOTE: We could use the region contour path to generate a smaller mesh // Since we are using the stencil we could use the red book path // drawing technique. It might increase bandwidth usage though. // The last parameter is important: we are not drawing in the color buffer // so we don't want to dirty the current layer, if any drawRegionRects(*(currentSnapshot()->clipRegion), paint, false); if (resetScissor) mCaches.disableScissor(); mSkipOutlineClip = storedSkipOutlineClip; mCaches.stencil.enableTest(); // Draw the region used to generate the stencil if the appropriate debug // mode is enabled if (mCaches.debugStencilClip == Caches::kStencilShowRegion) { paint.setColor(0x7f0000ff); paint.setXfermodeMode(SkXfermode::kSrcOver_Mode); drawRegionRects(*(currentSnapshot()->clipRegion), paint); } } else { mCaches.stencil.disable(); } } } /** * Returns false and sets scissor enable based upon bounds if drawing won't be clipped out. * * @param paint if not null, the bounds will be expanded to account for stroke depending on paint * style, and tessellated AA ramp */ bool OpenGLRenderer::quickRejectSetupScissor(float left, float top, float right, float bottom, const SkPaint* paint) { bool snapOut = paint && paint->isAntiAlias(); if (paint && paint->getStyle() != SkPaint::kFill_Style) { float outset = paint->getStrokeWidth() * 0.5f; left -= outset; top -= outset; right += outset; bottom += outset; } bool clipRequired = false; bool roundRectClipRequired = false; if (calculateQuickRejectForScissor(left, top, right, bottom, &clipRequired, &roundRectClipRequired, snapOut)) { return true; } if (!isRecording()) { // not quick rejected, so enable the scissor if clipRequired mCaches.setScissorEnabled(mScissorOptimizationDisabled || clipRequired); mSkipOutlineClip = !roundRectClipRequired; } return false; } void OpenGLRenderer::debugClip() { #if DEBUG_CLIP_REGIONS if (!isRecording() && !currentSnapshot()->clipRegion->isEmpty()) { SkPaint paint; paint.setColor(0x7f00ff00); drawRegionRects(*(currentSnapshot()->clipRegion, paint); } #endif } /////////////////////////////////////////////////////////////////////////////// // Drawing commands /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setupDraw(bool clear) { // TODO: It would be best if we could do this before quickRejectSetupScissor() // changes the scissor test state if (clear) clearLayerRegions(); // Make sure setScissor & setStencil happen at the beginning of // this method if (mDirtyClip) { if (mCaches.scissorEnabled) { setScissorFromClip(); } setStencilFromClip(); } mDescription.reset(); mSetShaderColor = false; mColorSet = false; mColorA = mColorR = mColorG = mColorB = 0.0f; mTextureUnit = 0; mTrackDirtyRegions = true; // Enable debug highlight when what we're about to draw is tested against // the stencil buffer and if stencil highlight debugging is on mDescription.hasDebugHighlight = !mCaches.debugOverdraw && mCaches.debugStencilClip == Caches::kStencilShowHighlight && mCaches.stencil.isTestEnabled(); mDescription.emulateStencil = mCountOverdraw; } void OpenGLRenderer::setupDrawWithTexture(bool isAlpha8) { mDescription.hasTexture = true; mDescription.hasAlpha8Texture = isAlpha8; } void OpenGLRenderer::setupDrawWithTextureAndColor(bool isAlpha8) { mDescription.hasTexture = true; mDescription.hasColors = true; mDescription.hasAlpha8Texture = isAlpha8; } void OpenGLRenderer::setupDrawWithExternalTexture() { mDescription.hasExternalTexture = true; } void OpenGLRenderer::setupDrawNoTexture() { mCaches.disableTexCoordsVertexArray(); } void OpenGLRenderer::setupDrawAA() { mDescription.isAA = true; } void OpenGLRenderer::setupDrawColor(int color, int alpha) { mColorA = alpha / 255.0f; mColorR = mColorA * ((color >> 16) & 0xFF) / 255.0f; mColorG = mColorA * ((color >> 8) & 0xFF) / 255.0f; mColorB = mColorA * ((color ) & 0xFF) / 255.0f; mColorSet = true; mSetShaderColor = mDescription.setColorModulate(mColorA); } void OpenGLRenderer::setupDrawAlpha8Color(int color, int alpha) { mColorA = alpha / 255.0f; mColorR = mColorA * ((color >> 16) & 0xFF) / 255.0f; mColorG = mColorA * ((color >> 8) & 0xFF) / 255.0f; mColorB = mColorA * ((color ) & 0xFF) / 255.0f; mColorSet = true; mSetShaderColor = mDescription.setAlpha8ColorModulate(mColorR, mColorG, mColorB, mColorA); } void OpenGLRenderer::setupDrawTextGamma(const SkPaint* paint) { mCaches.fontRenderer->describe(mDescription, paint); } void OpenGLRenderer::setupDrawColor(float r, float g, float b, float a) { mColorA = a; mColorR = r; mColorG = g; mColorB = b; mColorSet = true; mSetShaderColor = mDescription.setColorModulate(a); } void OpenGLRenderer::setupDrawShader(const SkShader* shader) { if (shader != NULL) { SkiaShader::describe(&mCaches, mDescription, mExtensions, *shader); } } void OpenGLRenderer::setupDrawColorFilter(const SkColorFilter* filter) { if (filter == NULL) { return; } SkXfermode::Mode mode; if (filter->asColorMode(NULL, &mode)) { mDescription.colorOp = ProgramDescription::kColorBlend; mDescription.colorMode = mode; } else if (filter->asColorMatrix(NULL)) { mDescription.colorOp = ProgramDescription::kColorMatrix; } } void OpenGLRenderer::accountForClear(SkXfermode::Mode mode) { if (mColorSet && mode == SkXfermode::kClear_Mode) { mColorA = 1.0f; mColorR = mColorG = mColorB = 0.0f; mSetShaderColor = mDescription.modulate = true; } } static bool isBlendedColorFilter(const SkColorFilter* filter) { if (filter == NULL) { return false; } return (filter->getFlags() & SkColorFilter::kAlphaUnchanged_Flag) == 0; } void OpenGLRenderer::setupDrawBlending(const Layer* layer, bool swapSrcDst) { SkXfermode::Mode mode = layer->getMode(); // When the blending mode is kClear_Mode, we need to use a modulate color // argb=1,0,0,0 accountForClear(mode); // TODO: check shader blending, once we have shader drawing support for layers. bool blend = layer->isBlend() || getLayerAlpha(layer) < 1.0f || (mColorSet && mColorA < 1.0f) || isBlendedColorFilter(layer->getColorFilter()); chooseBlending(blend, mode, mDescription, swapSrcDst); } void OpenGLRenderer::setupDrawBlending(const SkPaint* paint, bool blend, bool swapSrcDst) { SkXfermode::Mode mode = getXfermodeDirect(paint); // When the blending mode is kClear_Mode, we need to use a modulate color // argb=1,0,0,0 accountForClear(mode); blend |= (mColorSet && mColorA < 1.0f) || (getShader(paint) && !getShader(paint)->isOpaque()) || isBlendedColorFilter(getColorFilter(paint)); chooseBlending(blend, mode, mDescription, swapSrcDst); } void OpenGLRenderer::setupDrawProgram() { useProgram(mCaches.programCache.get(mDescription)); if (mDescription.hasRoundRectClip) { // TODO: avoid doing this repeatedly, stashing state pointer in program const RoundRectClipState* state = mSnapshot->roundRectClipState; const Rect& innerRect = state->outlineInnerRect; glUniform4f(mCaches.currentProgram->getUniform("roundRectInnerRectLTRB"), innerRect.left, innerRect.top, innerRect.right, innerRect.bottom); glUniform1f(mCaches.currentProgram->getUniform("roundRectRadius"), state->outlineRadius); glUniformMatrix4fv(mCaches.currentProgram->getUniform("roundRectInvTransform"), 1, GL_FALSE, &state->matrix.data[0]); } } void OpenGLRenderer::setupDrawDirtyRegionsDisabled() { mTrackDirtyRegions = false; } void OpenGLRenderer::setupDrawModelView(ModelViewMode mode, bool offset, float left, float top, float right, float bottom, bool ignoreTransform) { mModelViewMatrix.loadTranslate(left, top, 0.0f); if (mode == kModelViewMode_TranslateAndScale) { mModelViewMatrix.scale(right - left, bottom - top, 1.0f); } bool dirty = right - left > 0.0f && bottom - top > 0.0f; const Matrix4& transformMatrix = ignoreTransform ? Matrix4::identity() : *currentTransform(); mCaches.currentProgram->set(mSnapshot->getOrthoMatrix(), mModelViewMatrix, transformMatrix, offset); if (dirty && mTrackDirtyRegions) { if (!ignoreTransform) { dirtyLayer(left, top, right, bottom, *currentTransform()); } else { dirtyLayer(left, top, right, bottom); } } } void OpenGLRenderer::setupDrawColorUniforms(bool hasShader) { if ((mColorSet && !hasShader) || (hasShader && mSetShaderColor)) { mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA); } } void OpenGLRenderer::setupDrawPureColorUniforms() { if (mSetShaderColor) { mCaches.currentProgram->setColor(mColorR, mColorG, mColorB, mColorA); } } void OpenGLRenderer::setupDrawShaderUniforms(const SkShader* shader, bool ignoreTransform) { if (shader == NULL) { return; } if (ignoreTransform) { // if ignoreTransform=true was passed to setupDrawModelView, undo currentTransform() // because it was built into modelView / the geometry, and the description needs to // compensate. mat4 modelViewWithoutTransform; modelViewWithoutTransform.loadInverse(*currentTransform()); modelViewWithoutTransform.multiply(mModelViewMatrix); mModelViewMatrix.load(modelViewWithoutTransform); } SkiaShader::setupProgram(&mCaches, mModelViewMatrix, &mTextureUnit, mExtensions, *shader); } void OpenGLRenderer::setupDrawColorFilterUniforms(const SkColorFilter* filter) { if (NULL == filter) { return; } SkColor color; SkXfermode::Mode mode; if (filter->asColorMode(&color, &mode)) { const int alpha = SkColorGetA(color); const GLfloat a = alpha / 255.0f; const GLfloat r = a * SkColorGetR(color) / 255.0f; const GLfloat g = a * SkColorGetG(color) / 255.0f; const GLfloat b = a * SkColorGetB(color) / 255.0f; glUniform4f(mCaches.currentProgram->getUniform("colorBlend"), r, g, b, a); return; } SkScalar srcColorMatrix[20]; if (filter->asColorMatrix(srcColorMatrix)) { float colorMatrix[16]; memcpy(colorMatrix, srcColorMatrix, 4 * sizeof(float)); memcpy(&colorMatrix[4], &srcColorMatrix[5], 4 * sizeof(float)); memcpy(&colorMatrix[8], &srcColorMatrix[10], 4 * sizeof(float)); memcpy(&colorMatrix[12], &srcColorMatrix[15], 4 * sizeof(float)); // Skia uses the range [0..255] for the addition vector, but we need // the [0..1] range to apply the vector in GLSL float colorVector[4]; colorVector[0] = srcColorMatrix[4] / 255.0f; colorVector[1] = srcColorMatrix[9] / 255.0f; colorVector[2] = srcColorMatrix[14] / 255.0f; colorVector[3] = srcColorMatrix[19] / 255.0f; glUniformMatrix4fv(mCaches.currentProgram->getUniform("colorMatrix"), 1, GL_FALSE, colorMatrix); glUniform4fv(mCaches.currentProgram->getUniform("colorMatrixVector"), 1, colorVector); return; } // it is an error if we ever get here } void OpenGLRenderer::setupDrawTextGammaUniforms() { mCaches.fontRenderer->setupProgram(mDescription, mCaches.currentProgram); } void OpenGLRenderer::setupDrawSimpleMesh() { bool force = mCaches.bindMeshBuffer(); mCaches.bindPositionVertexPointer(force, 0); mCaches.unbindIndicesBuffer(); } void OpenGLRenderer::setupDrawTexture(GLuint texture) { if (texture) bindTexture(texture); mTextureUnit++; mCaches.enableTexCoordsVertexArray(); } void OpenGLRenderer::setupDrawExternalTexture(GLuint texture) { bindExternalTexture(texture); mTextureUnit++; mCaches.enableTexCoordsVertexArray(); } void OpenGLRenderer::setupDrawTextureTransform() { mDescription.hasTextureTransform = true; } void OpenGLRenderer::setupDrawTextureTransformUniforms(mat4& transform) { glUniformMatrix4fv(mCaches.currentProgram->getUniform("mainTextureTransform"), 1, GL_FALSE, &transform.data[0]); } void OpenGLRenderer::setupDrawMesh(const GLvoid* vertices, const GLvoid* texCoords, GLuint vbo) { bool force = false; if (!vertices || vbo) { force = mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo); } else { force = mCaches.unbindMeshBuffer(); } mCaches.bindPositionVertexPointer(force, vertices); if (mCaches.currentProgram->texCoords >= 0) { mCaches.bindTexCoordsVertexPointer(force, texCoords); } mCaches.unbindIndicesBuffer(); } void OpenGLRenderer::setupDrawMesh(const GLvoid* vertices, const GLvoid* texCoords, const GLvoid* colors) { bool force = mCaches.unbindMeshBuffer(); GLsizei stride = sizeof(ColorTextureVertex); mCaches.bindPositionVertexPointer(force, vertices, stride); if (mCaches.currentProgram->texCoords >= 0) { mCaches.bindTexCoordsVertexPointer(force, texCoords, stride); } int slot = mCaches.currentProgram->getAttrib("colors"); if (slot >= 0) { glEnableVertexAttribArray(slot); glVertexAttribPointer(slot, 4, GL_FLOAT, GL_FALSE, stride, colors); } mCaches.unbindIndicesBuffer(); } void OpenGLRenderer::setupDrawMeshIndices(const GLvoid* vertices, const GLvoid* texCoords, GLuint vbo) { bool force = false; // If vbo is != 0 we want to treat the vertices parameter as an offset inside // a VBO. However, if vertices is set to NULL and vbo == 0 then we want to // use the default VBO found in Caches if (!vertices || vbo) { force = mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo); } else { force = mCaches.unbindMeshBuffer(); } mCaches.bindQuadIndicesBuffer(); mCaches.bindPositionVertexPointer(force, vertices); if (mCaches.currentProgram->texCoords >= 0) { mCaches.bindTexCoordsVertexPointer(force, texCoords); } } void OpenGLRenderer::setupDrawIndexedVertices(GLvoid* vertices) { bool force = mCaches.unbindMeshBuffer(); mCaches.bindQuadIndicesBuffer(); mCaches.bindPositionVertexPointer(force, vertices, gVertexStride); } /////////////////////////////////////////////////////////////////////////////// // Drawing /////////////////////////////////////////////////////////////////////////////// status_t OpenGLRenderer::drawDisplayList(RenderNode* displayList, Rect& dirty, int32_t replayFlags) { status_t status; // All the usual checks and setup operations (quickReject, setupDraw, etc.) // will be performed by the display list itself if (displayList && displayList->isRenderable()) { // compute 3d ordering displayList->computeOrdering(); if (CC_UNLIKELY(mCaches.drawDeferDisabled)) { status = startFrame(); ReplayStateStruct replayStruct(*this, dirty, replayFlags); displayList->replayNodeTree(replayStruct); return status | replayStruct.mDrawGlStatus; } bool avoidOverdraw = !mCaches.debugOverdraw && !mCountOverdraw; // shh, don't tell devs! DeferredDisplayList deferredList(*currentClipRect(), avoidOverdraw); DeferStateStruct deferStruct(deferredList, *this, replayFlags); displayList->deferNodeTree(deferStruct); flushLayers(); status = startFrame(); return deferredList.flush(*this, dirty) | status; } return DrawGlInfo::kStatusDone; } void OpenGLRenderer::drawAlphaBitmap(Texture* texture, float left, float top, const SkPaint* paint) { int color = paint != NULL ? paint->getColor() : 0; float x = left; float y = top; texture->setWrap(GL_CLAMP_TO_EDGE, true); bool ignoreTransform = false; if (currentTransform()->isPureTranslate()) { x = (int) floorf(left + currentTransform()->getTranslateX() + 0.5f); y = (int) floorf(top + currentTransform()->getTranslateY() + 0.5f); ignoreTransform = true; texture->setFilter(GL_NEAREST, true); } else { texture->setFilter(getFilter(paint), true); } // No need to check for a UV mapper on the texture object, only ARGB_8888 // bitmaps get packed in the atlas drawAlpha8TextureMesh(x, y, x + texture->width, y + texture->height, texture->id, paint, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount, ignoreTransform); } /** * Important note: this method is intended to draw batches of bitmaps and * will not set the scissor enable or dirty the current layer, if any. * The caller is responsible for properly dirtying the current layer. */ status_t OpenGLRenderer::drawBitmaps(const SkBitmap* bitmap, AssetAtlas::Entry* entry, int bitmapCount, TextureVertex* vertices, bool pureTranslate, const Rect& bounds, const SkPaint* paint) { mCaches.activeTexture(0); Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); texture->setWrap(GL_CLAMP_TO_EDGE, true); texture->setFilter(pureTranslate ? GL_NEAREST : getFilter(paint), true); const float x = (int) floorf(bounds.left + 0.5f); const float y = (int) floorf(bounds.top + 0.5f); if (CC_UNLIKELY(bitmap->config() == SkBitmap::kA8_Config)) { drawAlpha8TextureMesh(x, y, x + bounds.getWidth(), y + bounds.getHeight(), texture->id, paint, &vertices[0].x, &vertices[0].u, GL_TRIANGLES, bitmapCount * 6, true, kModelViewMode_Translate, false); } else { drawTextureMesh(x, y, x + bounds.getWidth(), y + bounds.getHeight(), texture->id, paint, texture->blend, &vertices[0].x, &vertices[0].u, GL_TRIANGLES, bitmapCount * 6, false, true, 0, kModelViewMode_Translate, false); } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmap(const SkBitmap* bitmap, float left, float top, const SkPaint* paint) { const float right = left + bitmap->width(); const float bottom = top + bitmap->height(); if (quickRejectSetupScissor(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = getTexture(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); if (CC_UNLIKELY(bitmap->config() == SkBitmap::kA8_Config)) { drawAlphaBitmap(texture, left, top, paint); } else { drawTextureRect(left, top, right, bottom, texture, paint); } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmap(const SkBitmap* bitmap, const SkMatrix* matrix, const SkPaint* paint) { Rect r(0.0f, 0.0f, bitmap->width(), bitmap->height()); const mat4 transform(*matrix); transform.mapRect(r); if (quickRejectSetupScissor(r.left, r.top, r.right, r.bottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = getTexture(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); // This could be done in a cheaper way, all we need is pass the matrix // to the vertex shader. The save/restore is a bit overkill. save(SkCanvas::kMatrix_SaveFlag); concatMatrix(matrix); if (CC_UNLIKELY(bitmap->config() == SkBitmap::kA8_Config)) { drawAlphaBitmap(texture, 0.0f, 0.0f, paint); } else { drawTextureRect(0.0f, 0.0f, bitmap->width(), bitmap->height(), texture, paint); } restore(); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmapData(const SkBitmap* bitmap, float left, float top, const SkPaint* paint) { const float right = left + bitmap->width(); const float bottom = top + bitmap->height(); if (quickRejectSetupScissor(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = mCaches.textureCache.getTransient(bitmap); const AutoTexture autoCleanup(texture); if (CC_UNLIKELY(bitmap->config() == SkBitmap::kA8_Config)) { drawAlphaBitmap(texture, left, top, paint); } else { drawTextureRect(left, top, right, bottom, texture, paint); } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmapMesh(const SkBitmap* bitmap, int meshWidth, int meshHeight, const float* vertices, const int* colors, const SkPaint* paint) { if (!vertices || currentSnapshot()->isIgnored()) { return DrawGlInfo::kStatusDone; } // TODO: use quickReject on bounds from vertices mCaches.enableScissor(); float left = FLT_MAX; float top = FLT_MAX; float right = FLT_MIN; float bottom = FLT_MIN; const uint32_t count = meshWidth * meshHeight * 6; Vector mesh; // TODO: use C++11 unique_ptr mesh.setCapacity(count); ColorTextureVertex* vertex = mesh.editArray(); bool cleanupColors = false; if (!colors) { uint32_t colorsCount = (meshWidth + 1) * (meshHeight + 1); int* newColors = new int[colorsCount]; memset(newColors, 0xff, colorsCount * sizeof(int)); colors = newColors; cleanupColors = true; } mCaches.activeTexture(0); Texture* texture = mCaches.assetAtlas.getEntryTexture(bitmap); const UvMapper& mapper(getMapper(texture)); for (int32_t y = 0; y < meshHeight; y++) { for (int32_t x = 0; x < meshWidth; x++) { uint32_t i = (y * (meshWidth + 1) + x) * 2; float u1 = float(x) / meshWidth; float u2 = float(x + 1) / meshWidth; float v1 = float(y) / meshHeight; float v2 = float(y + 1) / meshHeight; mapper.map(u1, v1, u2, v2); int ax = i + (meshWidth + 1) * 2; int ay = ax + 1; int bx = i; int by = bx + 1; int cx = i + 2; int cy = cx + 1; int dx = i + (meshWidth + 1) * 2 + 2; int dy = dx + 1; ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]); ColorTextureVertex::set(vertex++, vertices[ax], vertices[ay], u1, v2, colors[ax / 2]); ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]); ColorTextureVertex::set(vertex++, vertices[dx], vertices[dy], u2, v2, colors[dx / 2]); ColorTextureVertex::set(vertex++, vertices[bx], vertices[by], u1, v1, colors[bx / 2]); ColorTextureVertex::set(vertex++, vertices[cx], vertices[cy], u2, v1, colors[cx / 2]); left = fminf(left, fminf(vertices[ax], fminf(vertices[bx], vertices[cx]))); top = fminf(top, fminf(vertices[ay], fminf(vertices[by], vertices[cy]))); right = fmaxf(right, fmaxf(vertices[ax], fmaxf(vertices[bx], vertices[cx]))); bottom = fmaxf(bottom, fmaxf(vertices[ay], fmaxf(vertices[by], vertices[cy]))); } } if (quickRejectSetupScissor(left, top, right, bottom)) { if (cleanupColors) delete[] colors; return DrawGlInfo::kStatusDone; } if (!texture) { texture = mCaches.textureCache.get(bitmap); if (!texture) { if (cleanupColors) delete[] colors; return DrawGlInfo::kStatusDone; } } const AutoTexture autoCleanup(texture); texture->setWrap(GL_CLAMP_TO_EDGE, true); texture->setFilter(getFilter(paint), true); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); float a = alpha / 255.0f; if (hasLayer()) { dirtyLayer(left, top, right, bottom, *currentTransform()); } setupDraw(); setupDrawWithTextureAndColor(); setupDrawColor(a, a, a, a); setupDrawColorFilter(getColorFilter(paint)); setupDrawBlending(paint, true); setupDrawProgram(); setupDrawDirtyRegionsDisabled(); setupDrawModelView(kModelViewMode_TranslateAndScale, false, 0.0f, 0.0f, 1.0f, 1.0f); setupDrawTexture(texture->id); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(getColorFilter(paint)); setupDrawMesh(&mesh[0].x, &mesh[0].u, &mesh[0].r); glDrawArrays(GL_TRIANGLES, 0, count); int slot = mCaches.currentProgram->getAttrib("colors"); if (slot >= 0) { glDisableVertexAttribArray(slot); } if (cleanupColors) delete[] colors; return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawBitmap(const SkBitmap* bitmap, float srcLeft, float srcTop, float srcRight, float srcBottom, float dstLeft, float dstTop, float dstRight, float dstBottom, const SkPaint* paint) { if (quickRejectSetupScissor(dstLeft, dstTop, dstRight, dstBottom)) { return DrawGlInfo::kStatusDone; } mCaches.activeTexture(0); Texture* texture = getTexture(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); const float width = texture->width; const float height = texture->height; float u1 = fmax(0.0f, srcLeft / width); float v1 = fmax(0.0f, srcTop / height); float u2 = fmin(1.0f, srcRight / width); float v2 = fmin(1.0f, srcBottom / height); getMapper(texture).map(u1, v1, u2, v2); mCaches.unbindMeshBuffer(); resetDrawTextureTexCoords(u1, v1, u2, v2); texture->setWrap(GL_CLAMP_TO_EDGE, true); float scaleX = (dstRight - dstLeft) / (srcRight - srcLeft); float scaleY = (dstBottom - dstTop) / (srcBottom - srcTop); bool scaled = scaleX != 1.0f || scaleY != 1.0f; // Apply a scale transform on the canvas only when a shader is in use // Skia handles the ratio between the dst and src rects as a scale factor // when a shader is set bool useScaleTransform = getShader(paint) && scaled; bool ignoreTransform = false; if (CC_LIKELY(currentTransform()->isPureTranslate() && !useScaleTransform)) { float x = (int) floorf(dstLeft + currentTransform()->getTranslateX() + 0.5f); float y = (int) floorf(dstTop + currentTransform()->getTranslateY() + 0.5f); dstRight = x + (dstRight - dstLeft); dstBottom = y + (dstBottom - dstTop); dstLeft = x; dstTop = y; texture->setFilter(scaled ? getFilter(paint) : GL_NEAREST, true); ignoreTransform = true; } else { texture->setFilter(getFilter(paint), true); } if (CC_UNLIKELY(useScaleTransform)) { save(SkCanvas::kMatrix_SaveFlag); translate(dstLeft, dstTop); scale(scaleX, scaleY); dstLeft = 0.0f; dstTop = 0.0f; dstRight = srcRight - srcLeft; dstBottom = srcBottom - srcTop; } if (CC_UNLIKELY(bitmap->config() == SkBitmap::kA8_Config)) { drawAlpha8TextureMesh(dstLeft, dstTop, dstRight, dstBottom, texture->id, paint, &mMeshVertices[0].x, &mMeshVertices[0].u, GL_TRIANGLE_STRIP, gMeshCount, ignoreTransform); } else { drawTextureMesh(dstLeft, dstTop, dstRight, dstBottom, texture->id, paint, texture->blend, &mMeshVertices[0].x, &mMeshVertices[0].u, GL_TRIANGLE_STRIP, gMeshCount, false, ignoreTransform); } if (CC_UNLIKELY(useScaleTransform)) { restore(); } resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawPatch(const SkBitmap* bitmap, const Res_png_9patch* patch, float left, float top, float right, float bottom, const SkPaint* paint) { if (quickRejectSetupScissor(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } AssetAtlas::Entry* entry = mCaches.assetAtlas.getEntry(bitmap); const Patch* mesh = mCaches.patchCache.get(entry, bitmap->width(), bitmap->height(), right - left, bottom - top, patch); return drawPatch(bitmap, mesh, entry, left, top, right, bottom, paint); } status_t OpenGLRenderer::drawPatch(const SkBitmap* bitmap, const Patch* mesh, AssetAtlas::Entry* entry, float left, float top, float right, float bottom, const SkPaint* paint) { if (quickRejectSetupScissor(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } if (CC_LIKELY(mesh && mesh->verticesCount > 0)) { mCaches.activeTexture(0); Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); texture->setWrap(GL_CLAMP_TO_EDGE, true); texture->setFilter(GL_LINEAR, true); const bool pureTranslate = currentTransform()->isPureTranslate(); // Mark the current layer dirty where we are going to draw the patch if (hasLayer() && mesh->hasEmptyQuads) { const float offsetX = left + currentTransform()->getTranslateX(); const float offsetY = top + currentTransform()->getTranslateY(); const size_t count = mesh->quads.size(); for (size_t i = 0; i < count; i++) { const Rect& bounds = mesh->quads.itemAt(i); if (CC_LIKELY(pureTranslate)) { const float x = (int) floorf(bounds.left + offsetX + 0.5f); const float y = (int) floorf(bounds.top + offsetY + 0.5f); dirtyLayer(x, y, x + bounds.getWidth(), y + bounds.getHeight()); } else { dirtyLayer(left + bounds.left, top + bounds.top, left + bounds.right, top + bounds.bottom, *currentTransform()); } } } bool ignoreTransform = false; if (CC_LIKELY(pureTranslate)) { const float x = (int) floorf(left + currentTransform()->getTranslateX() + 0.5f); const float y = (int) floorf(top + currentTransform()->getTranslateY() + 0.5f); right = x + right - left; bottom = y + bottom - top; left = x; top = y; ignoreTransform = true; } drawIndexedTextureMesh(left, top, right, bottom, texture->id, paint, texture->blend, (GLvoid*) mesh->offset, (GLvoid*) mesh->textureOffset, GL_TRIANGLES, mesh->indexCount, false, ignoreTransform, mCaches.patchCache.getMeshBuffer(), kModelViewMode_Translate, !mesh->hasEmptyQuads); } return DrawGlInfo::kStatusDrew; } /** * Important note: this method is intended to draw batches of 9-patch objects and * will not set the scissor enable or dirty the current layer, if any. * The caller is responsible for properly dirtying the current layer. */ status_t OpenGLRenderer::drawPatches(const SkBitmap* bitmap, AssetAtlas::Entry* entry, TextureVertex* vertices, uint32_t indexCount, const SkPaint* paint) { mCaches.activeTexture(0); Texture* texture = entry ? entry->texture : mCaches.textureCache.get(bitmap); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); texture->setWrap(GL_CLAMP_TO_EDGE, true); texture->setFilter(GL_LINEAR, true); drawIndexedTextureMesh(0.0f, 0.0f, 1.0f, 1.0f, texture->id, paint, texture->blend, &vertices[0].x, &vertices[0].u, GL_TRIANGLES, indexCount, false, true, 0, kModelViewMode_Translate, false); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawVertexBuffer(VertexBufferMode mode, const VertexBuffer& vertexBuffer, const SkPaint* paint, bool useOffset) { // not missing call to quickReject/dirtyLayer, always done at a higher level if (!vertexBuffer.getVertexCount()) { // no vertices to draw return DrawGlInfo::kStatusDone; } int color = paint->getColor(); bool isAA = paint->isAntiAlias(); setupDraw(); setupDrawNoTexture(); if (isAA) setupDrawAA(); setupDrawColor(color, ((color >> 24) & 0xFF) * mSnapshot->alpha); setupDrawColorFilter(getColorFilter(paint)); setupDrawShader(getShader(paint)); setupDrawBlending(paint, isAA); setupDrawProgram(); setupDrawModelView(kModelViewMode_Translate, useOffset, 0, 0, 0, 0); setupDrawColorUniforms(getShader(paint)); setupDrawColorFilterUniforms(getColorFilter(paint)); setupDrawShaderUniforms(getShader(paint)); const void* vertices = vertexBuffer.getBuffer(); bool force = mCaches.unbindMeshBuffer(); mCaches.bindPositionVertexPointer(true, vertices, isAA ? gAlphaVertexStride : gVertexStride); mCaches.resetTexCoordsVertexPointer(); int alphaSlot = -1; if (isAA) { void* alphaCoords = ((GLbyte*) vertices) + gVertexAlphaOffset; alphaSlot = mCaches.currentProgram->getAttrib("vtxAlpha"); // TODO: avoid enable/disable in back to back uses of the alpha attribute glEnableVertexAttribArray(alphaSlot); glVertexAttribPointer(alphaSlot, 1, GL_FLOAT, GL_FALSE, gAlphaVertexStride, alphaCoords); } if (mode == kVertexBufferMode_Standard) { mCaches.unbindIndicesBuffer(); glDrawArrays(GL_TRIANGLE_STRIP, 0, vertexBuffer.getVertexCount()); } else if (mode == kVertexBufferMode_OnePolyRingShadow) { mCaches.bindShadowIndicesBuffer(); glDrawElements(GL_TRIANGLE_STRIP, ONE_POLY_RING_SHADOW_INDEX_COUNT, GL_UNSIGNED_SHORT, 0); } else if (mode == kVertexBufferMode_TwoPolyRingShadow) { mCaches.bindShadowIndicesBuffer(); glDrawElements(GL_TRIANGLE_STRIP, TWO_POLY_RING_SHADOW_INDEX_COUNT, GL_UNSIGNED_SHORT, 0); } if (isAA) { glDisableVertexAttribArray(alphaSlot); } return DrawGlInfo::kStatusDrew; } /** * Renders a convex path via tessellation. For AA paths, this function uses a similar approach to * that of AA lines in the drawLines() function. We expand the convex path by a half pixel in * screen space in all directions. However, instead of using a fragment shader to compute the * translucency of the color from its position, we simply use a varying parameter to define how far * a given pixel is from the edge. For non-AA paths, the expansion and alpha varying are not used. * * Doesn't yet support joins, caps, or path effects. */ status_t OpenGLRenderer::drawConvexPath(const SkPath& path, const SkPaint* paint) { VertexBuffer vertexBuffer; // TODO: try clipping large paths to viewport PathTessellator::tessellatePath(path, paint, *currentTransform(), vertexBuffer); if (hasLayer()) { SkRect bounds = path.getBounds(); PathTessellator::expandBoundsForStroke(bounds, paint); dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, *currentTransform()); } return drawVertexBuffer(kVertexBufferMode_Standard, vertexBuffer, paint); } /** * We create tristrips for the lines much like shape stroke tessellation, using a per-vertex alpha * and additional geometry for defining an alpha slope perimeter. * * Using GL_LINES can be difficult because the rasterization rules for those lines produces some * unexpected results, and may vary between hardware devices. Previously we used a varying-base * in-shader alpha region, but found it to be taxing on some GPUs. * * TODO: try using a fixed input buffer for non-capped lines as in text rendering. this may reduce * memory transfer by removing need for degenerate vertices. */ status_t OpenGLRenderer::drawLines(const float* points, int count, const SkPaint* paint) { if (currentSnapshot()->isIgnored() || count < 4) return DrawGlInfo::kStatusDone; count &= ~0x3; // round down to nearest four VertexBuffer buffer; SkRect bounds; PathTessellator::tessellateLines(points, count, paint, *currentTransform(), bounds, buffer); // can't pass paint, since style would be checked for outset. outset done by tessellation. if (quickRejectSetupScissor(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom)) { return DrawGlInfo::kStatusDone; } dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, *currentTransform()); bool useOffset = !paint->isAntiAlias(); return drawVertexBuffer(kVertexBufferMode_Standard, buffer, paint, useOffset); } status_t OpenGLRenderer::drawPoints(const float* points, int count, const SkPaint* paint) { if (currentSnapshot()->isIgnored() || count < 2) return DrawGlInfo::kStatusDone; count &= ~0x1; // round down to nearest two VertexBuffer buffer; SkRect bounds; PathTessellator::tessellatePoints(points, count, paint, *currentTransform(), bounds, buffer); // can't pass paint, since style would be checked for outset. outset done by tessellation. if (quickRejectSetupScissor(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom)) { return DrawGlInfo::kStatusDone; } dirtyLayer(bounds.fLeft, bounds.fTop, bounds.fRight, bounds.fBottom, *currentTransform()); bool useOffset = !paint->isAntiAlias(); return drawVertexBuffer(kVertexBufferMode_Standard, buffer, paint, useOffset); } status_t OpenGLRenderer::drawColor(int color, SkXfermode::Mode mode) { // No need to check against the clip, we fill the clip region if (currentSnapshot()->isIgnored()) return DrawGlInfo::kStatusDone; Rect clip(*currentClipRect()); clip.snapToPixelBoundaries(); SkPaint paint; paint.setColor(color); paint.setXfermodeMode(mode); drawColorRect(clip.left, clip.top, clip.right, clip.bottom, &paint, true); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawShape(float left, float top, const PathTexture* texture, const SkPaint* paint) { if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); const float x = left + texture->left - texture->offset; const float y = top + texture->top - texture->offset; drawPathTexture(texture, x, y, paint); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawRoundRect(float left, float top, float right, float bottom, float rx, float ry, const SkPaint* p) { if (currentSnapshot()->isIgnored() || quickRejectSetupScissor(left, top, right, bottom, p) || (p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) { return DrawGlInfo::kStatusDone; } if (p->getPathEffect() != 0) { mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.getRoundRect( right - left, bottom - top, rx, ry, p); return drawShape(left, top, texture, p); } SkPath path; SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { float outset = p->getStrokeWidth() / 2; rect.outset(outset, outset); rx += outset; ry += outset; } path.addRoundRect(rect, rx, ry); return drawConvexPath(path, p); } status_t OpenGLRenderer::drawCircle(float x, float y, float radius, const SkPaint* p) { if (currentSnapshot()->isIgnored() || quickRejectSetupScissor(x - radius, y - radius, x + radius, y + radius, p) || (p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) { return DrawGlInfo::kStatusDone; } if (p->getPathEffect() != 0) { mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.getCircle(radius, p); return drawShape(x - radius, y - radius, texture, p); } SkPath path; if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { path.addCircle(x, y, radius + p->getStrokeWidth() / 2); } else { path.addCircle(x, y, radius); } return drawConvexPath(path, p); } status_t OpenGLRenderer::drawOval(float left, float top, float right, float bottom, const SkPaint* p) { if (currentSnapshot()->isIgnored() || quickRejectSetupScissor(left, top, right, bottom, p) || (p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) { return DrawGlInfo::kStatusDone; } if (p->getPathEffect() != 0) { mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.getOval(right - left, bottom - top, p); return drawShape(left, top, texture, p); } SkPath path; SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2); } path.addOval(rect); return drawConvexPath(path, p); } status_t OpenGLRenderer::drawArc(float left, float top, float right, float bottom, float startAngle, float sweepAngle, bool useCenter, const SkPaint* p) { if (currentSnapshot()->isIgnored() || quickRejectSetupScissor(left, top, right, bottom, p) || (p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) { return DrawGlInfo::kStatusDone; } if (fabs(sweepAngle) >= 360.0f) { return drawOval(left, top, right, bottom, p); } // TODO: support fills (accounting for concavity if useCenter && sweepAngle > 180) if (p->getStyle() != SkPaint::kStroke_Style || p->getPathEffect() != 0 || useCenter) { mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.getArc(right - left, bottom - top, startAngle, sweepAngle, useCenter, p); return drawShape(left, top, texture, p); } SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2); } SkPath path; if (useCenter) { path.moveTo(rect.centerX(), rect.centerY()); } path.arcTo(rect, startAngle, sweepAngle, !useCenter); if (useCenter) { path.close(); } return drawConvexPath(path, p); } // See SkPaintDefaults.h #define SkPaintDefaults_MiterLimit SkIntToScalar(4) status_t OpenGLRenderer::drawRect(float left, float top, float right, float bottom, const SkPaint* p) { if (currentSnapshot()->isIgnored() || quickRejectSetupScissor(left, top, right, bottom, p) || (p->getAlpha() == 0 && getXfermode(p->getXfermode()) != SkXfermode::kClear_Mode)) { return DrawGlInfo::kStatusDone; } if (p->getStyle() != SkPaint::kFill_Style) { // only fill style is supported by drawConvexPath, since others have to handle joins if (p->getPathEffect() != 0 || p->getStrokeJoin() != SkPaint::kMiter_Join || p->getStrokeMiter() != SkPaintDefaults_MiterLimit) { mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.getRect(right - left, bottom - top, p); return drawShape(left, top, texture, p); } SkPath path; SkRect rect = SkRect::MakeLTRB(left, top, right, bottom); if (p->getStyle() == SkPaint::kStrokeAndFill_Style) { rect.outset(p->getStrokeWidth() / 2, p->getStrokeWidth() / 2); } path.addRect(rect); return drawConvexPath(path, p); } if (p->isAntiAlias() && !currentTransform()->isSimple()) { SkPath path; path.addRect(left, top, right, bottom); return drawConvexPath(path, p); } else { drawColorRect(left, top, right, bottom, p); return DrawGlInfo::kStatusDrew; } } void OpenGLRenderer::drawTextShadow(const SkPaint* paint, const char* text, int bytesCount, int count, const float* positions, FontRenderer& fontRenderer, int alpha, float x, float y) { mCaches.activeTexture(0); TextShadow textShadow; if (!getTextShadow(paint, &textShadow)) { LOG_ALWAYS_FATAL("failed to query shadow attributes"); } // NOTE: The drop shadow will not perform gamma correction // if shader-based correction is enabled mCaches.dropShadowCache.setFontRenderer(fontRenderer); const ShadowTexture* shadow = mCaches.dropShadowCache.get( paint, text, bytesCount, count, textShadow.radius, positions); // If the drop shadow exceeds the max texture size or couldn't be // allocated, skip drawing if (!shadow) return; const AutoTexture autoCleanup(shadow); const float sx = x - shadow->left + textShadow.dx; const float sy = y - shadow->top + textShadow.dy; const int shadowAlpha = ((textShadow.color >> 24) & 0xFF) * mSnapshot->alpha; if (getShader(paint)) { textShadow.color = SK_ColorWHITE; } setupDraw(); setupDrawWithTexture(true); setupDrawAlpha8Color(textShadow.color, shadowAlpha < 255 ? shadowAlpha : alpha); setupDrawColorFilter(getColorFilter(paint)); setupDrawShader(getShader(paint)); setupDrawBlending(paint, true); setupDrawProgram(); setupDrawModelView(kModelViewMode_TranslateAndScale, false, sx, sy, sx + shadow->width, sy + shadow->height); setupDrawTexture(shadow->id); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(getColorFilter(paint)); setupDrawShaderUniforms(getShader(paint)); setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); } bool OpenGLRenderer::canSkipText(const SkPaint* paint) const { float alpha = (hasTextShadow(paint) ? 1.0f : paint->getAlpha()) * mSnapshot->alpha; return alpha == 0.0f && getXfermode(paint->getXfermode()) == SkXfermode::kSrcOver_Mode; } status_t OpenGLRenderer::drawPosText(const char* text, int bytesCount, int count, const float* positions, const SkPaint* paint) { if (text == NULL || count == 0 || currentSnapshot()->isIgnored() || canSkipText(paint)) { return DrawGlInfo::kStatusDone; } // NOTE: Skia does not support perspective transform on drawPosText yet if (!currentTransform()->isSimple()) { return DrawGlInfo::kStatusDone; } mCaches.enableScissor(); float x = 0.0f; float y = 0.0f; const bool pureTranslate = currentTransform()->isPureTranslate(); if (pureTranslate) { x = (int) floorf(x + currentTransform()->getTranslateX() + 0.5f); y = (int) floorf(y + currentTransform()->getTranslateY() + 0.5f); } FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint); fontRenderer.setFont(paint, mat4::identity()); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); if (CC_UNLIKELY(hasTextShadow(paint))) { drawTextShadow(paint, text, bytesCount, count, positions, fontRenderer, alpha, 0.0f, 0.0f); } // Pick the appropriate texture filtering bool linearFilter = currentTransform()->changesBounds(); if (pureTranslate && !linearFilter) { linearFilter = fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f; } fontRenderer.setTextureFiltering(linearFilter); const Rect* clip = pureTranslate ? mSnapshot->clipRect : &mSnapshot->getLocalClip(); Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); const bool hasActiveLayer = hasLayer(); TextSetupFunctor functor(this, x, y, pureTranslate, alpha, mode, paint); if (fontRenderer.renderPosText(paint, clip, text, 0, bytesCount, count, x, y, positions, hasActiveLayer ? &bounds : NULL, &functor)) { if (hasActiveLayer) { if (!pureTranslate) { currentTransform()->mapRect(bounds); } dirtyLayerUnchecked(bounds, getRegion()); } } return DrawGlInfo::kStatusDrew; } mat4 OpenGLRenderer::findBestFontTransform(const mat4& transform) const { mat4 fontTransform; if (CC_LIKELY(transform.isPureTranslate())) { fontTransform = mat4::identity(); } else { if (CC_UNLIKELY(transform.isPerspective())) { fontTransform = mat4::identity(); } else { float sx, sy; currentTransform()->decomposeScale(sx, sy); fontTransform.loadScale(sx, sy, 1.0f); } } return fontTransform; } status_t OpenGLRenderer::drawText(const char* text, int bytesCount, int count, float x, float y, const float* positions, const SkPaint* paint, float totalAdvance, const Rect& bounds, DrawOpMode drawOpMode) { if (drawOpMode == kDrawOpMode_Immediate) { // The checks for corner-case ignorable text and quick rejection is only done for immediate // drawing as ops from DeferredDisplayList are already filtered for these if (text == NULL || count == 0 || currentSnapshot()->isIgnored() || canSkipText(paint) || quickRejectSetupScissor(bounds)) { return DrawGlInfo::kStatusDone; } } const float oldX = x; const float oldY = y; const mat4& transform = *currentTransform(); const bool pureTranslate = transform.isPureTranslate(); if (CC_LIKELY(pureTranslate)) { x = (int) floorf(x + transform.getTranslateX() + 0.5f); y = (int) floorf(y + transform.getTranslateY() + 0.5f); } int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint); if (CC_UNLIKELY(hasTextShadow(paint))) { fontRenderer.setFont(paint, mat4::identity()); drawTextShadow(paint, text, bytesCount, count, positions, fontRenderer, alpha, oldX, oldY); } const bool hasActiveLayer = hasLayer(); // We only pass a partial transform to the font renderer. That partial // matrix defines how glyphs are rasterized. Typically we want glyphs // to be rasterized at their final size on screen, which means the partial // matrix needs to take the scale factor into account. // When a partial matrix is used to transform glyphs during rasterization, // the mesh is generated with the inverse transform (in the case of scale, // the mesh is generated at 1.0 / scale for instance.) This allows us to // apply the full transform matrix at draw time in the vertex shader. // Applying the full matrix in the shader is the easiest way to handle // rotation and perspective and allows us to always generated quads in the // font renderer which greatly simplifies the code, clipping in particular. mat4 fontTransform = findBestFontTransform(transform); fontRenderer.setFont(paint, fontTransform); // Pick the appropriate texture filtering bool linearFilter = !pureTranslate || fabs(y - (int) y) > 0.0f || fabs(x - (int) x) > 0.0f; fontRenderer.setTextureFiltering(linearFilter); // TODO: Implement better clipping for scaled/rotated text const Rect* clip = !pureTranslate ? NULL : currentClipRect(); Rect layerBounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); bool status; TextSetupFunctor functor(this, x, y, pureTranslate, alpha, mode, paint); // don't call issuedrawcommand, do it at end of batch bool forceFinish = (drawOpMode != kDrawOpMode_Defer); if (CC_UNLIKELY(paint->getTextAlign() != SkPaint::kLeft_Align)) { SkPaint paintCopy(*paint); paintCopy.setTextAlign(SkPaint::kLeft_Align); status = fontRenderer.renderPosText(&paintCopy, clip, text, 0, bytesCount, count, x, y, positions, hasActiveLayer ? &layerBounds : NULL, &functor, forceFinish); } else { status = fontRenderer.renderPosText(paint, clip, text, 0, bytesCount, count, x, y, positions, hasActiveLayer ? &layerBounds : NULL, &functor, forceFinish); } if ((status || drawOpMode != kDrawOpMode_Immediate) && hasActiveLayer) { if (!pureTranslate) { transform.mapRect(layerBounds); } dirtyLayerUnchecked(layerBounds, getRegion()); } drawTextDecorations(totalAdvance, oldX, oldY, paint); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawTextOnPath(const char* text, int bytesCount, int count, const SkPath* path, float hOffset, float vOffset, const SkPaint* paint) { if (text == NULL || count == 0 || currentSnapshot()->isIgnored() || canSkipText(paint)) { return DrawGlInfo::kStatusDone; } // TODO: avoid scissor by calculating maximum bounds using path bounds + font metrics mCaches.enableScissor(); FontRenderer& fontRenderer = mCaches.fontRenderer->getFontRenderer(paint); fontRenderer.setFont(paint, mat4::identity()); fontRenderer.setTextureFiltering(true); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); TextSetupFunctor functor(this, 0.0f, 0.0f, false, alpha, mode, paint); const Rect* clip = &mSnapshot->getLocalClip(); Rect bounds(FLT_MAX / 2.0f, FLT_MAX / 2.0f, FLT_MIN / 2.0f, FLT_MIN / 2.0f); const bool hasActiveLayer = hasLayer(); if (fontRenderer.renderTextOnPath(paint, clip, text, 0, bytesCount, count, path, hOffset, vOffset, hasActiveLayer ? &bounds : NULL, &functor)) { if (hasActiveLayer) { currentTransform()->mapRect(bounds); dirtyLayerUnchecked(bounds, getRegion()); } } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawPath(const SkPath* path, const SkPaint* paint) { if (currentSnapshot()->isIgnored()) return DrawGlInfo::kStatusDone; mCaches.activeTexture(0); const PathTexture* texture = mCaches.pathCache.get(path, paint); if (!texture) return DrawGlInfo::kStatusDone; const AutoTexture autoCleanup(texture); const float x = texture->left - texture->offset; const float y = texture->top - texture->offset; drawPathTexture(texture, x, y, paint); return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawLayer(Layer* layer, float x, float y) { if (!layer) { return DrawGlInfo::kStatusDone; } mat4* transform = NULL; if (layer->isTextureLayer()) { transform = &layer->getTransform(); if (!transform->isIdentity()) { save(SkCanvas::kMatrix_SaveFlag); concatMatrix(*transform); } } bool clipRequired = false; const bool rejected = calculateQuickRejectForScissor(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight(), &clipRequired, NULL, false); if (rejected) { if (transform && !transform->isIdentity()) { restore(); } return DrawGlInfo::kStatusDone; } updateLayer(layer, true); mCaches.setScissorEnabled(mScissorOptimizationDisabled || clipRequired); mCaches.activeTexture(0); if (CC_LIKELY(!layer->region.isEmpty())) { if (layer->region.isRect()) { DRAW_DOUBLE_STENCIL_IF(!layer->hasDrawnSinceUpdate, composeLayerRect(layer, layer->regionRect)); } else if (layer->mesh) { const float a = getLayerAlpha(layer); setupDraw(); setupDrawWithTexture(); setupDrawColor(a, a, a, a); setupDrawColorFilter(layer->getColorFilter()); setupDrawBlending(layer); setupDrawProgram(); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(layer->getColorFilter()); setupDrawTexture(layer->getTexture()); if (CC_LIKELY(currentTransform()->isPureTranslate())) { int tx = (int) floorf(x + currentTransform()->getTranslateX() + 0.5f); int ty = (int) floorf(y + currentTransform()->getTranslateY() + 0.5f); layer->setFilter(GL_NEAREST); setupDrawModelView(kModelViewMode_Translate, false, tx, ty, tx + layer->layer.getWidth(), ty + layer->layer.getHeight(), true); } else { layer->setFilter(GL_LINEAR); setupDrawModelView(kModelViewMode_Translate, false, x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight()); } TextureVertex* mesh = &layer->mesh[0]; GLsizei elementsCount = layer->meshElementCount; while (elementsCount > 0) { GLsizei drawCount = min(elementsCount, (GLsizei) gMaxNumberOfQuads * 6); setupDrawMeshIndices(&mesh[0].x, &mesh[0].u); DRAW_DOUBLE_STENCIL_IF(!layer->hasDrawnSinceUpdate, glDrawElements(GL_TRIANGLES, drawCount, GL_UNSIGNED_SHORT, NULL)); elementsCount -= drawCount; // Though there are 4 vertices in a quad, we use 6 indices per // quad to draw with GL_TRIANGLES mesh += (drawCount / 6) * 4; } #if DEBUG_LAYERS_AS_REGIONS drawRegionRectsDebug(layer->region); #endif } if (layer->debugDrawUpdate) { layer->debugDrawUpdate = false; SkPaint paint; paint.setColor(0x7f00ff00); drawColorRect(x, y, x + layer->layer.getWidth(), y + layer->layer.getHeight(), &paint); } } layer->hasDrawnSinceUpdate = true; if (transform && !transform->isIdentity()) { restore(); } return DrawGlInfo::kStatusDrew; } /////////////////////////////////////////////////////////////////////////////// // Draw filters /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetPaintFilter() { // when clearing the PaintFilter, the masks should also be cleared for simple DrawModifier // comparison, see MergingDrawBatch::canMergeWith mDrawModifiers.mHasDrawFilter = false; mDrawModifiers.mPaintFilterClearBits = 0; mDrawModifiers.mPaintFilterSetBits = 0; } void OpenGLRenderer::setupPaintFilter(int clearBits, int setBits) { mDrawModifiers.mHasDrawFilter = true; mDrawModifiers.mPaintFilterClearBits = clearBits & SkPaint::kAllFlags; mDrawModifiers.mPaintFilterSetBits = setBits & SkPaint::kAllFlags; } const SkPaint* OpenGLRenderer::filterPaint(const SkPaint* paint) { if (CC_LIKELY(!mDrawModifiers.mHasDrawFilter || !paint)) { return paint; } uint32_t flags = paint->getFlags(); mFilteredPaint = *paint; mFilteredPaint.setFlags((flags & ~mDrawModifiers.mPaintFilterClearBits) | mDrawModifiers.mPaintFilterSetBits); return &mFilteredPaint; } /////////////////////////////////////////////////////////////////////////////// // Drawing implementation /////////////////////////////////////////////////////////////////////////////// Texture* OpenGLRenderer::getTexture(const SkBitmap* bitmap) { Texture* texture = mCaches.assetAtlas.getEntryTexture(bitmap); if (!texture) { return mCaches.textureCache.get(bitmap); } return texture; } void OpenGLRenderer::drawPathTexture(const PathTexture* texture, float x, float y, const SkPaint* paint) { if (quickRejectSetupScissor(x, y, x + texture->width, y + texture->height)) { return; } int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); setupDraw(); setupDrawWithTexture(true); setupDrawAlpha8Color(paint->getColor(), alpha); setupDrawColorFilter(getColorFilter(paint)); setupDrawShader(getShader(paint)); setupDrawBlending(paint, true); setupDrawProgram(); setupDrawModelView(kModelViewMode_TranslateAndScale, false, x, y, x + texture->width, y + texture->height); setupDrawTexture(texture->id); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(getColorFilter(paint)); setupDrawShaderUniforms(getShader(paint)); setupDrawMesh(NULL, (GLvoid*) gMeshTextureOffset); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); } // Same values used by Skia #define kStdStrikeThru_Offset (-6.0f / 21.0f) #define kStdUnderline_Offset (1.0f / 9.0f) #define kStdUnderline_Thickness (1.0f / 18.0f) void OpenGLRenderer::drawTextDecorations(float underlineWidth, float x, float y, const SkPaint* paint) { // Handle underline and strike-through uint32_t flags = paint->getFlags(); if (flags & (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag)) { SkPaint paintCopy(*paint); if (CC_LIKELY(underlineWidth > 0.0f)) { const float textSize = paintCopy.getTextSize(); const float strokeWidth = fmax(textSize * kStdUnderline_Thickness, 1.0f); const float left = x; float top = 0.0f; int linesCount = 0; if (flags & SkPaint::kUnderlineText_Flag) linesCount++; if (flags & SkPaint::kStrikeThruText_Flag) linesCount++; const int pointsCount = 4 * linesCount; float points[pointsCount]; int currentPoint = 0; if (flags & SkPaint::kUnderlineText_Flag) { top = y + textSize * kStdUnderline_Offset; points[currentPoint++] = left; points[currentPoint++] = top; points[currentPoint++] = left + underlineWidth; points[currentPoint++] = top; } if (flags & SkPaint::kStrikeThruText_Flag) { top = y + textSize * kStdStrikeThru_Offset; points[currentPoint++] = left; points[currentPoint++] = top; points[currentPoint++] = left + underlineWidth; points[currentPoint++] = top; } paintCopy.setStrokeWidth(strokeWidth); drawLines(&points[0], pointsCount, &paintCopy); } } } status_t OpenGLRenderer::drawRects(const float* rects, int count, const SkPaint* paint) { if (currentSnapshot()->isIgnored()) { return DrawGlInfo::kStatusDone; } return drawColorRects(rects, count, paint, false, true, true); } static void mapPointFakeZ(Vector3& point, const mat4& transformXY, const mat4& transformZ) { // map z coordinate with true 3d matrix point.z = transformZ.mapZ(point); // map x,y coordinates with draw/Skia matrix transformXY.mapPoint(point.x, point.y); } status_t OpenGLRenderer::drawShadow(const mat4& casterTransformXY, const mat4& casterTransformZ, float casterAlpha, bool casterUnclipped, const SkPath* casterPerimeter) { if (currentSnapshot()->isIgnored()) return DrawGlInfo::kStatusDone; // TODO: use quickRejectWithScissor. For now, always force enable scissor. mCaches.enableScissor(); SkPaint paint; paint.setAntiAlias(true); // want to use AlphaVertex // tessellate caster outline into a 2d polygon Vector casterVertices2d; const float casterRefinementThresholdSquared = 20.0f; // TODO: experiment with this value PathTessellator::approximatePathOutlineVertices(*casterPerimeter, casterRefinementThresholdSquared, casterVertices2d); if (!ShadowTessellator::isClockwisePath(*casterPerimeter)) { ShadowTessellator::reverseVertexArray(casterVertices2d.editArray(), casterVertices2d.size()); } if (casterVertices2d.size() == 0) { // empty caster polygon computed from path return DrawGlInfo::kStatusDone; } // map 2d caster poly into 3d const int casterVertexCount = casterVertices2d.size(); Vector3 casterPolygon[casterVertexCount]; float minZ = FLT_MAX; float maxZ = -FLT_MAX; for (int i = 0; i < casterVertexCount; i++) { const Vertex& point2d = casterVertices2d[i]; casterPolygon[i] = Vector3(point2d.x, point2d.y, 0); mapPointFakeZ(casterPolygon[i], casterTransformXY, casterTransformZ); minZ = fmin(minZ, casterPolygon[i].z); maxZ = fmax(maxZ, casterPolygon[i].z); } // map the centroid of the caster into 3d Vector2 centroid = ShadowTessellator::centroid2d( reinterpret_cast(casterVertices2d.array()), casterVertexCount); Vector3 centroid3d(centroid.x, centroid.y, 0); mapPointFakeZ(centroid3d, casterTransformXY, casterTransformZ); // if the caster intersects the z=0 plane, lift it in Z so it doesn't if (minZ < SHADOW_MIN_CASTER_Z) { float casterLift = SHADOW_MIN_CASTER_Z - minZ; for (int i = 0; i < casterVertexCount; i++) { casterPolygon[i].z += casterLift; } centroid3d.z += casterLift; } // Check whether we want to draw the shadow at all by checking the caster's // bounds against clip. // We only have ortho projection, so we can just ignore the Z in caster for // simple rejection calculation. Rect localClip = mSnapshot->getLocalClip(); Rect casterBounds(casterPerimeter->getBounds()); casterTransformXY.mapRect(casterBounds); bool isCasterOpaque = (casterAlpha == 1.0f) && casterUnclipped; // draw caster's shadows if (mCaches.propertyAmbientShadowStrength > 0) { paint.setARGB(casterAlpha * mCaches.propertyAmbientShadowStrength, 0, 0, 0); VertexBuffer ambientShadowVertexBuffer; VertexBufferMode vertexBufferMode = ShadowTessellator::tessellateAmbientShadow( isCasterOpaque, casterPolygon, casterVertexCount, centroid3d, casterBounds, localClip, maxZ, ambientShadowVertexBuffer); drawVertexBuffer(vertexBufferMode, ambientShadowVertexBuffer, &paint); } if (mCaches.propertySpotShadowStrength > 0) { paint.setARGB(casterAlpha * mCaches.propertySpotShadowStrength, 0, 0, 0); VertexBuffer spotShadowVertexBuffer; VertexBufferMode vertexBufferMode = ShadowTessellator::tessellateSpotShadow( isCasterOpaque, casterPolygon, casterVertexCount, *currentTransform(), mLightCenter, mLightRadius, casterBounds, localClip, spotShadowVertexBuffer); drawVertexBuffer(vertexBufferMode, spotShadowVertexBuffer, &paint); } return DrawGlInfo::kStatusDrew; } status_t OpenGLRenderer::drawColorRects(const float* rects, int count, const SkPaint* paint, bool ignoreTransform, bool dirty, bool clip) { if (count == 0) { return DrawGlInfo::kStatusDone; } int color = paint->getColor(); // If a shader is set, preserve only the alpha if (getShader(paint)) { color |= 0x00ffffff; } float left = FLT_MAX; float top = FLT_MAX; float right = FLT_MIN; float bottom = FLT_MIN; Vertex mesh[count]; Vertex* vertex = mesh; for (int index = 0; index < count; index += 4) { float l = rects[index + 0]; float t = rects[index + 1]; float r = rects[index + 2]; float b = rects[index + 3]; Vertex::set(vertex++, l, t); Vertex::set(vertex++, r, t); Vertex::set(vertex++, l, b); Vertex::set(vertex++, r, b); left = fminf(left, l); top = fminf(top, t); right = fmaxf(right, r); bottom = fmaxf(bottom, b); } if (clip && quickRejectSetupScissor(left, top, right, bottom)) { return DrawGlInfo::kStatusDone; } setupDraw(); setupDrawNoTexture(); setupDrawColor(color, ((color >> 24) & 0xFF) * currentSnapshot()->alpha); setupDrawShader(getShader(paint)); setupDrawColorFilter(getColorFilter(paint)); setupDrawBlending(paint); setupDrawProgram(); setupDrawDirtyRegionsDisabled(); setupDrawModelView(kModelViewMode_Translate, false, 0.0f, 0.0f, 0.0f, 0.0f, ignoreTransform); setupDrawColorUniforms(getShader(paint)); setupDrawShaderUniforms(getShader(paint)); setupDrawColorFilterUniforms(getColorFilter(paint)); if (dirty && hasLayer()) { dirtyLayer(left, top, right, bottom, *currentTransform()); } issueIndexedQuadDraw(&mesh[0], count / 4); return DrawGlInfo::kStatusDrew; } void OpenGLRenderer::drawColorRect(float left, float top, float right, float bottom, const SkPaint* paint, bool ignoreTransform) { int color = paint->getColor(); // If a shader is set, preserve only the alpha if (getShader(paint)) { color |= 0x00ffffff; } setupDraw(); setupDrawNoTexture(); setupDrawColor(color, ((color >> 24) & 0xFF) * currentSnapshot()->alpha); setupDrawShader(getShader(paint)); setupDrawColorFilter(getColorFilter(paint)); setupDrawBlending(paint); setupDrawProgram(); setupDrawModelView(kModelViewMode_TranslateAndScale, false, left, top, right, bottom, ignoreTransform); setupDrawColorUniforms(getShader(paint)); setupDrawShaderUniforms(getShader(paint), ignoreTransform); setupDrawColorFilterUniforms(getColorFilter(paint)); setupDrawSimpleMesh(); glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); } void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom, Texture* texture, const SkPaint* paint) { texture->setWrap(GL_CLAMP_TO_EDGE, true); GLvoid* vertices = (GLvoid*) NULL; GLvoid* texCoords = (GLvoid*) gMeshTextureOffset; if (texture->uvMapper) { vertices = &mMeshVertices[0].x; texCoords = &mMeshVertices[0].u; Rect uvs(0.0f, 0.0f, 1.0f, 1.0f); texture->uvMapper->map(uvs); resetDrawTextureTexCoords(uvs.left, uvs.top, uvs.right, uvs.bottom); } if (CC_LIKELY(currentTransform()->isPureTranslate())) { const float x = (int) floorf(left + currentTransform()->getTranslateX() + 0.5f); const float y = (int) floorf(top + currentTransform()->getTranslateY() + 0.5f); texture->setFilter(GL_NEAREST, true); drawTextureMesh(x, y, x + texture->width, y + texture->height, texture->id, paint, texture->blend, vertices, texCoords, GL_TRIANGLE_STRIP, gMeshCount, false, true); } else { texture->setFilter(getFilter(paint), true); drawTextureMesh(left, top, right, bottom, texture->id, paint, texture->blend, vertices, texCoords, GL_TRIANGLE_STRIP, gMeshCount); } if (texture->uvMapper) { resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); } } void OpenGLRenderer::drawTextureMesh(float left, float top, float right, float bottom, GLuint texture, const SkPaint* paint, bool blend, GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount, bool swapSrcDst, bool ignoreTransform, GLuint vbo, ModelViewMode modelViewMode, bool dirty) { int a; SkXfermode::Mode mode; getAlphaAndMode(paint, &a, &mode); const float alpha = a / 255.0f; setupDraw(); setupDrawWithTexture(); setupDrawColor(alpha, alpha, alpha, alpha); setupDrawColorFilter(getColorFilter(paint)); setupDrawBlending(paint, blend, swapSrcDst); setupDrawProgram(); if (!dirty) setupDrawDirtyRegionsDisabled(); setupDrawModelView(modelViewMode, false, left, top, right, bottom, ignoreTransform); setupDrawTexture(texture); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(getColorFilter(paint)); setupDrawMesh(vertices, texCoords, vbo); glDrawArrays(drawMode, 0, elementsCount); } void OpenGLRenderer::drawIndexedTextureMesh(float left, float top, float right, float bottom, GLuint texture, const SkPaint* paint, bool blend, GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount, bool swapSrcDst, bool ignoreTransform, GLuint vbo, ModelViewMode modelViewMode, bool dirty) { int a; SkXfermode::Mode mode; getAlphaAndMode(paint, &a, &mode); const float alpha = a / 255.0f; setupDraw(); setupDrawWithTexture(); setupDrawColor(alpha, alpha, alpha, alpha); setupDrawColorFilter(getColorFilter(paint)); setupDrawBlending(paint, blend, swapSrcDst); setupDrawProgram(); if (!dirty) setupDrawDirtyRegionsDisabled(); setupDrawModelView(modelViewMode, false, left, top, right, bottom, ignoreTransform); setupDrawTexture(texture); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(getColorFilter(paint)); setupDrawMeshIndices(vertices, texCoords, vbo); glDrawElements(drawMode, elementsCount, GL_UNSIGNED_SHORT, NULL); } void OpenGLRenderer::drawAlpha8TextureMesh(float left, float top, float right, float bottom, GLuint texture, const SkPaint* paint, GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount, bool ignoreTransform, ModelViewMode modelViewMode, bool dirty) { int color = paint != NULL ? paint->getColor() : 0; int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); setupDraw(); setupDrawWithTexture(true); if (paint != NULL) { setupDrawAlpha8Color(color, alpha); } setupDrawColorFilter(getColorFilter(paint)); setupDrawShader(getShader(paint)); setupDrawBlending(paint, true); setupDrawProgram(); if (!dirty) setupDrawDirtyRegionsDisabled(); setupDrawModelView(modelViewMode, false, left, top, right, bottom, ignoreTransform); setupDrawTexture(texture); setupDrawPureColorUniforms(); setupDrawColorFilterUniforms(getColorFilter(paint)); setupDrawShaderUniforms(getShader(paint), ignoreTransform); setupDrawMesh(vertices, texCoords); glDrawArrays(drawMode, 0, elementsCount); } void OpenGLRenderer::chooseBlending(bool blend, SkXfermode::Mode mode, ProgramDescription& description, bool swapSrcDst) { if (mSnapshot->roundRectClipState != NULL /*&& !mSkipOutlineClip*/) { blend = true; mDescription.hasRoundRectClip = true; } mSkipOutlineClip = true; if (mCountOverdraw) { if (!mCaches.blend) glEnable(GL_BLEND); if (mCaches.lastSrcMode != GL_ONE || mCaches.lastDstMode != GL_ONE) { glBlendFunc(GL_ONE, GL_ONE); } mCaches.blend = true; mCaches.lastSrcMode = GL_ONE; mCaches.lastDstMode = GL_ONE; return; } blend = blend || mode != SkXfermode::kSrcOver_Mode; if (blend) { // These blend modes are not supported by OpenGL directly and have // to be implemented using shaders. Since the shader will perform // the blending, turn blending off here // If the blend mode cannot be implemented using shaders, fall // back to the default SrcOver blend mode instead if (CC_UNLIKELY(mode > SkXfermode::kScreen_Mode)) { if (CC_UNLIKELY(mExtensions.hasFramebufferFetch())) { description.framebufferMode = mode; description.swapSrcDst = swapSrcDst; if (mCaches.blend) { glDisable(GL_BLEND); mCaches.blend = false; } return; } else { mode = SkXfermode::kSrcOver_Mode; } } if (!mCaches.blend) { glEnable(GL_BLEND); } GLenum sourceMode = swapSrcDst ? gBlendsSwap[mode].src : gBlends[mode].src; GLenum destMode = swapSrcDst ? gBlendsSwap[mode].dst : gBlends[mode].dst; if (sourceMode != mCaches.lastSrcMode || destMode != mCaches.lastDstMode) { glBlendFunc(sourceMode, destMode); mCaches.lastSrcMode = sourceMode; mCaches.lastDstMode = destMode; } } else if (mCaches.blend) { glDisable(GL_BLEND); } mCaches.blend = blend; } bool OpenGLRenderer::useProgram(Program* program) { if (!program->isInUse()) { if (mCaches.currentProgram != NULL) mCaches.currentProgram->remove(); program->use(); mCaches.currentProgram = program; return false; } return true; } void OpenGLRenderer::resetDrawTextureTexCoords(float u1, float v1, float u2, float v2) { TextureVertex* v = &mMeshVertices[0]; TextureVertex::setUV(v++, u1, v1); TextureVertex::setUV(v++, u2, v1); TextureVertex::setUV(v++, u1, v2); TextureVertex::setUV(v++, u2, v2); } void OpenGLRenderer::getAlphaAndMode(const SkPaint* paint, int* alpha, SkXfermode::Mode* mode) const { getAlphaAndModeDirect(paint, alpha, mode); if (mDrawModifiers.mOverrideLayerAlpha < 1.0f) { // if drawing a layer, ignore the paint's alpha *alpha = mDrawModifiers.mOverrideLayerAlpha * 255; } *alpha *= currentSnapshot()->alpha; } float OpenGLRenderer::getLayerAlpha(const Layer* layer) const { float alpha; if (mDrawModifiers.mOverrideLayerAlpha < 1.0f) { alpha = mDrawModifiers.mOverrideLayerAlpha; } else { alpha = layer->getAlpha() / 255.0f; } return alpha * currentSnapshot()->alpha; } }; // namespace uirenderer }; // namespace android