/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #include #include #include #include #include #include #include #include "OpenGLRenderer.h" namespace android { namespace uirenderer { /////////////////////////////////////////////////////////////////////////////// // Defines /////////////////////////////////////////////////////////////////////////////// #define RAD_TO_DEG (180.0f / 3.14159265f) #define MIN_ANGLE 0.001f // TODO: This should be set in properties #define ALPHA_THRESHOLD (0x7f / PANEL_BIT_DEPTH) /////////////////////////////////////////////////////////////////////////////// // Globals /////////////////////////////////////////////////////////////////////////////// /** * Structure mapping Skia xfermodes to OpenGL blending factors. */ struct Blender { SkXfermode::Mode mode; GLenum src; GLenum dst; }; // struct Blender // In this array, the index of each Blender equals the value of the first // entry. For instance, gBlends[1] == gBlends[SkXfermode::kSrc_Mode] static const Blender gBlends[] = { { SkXfermode::kClear_Mode, GL_ZERO, GL_ZERO }, { SkXfermode::kSrc_Mode, GL_ONE, GL_ZERO }, { SkXfermode::kDst_Mode, GL_ZERO, GL_ONE }, { SkXfermode::kSrcOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE }, { SkXfermode::kSrcIn_Mode, GL_DST_ALPHA, GL_ZERO }, { SkXfermode::kDstIn_Mode, GL_ZERO, GL_SRC_ALPHA }, { SkXfermode::kSrcOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kDstOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrcATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA }, { SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA } }; // This array contains the swapped version of each SkXfermode. For instance // this array's SrcOver blending mode is actually DstOver. You can refer to // createLayer() for more information on the purpose of this array. static const Blender gBlendsSwap[] = { { SkXfermode::kClear_Mode, GL_ZERO, GL_ZERO }, { SkXfermode::kSrc_Mode, GL_ZERO, GL_ONE }, { SkXfermode::kDst_Mode, GL_ONE, GL_ZERO }, { SkXfermode::kSrcOver_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE }, { SkXfermode::kDstOver_Mode, GL_ONE, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kSrcIn_Mode, GL_ZERO, GL_SRC_ALPHA }, { SkXfermode::kDstIn_Mode, GL_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrcOut_Mode, GL_ZERO, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kDstOut_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ZERO }, { SkXfermode::kSrcATop_Mode, GL_ONE_MINUS_DST_ALPHA, GL_SRC_ALPHA }, { SkXfermode::kDstATop_Mode, GL_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA }, { SkXfermode::kXor_Mode, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA } }; static const GLenum gTextureUnits[] = { GL_TEXTURE0, GL_TEXTURE1, GL_TEXTURE2 }; /////////////////////////////////////////////////////////////////////////////// // Constructors/destructor /////////////////////////////////////////////////////////////////////////////// OpenGLRenderer::OpenGLRenderer(): mCaches(Caches::getInstance()) { mShader = NULL; mColorFilter = NULL; mHasShadow = false; memcpy(mMeshVertices, gMeshVertices, sizeof(gMeshVertices)); mFirstSnapshot = new Snapshot; } OpenGLRenderer::~OpenGLRenderer() { // The context has already been destroyed at this point, do not call // GL APIs. All GL state should be kept in Caches.h } /////////////////////////////////////////////////////////////////////////////// // Setup /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setViewport(int width, int height) { glViewport(0, 0, width, height); mOrthoMatrix.loadOrtho(0, width, height, 0, -1, 1); mWidth = width; mHeight = height; mFirstSnapshot->height = height; mFirstSnapshot->viewport.set(0, 0, width, height); mDirtyClip = false; } void OpenGLRenderer::prepare(bool opaque) { mSnapshot = new Snapshot(mFirstSnapshot, SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); mSaveCount = 1; glViewport(0, 0, mWidth, mHeight); glDisable(GL_DITHER); if (!opaque) { glDisable(GL_SCISSOR_TEST); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); glEnable(GL_SCISSOR_TEST); } else { glEnable(GL_SCISSOR_TEST); glScissor(0, 0, mWidth, mHeight); dirtyClip(); } mSnapshot->setClip(0.0f, 0.0f, mWidth, mHeight); } void OpenGLRenderer::finish() { #if DEBUG_OPENGL GLenum status = GL_NO_ERROR; while ((status = glGetError()) != GL_NO_ERROR) { LOGD("GL error from OpenGLRenderer: 0x%x", status); } #endif } void OpenGLRenderer::acquireContext() { if (mCaches.currentProgram) { if (mCaches.currentProgram->isInUse()) { mCaches.currentProgram->remove(); mCaches.currentProgram = NULL; } } mCaches.unbindMeshBuffer(); } void OpenGLRenderer::releaseContext() { glViewport(0, 0, mSnapshot->viewport.getWidth(), mSnapshot->viewport.getHeight()); glEnable(GL_SCISSOR_TEST); dirtyClip(); glDisable(GL_DITHER); glBindFramebuffer(GL_FRAMEBUFFER, 0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); mCaches.blend = true; glEnable(GL_BLEND); glBlendFunc(mCaches.lastSrcMode, mCaches.lastDstMode); glBlendEquation(GL_FUNC_ADD); } /////////////////////////////////////////////////////////////////////////////// // State management /////////////////////////////////////////////////////////////////////////////// int OpenGLRenderer::getSaveCount() const { return mSaveCount; } int OpenGLRenderer::save(int flags) { return saveSnapshot(flags); } void OpenGLRenderer::restore() { if (mSaveCount > 1) { restoreSnapshot(); } } void OpenGLRenderer::restoreToCount(int saveCount) { if (saveCount < 1) saveCount = 1; while (mSaveCount > saveCount) { restoreSnapshot(); } } int OpenGLRenderer::saveSnapshot(int flags) { mSnapshot = new Snapshot(mSnapshot, flags); return mSaveCount++; } bool OpenGLRenderer::restoreSnapshot() { bool restoreClip = mSnapshot->flags & Snapshot::kFlagClipSet; bool restoreLayer = mSnapshot->flags & Snapshot::kFlagIsLayer; bool restoreOrtho = mSnapshot->flags & Snapshot::kFlagDirtyOrtho; sp current = mSnapshot; sp previous = mSnapshot->previous; if (restoreOrtho) { Rect& r = previous->viewport; glViewport(r.left, r.top, r.right, r.bottom); mOrthoMatrix.load(current->orthoMatrix); } mSaveCount--; mSnapshot = previous; if (restoreLayer) { composeLayer(current, previous); } if (restoreClip) { dirtyClip(); } return restoreClip; } /////////////////////////////////////////////////////////////////////////////// // Layers /////////////////////////////////////////////////////////////////////////////// int OpenGLRenderer::saveLayer(float left, float top, float right, float bottom, SkPaint* p, int flags) { const GLuint previousFbo = mSnapshot->fbo; const int count = saveSnapshot(flags); int alpha = 255; SkXfermode::Mode mode; if (p) { alpha = p->getAlpha(); if (!mCaches.extensions.hasFramebufferFetch()) { const bool isMode = SkXfermode::IsMode(p->getXfermode(), &mode); if (!isMode) { // Assume SRC_OVER mode = SkXfermode::kSrcOver_Mode; } } else { mode = getXfermode(p->getXfermode()); } } else { mode = SkXfermode::kSrcOver_Mode; } if (!mSnapshot->previous->invisible) { createLayer(mSnapshot, left, top, right, bottom, alpha, mode, flags, previousFbo); } return count; } int OpenGLRenderer::saveLayerAlpha(float left, float top, float right, float bottom, int alpha, int flags) { if (alpha == 0xff) { return saveLayer(left, top, right, bottom, NULL, flags); } else { SkPaint paint; paint.setAlpha(alpha); return saveLayer(left, top, right, bottom, &paint, flags); } } /** * Layers are viewed by Skia are slightly different than layers in image editing * programs (for instance.) When a layer is created, previously created layers * and the frame buffer still receive every drawing command. For instance, if a * layer is created and a shape intersecting the bounds of the layers and the * framebuffer is draw, the shape will be drawn on both (unless the layer was * created with the SkCanvas::kClipToLayer_SaveFlag flag.) * * A way to implement layers is to create an FBO for each layer, backed by an RGBA * texture. Unfortunately, this is inefficient as it requires every primitive to * be drawn n + 1 times, where n is the number of active layers. In practice this * means, for every primitive: * - Switch active frame buffer * - Change viewport, clip and projection matrix * - Issue the drawing * * Switching rendering target n + 1 times per drawn primitive is extremely costly. * To avoid this, layers are implemented in a different way here, at least in the * general case. FBOs are used, as an optimization, when the "clip to layer" flag * is set. When this flag is set we can redirect all drawing operations into a * single FBO. * * This implementation relies on the frame buffer being at least RGBA 8888. When * a layer is created, only a texture is created, not an FBO. The content of the * frame buffer contained within the layer's bounds is copied into this texture * using glCopyTexImage2D(). The layer's region is then cleared(1) in the frame * buffer and drawing continues as normal. This technique therefore treats the * frame buffer as a scratch buffer for the layers. * * To compose the layers back onto the frame buffer, each layer texture * (containing the original frame buffer data) is drawn as a simple quad over * the frame buffer. The trick is that the quad is set as the composition * destination in the blending equation, and the frame buffer becomes the source * of the composition. * * Drawing layers with an alpha value requires an extra step before composition. * An empty quad is drawn over the layer's region in the frame buffer. This quad * is drawn with the rgba color (0,0,0,alpha). The alpha value offered by the * quad is used to multiply the colors in the frame buffer. This is achieved by * changing the GL blend functions for the GL_FUNC_ADD blend equation to * GL_ZERO, GL_SRC_ALPHA. * * Because glCopyTexImage2D() can be slow, an alternative implementation might * be use to draw a single clipped layer. The implementation described above * is correct in every case. * * (1) The frame buffer is actually not cleared right away. To allow the GPU * to potentially optimize series of calls to glCopyTexImage2D, the frame * buffer is left untouched until the first drawing operation. Only when * something actually gets drawn are the layers regions cleared. */ bool OpenGLRenderer::createLayer(sp snapshot, float left, float top, float right, float bottom, int alpha, SkXfermode::Mode mode, int flags, GLuint previousFbo) { LAYER_LOGD("Requesting layer %.2fx%.2f", right - left, bottom - top); LAYER_LOGD("Layer cache size = %d", mCaches.layerCache.getSize()); const bool fboLayer = flags & SkCanvas::kClipToLayer_SaveFlag; // Window coordinates of the layer Rect bounds(left, top, right, bottom); if (fboLayer) { // Clear the previous layer regions before we change the viewport clearLayerRegions(); } else { mSnapshot->transform->mapRect(bounds); // Layers only make sense if they are in the framebuffer's bounds bounds.intersect(*snapshot->clipRect); // We cannot work with sub-pixels in this case bounds.snapToPixelBoundaries(); // When the layer is not an FBO, we may use glCopyTexImage so we // need to make sure the layer does not extend outside the bounds // of the framebuffer bounds.intersect(snapshot->previous->viewport); } if (bounds.isEmpty() || bounds.getWidth() > mCaches.maxTextureSize || bounds.getHeight() > mCaches.maxTextureSize) { snapshot->invisible = true; } else { // TODO: Should take the mode into account snapshot->invisible = snapshot->previous->invisible || (alpha <= ALPHA_THRESHOLD && fboLayer); } // Bail out if we won't draw in this snapshot if (snapshot->invisible) { return false; } glActiveTexture(GL_TEXTURE0); Layer* layer = mCaches.layerCache.get(bounds.getWidth(), bounds.getHeight()); if (!layer) { return false; } layer->mode = mode; layer->alpha = alpha; layer->layer.set(bounds); layer->texCoords.set(0.0f, bounds.getHeight() / float(layer->height), bounds.getWidth() / float(layer->width), 0.0f); // Save the layer in the snapshot snapshot->flags |= Snapshot::kFlagIsLayer; snapshot->layer = layer; if (fboLayer) { layer->fbo = mCaches.fboCache.get(); snapshot->flags |= Snapshot::kFlagIsFboLayer; snapshot->fbo = layer->fbo; snapshot->resetTransform(-bounds.left, -bounds.top, 0.0f); snapshot->resetClip(0.0f, 0.0f, bounds.getWidth(), bounds.getHeight()); snapshot->viewport.set(0.0f, 0.0f, bounds.getWidth(), bounds.getHeight()); snapshot->height = bounds.getHeight(); snapshot->flags |= Snapshot::kFlagDirtyOrtho; snapshot->orthoMatrix.load(mOrthoMatrix); // Bind texture to FBO glBindFramebuffer(GL_FRAMEBUFFER, layer->fbo); glBindTexture(GL_TEXTURE_2D, layer->texture); // Initialize the texture if needed if (layer->empty) { layer->empty = false; glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, layer->width, layer->height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); } glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, layer->texture, 0); #if DEBUG_LAYERS GLenum status = glCheckFramebufferStatus(GL_FRAMEBUFFER); if (status != GL_FRAMEBUFFER_COMPLETE) { LOGE("Framebuffer incomplete (GL error code 0x%x)", status); glBindFramebuffer(GL_FRAMEBUFFER, previousFbo); glDeleteTextures(1, &layer->texture); mCaches.fboCache.put(layer->fbo); delete layer; return false; } #endif // Clear the FBO glScissor(0.0f, 0.0f, bounds.getWidth() + 1.0f, bounds.getHeight() + 1.0f); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); dirtyClip(); // Change the ortho projection glViewport(0, 0, bounds.getWidth(), bounds.getHeight()); mOrthoMatrix.loadOrtho(0.0f, bounds.getWidth(), bounds.getHeight(), 0.0f, -1.0f, 1.0f); } else { // Copy the framebuffer into the layer glBindTexture(GL_TEXTURE_2D, layer->texture); if (layer->empty) { glCopyTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, bounds.left, snapshot->height - bounds.bottom, layer->width, layer->height, 0); layer->empty = false; } else { glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, bounds.left, snapshot->height - bounds.bottom, bounds.getWidth(), bounds.getHeight()); } // Enqueue the buffer coordinates to clear the corresponding region later mLayers.push(new Rect(bounds)); } return true; } /** * Read the documentation of createLayer() before doing anything in this method. */ void OpenGLRenderer::composeLayer(sp current, sp previous) { if (!current->layer) { LOGE("Attempting to compose a layer that does not exist"); return; } const bool fboLayer = current->flags & SkCanvas::kClipToLayer_SaveFlag; if (fboLayer) { // Unbind current FBO and restore previous one glBindFramebuffer(GL_FRAMEBUFFER, previous->fbo); } // Restore the clip from the previous snapshot Rect& clip(*previous->clipRect); clip.snapToPixelBoundaries(); glScissor(clip.left, previous->height - clip.bottom, clip.getWidth(), clip.getHeight()); Layer* layer = current->layer; const Rect& rect = layer->layer; if (!fboLayer && layer->alpha < 255) { drawColorRect(rect.left, rect.top, rect.right, rect.bottom, layer->alpha << 24, SkXfermode::kDstIn_Mode, true); } const Rect& texCoords = layer->texCoords; mCaches.unbindMeshBuffer(); resetDrawTextureTexCoords(texCoords.left, texCoords.top, texCoords.right, texCoords.bottom); glActiveTexture(gTextureUnits[0]); if (fboLayer) { drawTextureMesh(rect.left, rect.top, rect.right, rect.bottom, layer->texture, layer->alpha / 255.0f, layer->mode, layer->blend, &mMeshVertices[0].position[0], &mMeshVertices[0].texture[0], GL_TRIANGLE_STRIP, gMeshCount); } else { drawTextureMesh(rect.left, rect.top, rect.right, rect.bottom, layer->texture, 1.0f, layer->mode, layer->blend, &mMeshVertices[0].position[0], &mMeshVertices[0].texture[0], GL_TRIANGLE_STRIP, gMeshCount, true, true); } resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); if (fboLayer) { // Detach the texture from the FBO glBindFramebuffer(GL_FRAMEBUFFER, current->fbo); glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, 0, 0); glBindFramebuffer(GL_FRAMEBUFFER, previous->fbo); // Put the FBO name back in the cache, if it doesn't fit, it will be destroyed mCaches.fboCache.put(current->fbo); } dirtyClip(); // Failing to add the layer to the cache should happen only if the layer is too large if (!mCaches.layerCache.put(layer)) { LAYER_LOGD("Deleting layer"); glDeleteTextures(1, &layer->texture); delete layer; } } void OpenGLRenderer::setupDraw() { clearLayerRegions(); if (mDirtyClip) { setScissorFromClip(); } } void OpenGLRenderer::clearLayerRegions() { if (mLayers.size() == 0 || mSnapshot->invisible) return; for (uint32_t i = 0; i < mLayers.size(); i++) { Rect* bounds = mLayers.itemAt(i); // Clear the framebuffer where the layer will draw glScissor(bounds->left, mSnapshot->height - bounds->bottom, bounds->getWidth(), bounds->getHeight()); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); delete bounds; } mLayers.clear(); // Restore the clip dirtyClip(); } /////////////////////////////////////////////////////////////////////////////// // Transforms /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::translate(float dx, float dy) { mSnapshot->transform->translate(dx, dy, 0.0f); } void OpenGLRenderer::rotate(float degrees) { mSnapshot->transform->rotate(degrees, 0.0f, 0.0f, 1.0f); } void OpenGLRenderer::scale(float sx, float sy) { mSnapshot->transform->scale(sx, sy, 1.0f); } void OpenGLRenderer::setMatrix(SkMatrix* matrix) { mSnapshot->transform->load(*matrix); } const float* OpenGLRenderer::getMatrix() const { if (mSnapshot->fbo != 0) { return &mSnapshot->transform->data[0]; } return &mIdentity.data[0]; } void OpenGLRenderer::getMatrix(SkMatrix* matrix) { mSnapshot->transform->copyTo(*matrix); } void OpenGLRenderer::concatMatrix(SkMatrix* matrix) { SkMatrix transform; mSnapshot->transform->copyTo(transform); transform.preConcat(*matrix); mSnapshot->transform->load(transform); } /////////////////////////////////////////////////////////////////////////////// // Clipping /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setScissorFromClip() { Rect clip(*mSnapshot->clipRect); clip.snapToPixelBoundaries(); glScissor(clip.left, mSnapshot->height - clip.bottom, clip.getWidth(), clip.getHeight()); mDirtyClip = false; } const Rect& OpenGLRenderer::getClipBounds() { return mSnapshot->getLocalClip(); } bool OpenGLRenderer::quickReject(float left, float top, float right, float bottom) { if (mSnapshot->invisible) { return true; } Rect r(left, top, right, bottom); mSnapshot->transform->mapRect(r); r.snapToPixelBoundaries(); Rect clipRect(*mSnapshot->clipRect); clipRect.snapToPixelBoundaries(); return !clipRect.intersects(r); } bool OpenGLRenderer::clipRect(float left, float top, float right, float bottom, SkRegion::Op op) { bool clipped = mSnapshot->clip(left, top, right, bottom, op); if (clipped) { dirtyClip(); } return !mSnapshot->clipRect->isEmpty(); } /////////////////////////////////////////////////////////////////////////////// // Drawing /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::drawBitmap(SkBitmap* bitmap, float left, float top, SkPaint* paint) { const float right = left + bitmap->width(); const float bottom = top + bitmap->height(); if (quickReject(left, top, right, bottom)) { return; } glActiveTexture(GL_TEXTURE0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return; const AutoTexture autoCleanup(texture); drawTextureRect(left, top, right, bottom, texture, paint); } void OpenGLRenderer::drawBitmap(SkBitmap* bitmap, SkMatrix* matrix, SkPaint* paint) { Rect r(0.0f, 0.0f, bitmap->width(), bitmap->height()); const mat4 transform(*matrix); transform.mapRect(r); if (quickReject(r.left, r.top, r.right, r.bottom)) { return; } glActiveTexture(GL_TEXTURE0); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return; const AutoTexture autoCleanup(texture); drawTextureRect(r.left, r.top, r.right, r.bottom, texture, paint); } void OpenGLRenderer::drawBitmap(SkBitmap* bitmap, float srcLeft, float srcTop, float srcRight, float srcBottom, float dstLeft, float dstTop, float dstRight, float dstBottom, SkPaint* paint) { if (quickReject(dstLeft, dstTop, dstRight, dstBottom)) { return; } glActiveTexture(gTextureUnits[0]); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return; const AutoTexture autoCleanup(texture); setTextureWrapModes(texture, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_EDGE); const float width = texture->width; const float height = texture->height; const float u1 = srcLeft / width; const float v1 = srcTop / height; const float u2 = srcRight / width; const float v2 = srcBottom / height; mCaches.unbindMeshBuffer(); resetDrawTextureTexCoords(u1, v1, u2, v2); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); drawTextureMesh(dstLeft, dstTop, dstRight, dstBottom, texture->id, alpha / 255.0f, mode, texture->blend, &mMeshVertices[0].position[0], &mMeshVertices[0].texture[0], GL_TRIANGLE_STRIP, gMeshCount); resetDrawTextureTexCoords(0.0f, 0.0f, 1.0f, 1.0f); } void OpenGLRenderer::drawPatch(SkBitmap* bitmap, const int32_t* xDivs, const int32_t* yDivs, const uint32_t* colors, uint32_t width, uint32_t height, int8_t numColors, float left, float top, float right, float bottom, SkPaint* paint) { if (quickReject(left, top, right, bottom)) { return; } glActiveTexture(gTextureUnits[0]); Texture* texture = mCaches.textureCache.get(bitmap); if (!texture) return; const AutoTexture autoCleanup(texture); setTextureWrapModes(texture, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_EDGE); int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); const Patch* mesh = mCaches.patchCache.get(bitmap->width(), bitmap->height(), right - left, bottom - top, xDivs, yDivs, colors, width, height, numColors); if (mesh) { // Specify right and bottom as +1.0f from left/top to prevent scaling since the // patch mesh already defines the final size drawTextureMesh(left, top, left + 1.0f, top + 1.0f, texture->id, alpha / 255.0f, mode, texture->blend, (GLvoid*) 0, (GLvoid*) gMeshTextureOffset, GL_TRIANGLES, mesh->verticesCount, false, false, mesh->meshBuffer); } } void OpenGLRenderer::drawLines(float* points, int count, SkPaint* paint) { if (mSnapshot->invisible) return; int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); uint32_t color = paint->getColor(); const GLfloat a = alpha / 255.0f; const GLfloat r = a * ((color >> 16) & 0xFF) / 255.0f; const GLfloat g = a * ((color >> 8) & 0xFF) / 255.0f; const GLfloat b = a * ((color ) & 0xFF) / 255.0f; const bool isAA = paint->isAntiAlias(); if (isAA) { GLuint textureUnit = 0; glActiveTexture(gTextureUnits[textureUnit]); setupTextureAlpha8(mCaches.line.getTexture(), 0, 0, textureUnit, 0.0f, 0.0f, r, g, b, a, mode, false, true, (GLvoid*) 0, (GLvoid*) gMeshTextureOffset, mCaches.line.getMeshBuffer()); } else { setupColorRect(0.0f, 0.0f, 1.0f, 1.0f, r, g, b, a, mode, false); } const float strokeWidth = paint->getStrokeWidth(); const GLsizei elementsCount = isAA ? mCaches.line.getElementsCount() : gMeshCount; const GLenum drawMode = isAA ? GL_TRIANGLES : GL_TRIANGLE_STRIP; for (int i = 0; i < count; i += 4) { float tx = 0.0f; float ty = 0.0f; if (isAA) { mCaches.line.update(points[i], points[i + 1], points[i + 2], points[i + 3], strokeWidth, tx, ty); } else { ty = strokeWidth <= 1.0f ? 0.0f : -strokeWidth * 0.5f; } const float dx = points[i + 2] - points[i]; const float dy = points[i + 3] - points[i + 1]; const float mag = sqrtf(dx * dx + dy * dy); const float angle = acos(dx / mag); mModelView.loadTranslate(points[i], points[i + 1], 0.0f); if (angle > MIN_ANGLE || angle < -MIN_ANGLE) { mModelView.rotate(angle * RAD_TO_DEG, 0.0f, 0.0f, 1.0f); } mModelView.translate(tx, ty, 0.0f); if (!isAA) { float length = mCaches.line.getLength(points[i], points[i + 1], points[i + 2], points[i + 3]); mModelView.scale(length, strokeWidth, 1.0f); } mCaches.currentProgram->set(mOrthoMatrix, mModelView, *mSnapshot->transform); if (mShader) { mShader->updateTransforms(mCaches.currentProgram, mModelView, *mSnapshot); } glDrawArrays(drawMode, 0, elementsCount); } if (isAA) { glDisableVertexAttribArray(mCaches.currentProgram->getAttrib("texCoords")); } } void OpenGLRenderer::drawColor(int color, SkXfermode::Mode mode) { Rect& clip(*mSnapshot->clipRect); clip.snapToPixelBoundaries(); drawColorRect(clip.left, clip.top, clip.right, clip.bottom, color, mode, true); } void OpenGLRenderer::drawRect(float left, float top, float right, float bottom, SkPaint* p) { if (quickReject(left, top, right, bottom)) { return; } SkXfermode::Mode mode; if (!mCaches.extensions.hasFramebufferFetch()) { const bool isMode = SkXfermode::IsMode(p->getXfermode(), &mode); if (!isMode) { // Assume SRC_OVER mode = SkXfermode::kSrcOver_Mode; } } else { mode = getXfermode(p->getXfermode()); } // Skia draws using the color's alpha channel if < 255 // Otherwise, it uses the paint's alpha int color = p->getColor(); if (((color >> 24) & 0xff) == 255) { color |= p->getAlpha() << 24; } drawColorRect(left, top, right, bottom, color, mode); } void OpenGLRenderer::drawText(const char* text, int bytesCount, int count, float x, float y, SkPaint* paint) { if (text == NULL || count == 0 || (paint->getAlpha() == 0 && paint->getXfermode() == NULL)) { return; } if (mSnapshot->invisible) return; paint->setAntiAlias(true); float length = -1.0f; switch (paint->getTextAlign()) { case SkPaint::kCenter_Align: length = paint->measureText(text, bytesCount); x -= length / 2.0f; break; case SkPaint::kRight_Align: length = paint->measureText(text, bytesCount); x -= length; break; default: break; } int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); uint32_t color = paint->getColor(); const GLfloat a = alpha / 255.0f; const GLfloat r = a * ((color >> 16) & 0xFF) / 255.0f; const GLfloat g = a * ((color >> 8) & 0xFF) / 255.0f; const GLfloat b = a * ((color ) & 0xFF) / 255.0f; FontRenderer& fontRenderer = mCaches.fontRenderer.getFontRenderer(paint); fontRenderer.setFont(paint, SkTypeface::UniqueID(paint->getTypeface()), paint->getTextSize()); setupDraw(); if (mHasShadow) { glActiveTexture(gTextureUnits[0]); mCaches.dropShadowCache.setFontRenderer(fontRenderer); const ShadowTexture* shadow = mCaches.dropShadowCache.get(paint, text, bytesCount, count, mShadowRadius); const AutoTexture autoCleanup(shadow); setupShadow(shadow, x, y, mode, a); // Draw the mesh glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); glDisableVertexAttribArray(mCaches.currentProgram->getAttrib("texCoords")); } GLuint textureUnit = 0; glActiveTexture(gTextureUnits[textureUnit]); // Assume that the modelView matrix does not force scales, rotates, etc. const bool linearFilter = mSnapshot->transform->changesBounds(); setupTextureAlpha8(fontRenderer.getTexture(linearFilter), 0, 0, textureUnit, x, y, r, g, b, a, mode, false, true, NULL, NULL); const Rect& clip = mSnapshot->getLocalClip(); mCaches.unbindMeshBuffer(); fontRenderer.renderText(paint, &clip, text, 0, bytesCount, count, x, y); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glDisableVertexAttribArray(mCaches.currentProgram->getAttrib("texCoords")); drawTextDecorations(text, bytesCount, length, x, y, paint); } void OpenGLRenderer::drawPath(SkPath* path, SkPaint* paint) { if (mSnapshot->invisible) return; GLuint textureUnit = 0; glActiveTexture(gTextureUnits[textureUnit]); const PathTexture* texture = mCaches.pathCache.get(path, paint); if (!texture) return; const AutoTexture autoCleanup(texture); const float x = texture->left - texture->offset; const float y = texture->top - texture->offset; if (quickReject(x, y, x + texture->width, y + texture->height)) { return; } int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); uint32_t color = paint->getColor(); const GLfloat a = alpha / 255.0f; const GLfloat r = a * ((color >> 16) & 0xFF) / 255.0f; const GLfloat g = a * ((color >> 8) & 0xFF) / 255.0f; const GLfloat b = a * ((color ) & 0xFF) / 255.0f; setupTextureAlpha8(texture, textureUnit, x, y, r, g, b, a, mode, true, true); setupDraw(); // Draw the mesh glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); glDisableVertexAttribArray(mCaches.currentProgram->getAttrib("texCoords")); } /////////////////////////////////////////////////////////////////////////////// // Shaders /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetShader() { mShader = NULL; } void OpenGLRenderer::setupShader(SkiaShader* shader) { mShader = shader; if (mShader) { mShader->set(&mCaches.textureCache, &mCaches.gradientCache); } } /////////////////////////////////////////////////////////////////////////////// // Color filters /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetColorFilter() { mColorFilter = NULL; } void OpenGLRenderer::setupColorFilter(SkiaColorFilter* filter) { mColorFilter = filter; } /////////////////////////////////////////////////////////////////////////////// // Drop shadow /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::resetShadow() { mHasShadow = false; } void OpenGLRenderer::setupShadow(float radius, float dx, float dy, int color) { mHasShadow = true; mShadowRadius = radius; mShadowDx = dx; mShadowDy = dy; mShadowColor = color; } /////////////////////////////////////////////////////////////////////////////// // Drawing implementation /////////////////////////////////////////////////////////////////////////////// void OpenGLRenderer::setupShadow(const ShadowTexture* texture, float x, float y, SkXfermode::Mode mode, float alpha) { const float sx = x - texture->left + mShadowDx; const float sy = y - texture->top + mShadowDy; const int shadowAlpha = ((mShadowColor >> 24) & 0xFF); const GLfloat a = shadowAlpha < 255 ? shadowAlpha / 255.0f : alpha; const GLfloat r = a * ((mShadowColor >> 16) & 0xFF) / 255.0f; const GLfloat g = a * ((mShadowColor >> 8) & 0xFF) / 255.0f; const GLfloat b = a * ((mShadowColor ) & 0xFF) / 255.0f; GLuint textureUnit = 0; setupTextureAlpha8(texture, textureUnit, sx, sy, r, g, b, a, mode, true, false); } void OpenGLRenderer::setupTextureAlpha8(const Texture* texture, GLuint& textureUnit, float x, float y, float r, float g, float b, float a, SkXfermode::Mode mode, bool transforms, bool applyFilters) { setupTextureAlpha8(texture->id, texture->width, texture->height, textureUnit, x, y, r, g, b, a, mode, transforms, applyFilters, (GLvoid*) 0, (GLvoid*) gMeshTextureOffset); } void OpenGLRenderer::setupTextureAlpha8(GLuint texture, uint32_t width, uint32_t height, GLuint& textureUnit, float x, float y, float r, float g, float b, float a, SkXfermode::Mode mode, bool transforms, bool applyFilters) { setupTextureAlpha8(texture, width, height, textureUnit, x, y, r, g, b, a, mode, transforms, applyFilters, (GLvoid*) 0, (GLvoid*) gMeshTextureOffset); } void OpenGLRenderer::setupTextureAlpha8(GLuint texture, uint32_t width, uint32_t height, GLuint& textureUnit, float x, float y, float r, float g, float b, float a, SkXfermode::Mode mode, bool transforms, bool applyFilters, GLvoid* vertices, GLvoid* texCoords, GLuint vbo) { // Describe the required shaders ProgramDescription description; description.hasTexture = true; description.hasAlpha8Texture = true; const bool setColor = description.setAlpha8Color(r, g, b, a); if (applyFilters) { if (mShader) { mShader->describe(description, mCaches.extensions); } if (mColorFilter) { mColorFilter->describe(description, mCaches.extensions); } } // Setup the blending mode chooseBlending(true, mode, description); // Build and use the appropriate shader useProgram(mCaches.programCache.get(description)); bindTexture(texture); glUniform1i(mCaches.currentProgram->getUniform("sampler"), textureUnit); int texCoordsSlot = mCaches.currentProgram->getAttrib("texCoords"); glEnableVertexAttribArray(texCoordsSlot); if (texCoords) { // Setup attributes if (!vertices) { mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo); } else { mCaches.unbindMeshBuffer(); } glVertexAttribPointer(mCaches.currentProgram->position, 2, GL_FLOAT, GL_FALSE, gMeshStride, vertices); glVertexAttribPointer(texCoordsSlot, 2, GL_FLOAT, GL_FALSE, gMeshStride, texCoords); } // Setup uniforms if (transforms) { mModelView.loadTranslate(x, y, 0.0f); mModelView.scale(width, height, 1.0f); } else { mModelView.loadIdentity(); } mCaches.currentProgram->set(mOrthoMatrix, mModelView, *mSnapshot->transform); if (setColor) { mCaches.currentProgram->setColor(r, g, b, a); } textureUnit++; if (applyFilters) { // Setup attributes and uniforms required by the shaders if (mShader) { mShader->setupProgram(mCaches.currentProgram, mModelView, *mSnapshot, &textureUnit); } if (mColorFilter) { mColorFilter->setupProgram(mCaches.currentProgram); } } } // Same values used by Skia #define kStdStrikeThru_Offset (-6.0f / 21.0f) #define kStdUnderline_Offset (1.0f / 9.0f) #define kStdUnderline_Thickness (1.0f / 18.0f) void OpenGLRenderer::drawTextDecorations(const char* text, int bytesCount, float length, float x, float y, SkPaint* paint) { // Handle underline and strike-through uint32_t flags = paint->getFlags(); if (flags & (SkPaint::kUnderlineText_Flag | SkPaint::kStrikeThruText_Flag)) { float underlineWidth = length; // If length is > 0.0f, we already measured the text for the text alignment if (length <= 0.0f) { underlineWidth = paint->measureText(text, bytesCount); } float offsetX = 0; switch (paint->getTextAlign()) { case SkPaint::kCenter_Align: offsetX = underlineWidth * 0.5f; break; case SkPaint::kRight_Align: offsetX = underlineWidth; break; default: break; } if (underlineWidth > 0.0f) { const float textSize = paint->getTextSize(); const float strokeWidth = textSize * kStdUnderline_Thickness; const float left = x - offsetX; float top = 0.0f; const int pointsCount = 4 * (flags & SkPaint::kStrikeThruText_Flag ? 2 : 1); float points[pointsCount]; int currentPoint = 0; if (flags & SkPaint::kUnderlineText_Flag) { top = y + textSize * kStdUnderline_Offset; points[currentPoint++] = left; points[currentPoint++] = top; points[currentPoint++] = left + underlineWidth; points[currentPoint++] = top; } if (flags & SkPaint::kStrikeThruText_Flag) { top = y + textSize * kStdStrikeThru_Offset; points[currentPoint++] = left; points[currentPoint++] = top; points[currentPoint++] = left + underlineWidth; points[currentPoint++] = top; } SkPaint linesPaint(*paint); linesPaint.setStrokeWidth(strokeWidth); drawLines(&points[0], pointsCount, &linesPaint); } } } void OpenGLRenderer::drawColorRect(float left, float top, float right, float bottom, int color, SkXfermode::Mode mode, bool ignoreTransform) { setupDraw(); // If a shader is set, preserve only the alpha if (mShader) { color |= 0x00ffffff; } // Render using pre-multiplied alpha const int alpha = (color >> 24) & 0xFF; const GLfloat a = alpha / 255.0f; const GLfloat r = a * ((color >> 16) & 0xFF) / 255.0f; const GLfloat g = a * ((color >> 8) & 0xFF) / 255.0f; const GLfloat b = a * ((color ) & 0xFF) / 255.0f; setupColorRect(left, top, right, bottom, r, g, b, a, mode, ignoreTransform); // Draw the mesh glDrawArrays(GL_TRIANGLE_STRIP, 0, gMeshCount); } void OpenGLRenderer::setupColorRect(float left, float top, float right, float bottom, float r, float g, float b, float a, SkXfermode::Mode mode, bool ignoreTransform) { GLuint textureUnit = 0; // Describe the required shaders ProgramDescription description; const bool setColor = description.setColor(r, g, b, a); if (mShader) { mShader->describe(description, mCaches.extensions); } if (mColorFilter) { mColorFilter->describe(description, mCaches.extensions); } // Setup the blending mode chooseBlending(a < 1.0f || (mShader && mShader->blend()), mode, description); // Build and use the appropriate shader useProgram(mCaches.programCache.get(description)); // Setup attributes mCaches.bindMeshBuffer(); glVertexAttribPointer(mCaches.currentProgram->position, 2, GL_FLOAT, GL_FALSE, gMeshStride, 0); // Setup uniforms mModelView.loadTranslate(left, top, 0.0f); mModelView.scale(right - left, bottom - top, 1.0f); if (!ignoreTransform) { mCaches.currentProgram->set(mOrthoMatrix, mModelView, *mSnapshot->transform); } else { mat4 identity; mCaches.currentProgram->set(mOrthoMatrix, mModelView, identity); } mCaches.currentProgram->setColor(r, g, b, a); // Setup attributes and uniforms required by the shaders if (mShader) { mShader->setupProgram(mCaches.currentProgram, mModelView, *mSnapshot, &textureUnit); } if (mColorFilter) { mColorFilter->setupProgram(mCaches.currentProgram); } } void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom, Texture* texture, SkPaint* paint) { int alpha; SkXfermode::Mode mode; getAlphaAndMode(paint, &alpha, &mode); setTextureWrapModes(texture, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_EDGE); drawTextureMesh(left, top, right, bottom, texture->id, alpha / 255.0f, mode, texture->blend, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount); } void OpenGLRenderer::drawTextureRect(float left, float top, float right, float bottom, GLuint texture, float alpha, SkXfermode::Mode mode, bool blend) { drawTextureMesh(left, top, right, bottom, texture, alpha, mode, blend, (GLvoid*) NULL, (GLvoid*) gMeshTextureOffset, GL_TRIANGLE_STRIP, gMeshCount); } void OpenGLRenderer::drawTextureMesh(float left, float top, float right, float bottom, GLuint texture, float alpha, SkXfermode::Mode mode, bool blend, GLvoid* vertices, GLvoid* texCoords, GLenum drawMode, GLsizei elementsCount, bool swapSrcDst, bool ignoreTransform, GLuint vbo) { setupDraw(); ProgramDescription description; description.hasTexture = true; const bool setColor = description.setColor(alpha, alpha, alpha, alpha); if (mColorFilter) { mColorFilter->describe(description, mCaches.extensions); } mModelView.loadTranslate(left, top, 0.0f); mModelView.scale(right - left, bottom - top, 1.0f); chooseBlending(blend || alpha < 1.0f, mode, description, swapSrcDst); useProgram(mCaches.programCache.get(description)); if (!ignoreTransform) { mCaches.currentProgram->set(mOrthoMatrix, mModelView, *mSnapshot->transform); } else { mat4 m; mCaches.currentProgram->set(mOrthoMatrix, mModelView, m); } // Texture bindTexture(texture); glUniform1i(mCaches.currentProgram->getUniform("sampler"), 0); // Always premultiplied if (setColor) { mCaches.currentProgram->setColor(alpha, alpha, alpha, alpha); } // Mesh int texCoordsSlot = mCaches.currentProgram->getAttrib("texCoords"); glEnableVertexAttribArray(texCoordsSlot); if (!vertices) { mCaches.bindMeshBuffer(vbo == 0 ? mCaches.meshBuffer : vbo); } else { mCaches.unbindMeshBuffer(); } glVertexAttribPointer(mCaches.currentProgram->position, 2, GL_FLOAT, GL_FALSE, gMeshStride, vertices); glVertexAttribPointer(texCoordsSlot, 2, GL_FLOAT, GL_FALSE, gMeshStride, texCoords); // Color filter if (mColorFilter) { mColorFilter->setupProgram(mCaches.currentProgram); } glDrawArrays(drawMode, 0, elementsCount); glDisableVertexAttribArray(texCoordsSlot); } void OpenGLRenderer::chooseBlending(bool blend, SkXfermode::Mode mode, ProgramDescription& description, bool swapSrcDst) { blend = blend || mode != SkXfermode::kSrcOver_Mode; if (blend) { if (mode < SkXfermode::kPlus_Mode) { if (!mCaches.blend) { glEnable(GL_BLEND); } GLenum sourceMode = swapSrcDst ? gBlendsSwap[mode].src : gBlends[mode].src; GLenum destMode = swapSrcDst ? gBlendsSwap[mode].dst : gBlends[mode].dst; if (sourceMode != mCaches.lastSrcMode || destMode != mCaches.lastDstMode) { glBlendFunc(sourceMode, destMode); mCaches.lastSrcMode = sourceMode; mCaches.lastDstMode = destMode; } } else { // These blend modes are not supported by OpenGL directly and have // to be implemented using shaders. Since the shader will perform // the blending, turn blending off here if (mCaches.extensions.hasFramebufferFetch()) { description.framebufferMode = mode; description.swapSrcDst = swapSrcDst; } if (mCaches.blend) { glDisable(GL_BLEND); } blend = false; } } else if (mCaches.blend) { glDisable(GL_BLEND); } mCaches.blend = blend; } bool OpenGLRenderer::useProgram(Program* program) { if (!program->isInUse()) { if (mCaches.currentProgram != NULL) mCaches.currentProgram->remove(); program->use(); mCaches.currentProgram = program; return false; } return true; } void OpenGLRenderer::resetDrawTextureTexCoords(float u1, float v1, float u2, float v2) { TextureVertex* v = &mMeshVertices[0]; TextureVertex::setUV(v++, u1, v1); TextureVertex::setUV(v++, u2, v1); TextureVertex::setUV(v++, u1, v2); TextureVertex::setUV(v++, u2, v2); } void OpenGLRenderer::getAlphaAndMode(SkPaint* paint, int* alpha, SkXfermode::Mode* mode) { if (paint) { if (!mCaches.extensions.hasFramebufferFetch()) { const bool isMode = SkXfermode::IsMode(paint->getXfermode(), mode); if (!isMode) { // Assume SRC_OVER *mode = SkXfermode::kSrcOver_Mode; } } else { *mode = getXfermode(paint->getXfermode()); } // Skia draws using the color's alpha channel if < 255 // Otherwise, it uses the paint's alpha int color = paint->getColor(); *alpha = (color >> 24) & 0xFF; if (*alpha == 255) { *alpha = paint->getAlpha(); } } else { *mode = SkXfermode::kSrcOver_Mode; *alpha = 255; } } SkXfermode::Mode OpenGLRenderer::getXfermode(SkXfermode* mode) { if (mode == NULL) { return SkXfermode::kSrcOver_Mode; } return mode->fMode; } void OpenGLRenderer::setTextureWrapModes(Texture* texture, GLenum wrapS, GLenum wrapT) { bool bound = false; if (wrapS != texture->wrapS) { glBindTexture(GL_TEXTURE_2D, texture->id); bound = true; glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, wrapS); texture->wrapS = wrapS; } if (wrapT != texture->wrapT) { if (!bound) { glBindTexture(GL_TEXTURE_2D, texture->id); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, wrapT); texture->wrapT = wrapT; } } }; // namespace uirenderer }; // namespace android