/* * Copyright (C) 2010 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_HWUI_RECT_H #define ANDROID_HWUI_RECT_H #include #include #include #include #include "Vertex.h" namespace android { namespace uirenderer { #define RECT_STRING "%5.2f %5.2f %5.2f %5.2f" #define RECT_ARGS(r) \ (r).left, (r).top, (r).right, (r).bottom #define SK_RECT_ARGS(r) \ (r).left(), (r).top(), (r).right(), (r).bottom() /////////////////////////////////////////////////////////////////////////////// // Structs /////////////////////////////////////////////////////////////////////////////// class Rect { public: float left; float top; float right; float bottom; // Used by Region typedef float value_type; // we don't provide copy-ctor and operator= on purpose // because we want the compiler generated versions inline Rect(): left(0), top(0), right(0), bottom(0) { } inline Rect(float left, float top, float right, float bottom): left(left), top(top), right(right), bottom(bottom) { } inline Rect(float width, float height): left(0.0f), top(0.0f), right(width), bottom(height) { } inline Rect(const SkRect& rect): left(rect.fLeft), top(rect.fTop), right(rect.fRight), bottom(rect.fBottom) { } friend int operator==(const Rect& a, const Rect& b) { return !memcmp(&a, &b, sizeof(a)); } friend int operator!=(const Rect& a, const Rect& b) { return memcmp(&a, &b, sizeof(a)); } inline void clear() { left = top = right = bottom = 0.0f; } inline bool isEmpty() const { // this is written in such way this it'll handle NANs to return // true (empty) return !((left < right) && (top < bottom)); } inline void setEmpty() { left = top = right = bottom = 0.0f; } inline void set(float left, float top, float right, float bottom) { this->left = left; this->right = right; this->top = top; this->bottom = bottom; } inline void set(const Rect& r) { set(r.left, r.top, r.right, r.bottom); } inline void set(const SkIRect& r) { set(r.left(), r.top(), r.right(), r.bottom()); } inline float getWidth() const { return right - left; } inline float getHeight() const { return bottom - top; } bool intersects(float l, float t, float r, float b) const { return !intersectWith(l, t, r, b).isEmpty(); } bool intersects(const Rect& r) const { return intersects(r.left, r.top, r.right, r.bottom); } bool intersect(float l, float t, float r, float b) { Rect tmp(l, t, r, b); intersectWith(tmp); if (!tmp.isEmpty()) { set(tmp); return true; } return false; } bool intersect(const Rect& r) { return intersect(r.left, r.top, r.right, r.bottom); } inline bool contains(float l, float t, float r, float b) const { return l >= left && t >= top && r <= right && b <= bottom; } inline bool contains(const Rect& r) const { return contains(r.left, r.top, r.right, r.bottom); } bool unionWith(const Rect& r) { if (r.left < r.right && r.top < r.bottom) { if (left < right && top < bottom) { if (left > r.left) left = r.left; if (top > r.top) top = r.top; if (right < r.right) right = r.right; if (bottom < r.bottom) bottom = r.bottom; return true; } else { left = r.left; top = r.top; right = r.right; bottom = r.bottom; return true; } } return false; } void translate(float dx, float dy) { left += dx; right += dx; top += dy; bottom += dy; } void inset(float delta) { outset(-delta); } void outset(float delta) { left -= delta; top -= delta; right += delta; bottom += delta; } void outset(float xdelta, float ydelta) { left -= xdelta; top -= ydelta; right += xdelta; bottom += ydelta; } /** * Similar to snapToPixelBoundaries, but estimates bounds conservatively to handle GL rounding * errors. * * This function should be used whenever estimating the damage rect of geometry already mapped * into layer space. */ void snapGeometryToPixelBoundaries(bool snapOut) { if (snapOut) { /* For AA geometry with a ramp perimeter, don't snap by rounding - AA geometry will have * a 0.5 pixel perimeter not accounted for in its bounds. Instead, snap by * conservatively rounding out the bounds with floor/ceil. * * In order to avoid changing integer bounds with floor/ceil due to rounding errors * inset the bounds first by the fudge factor. Very small fraction-of-a-pixel errors * from this inset will only incur similarly small errors in output, due to transparency * in extreme outside of the geometry. */ left = floorf(left + Vertex::GeometryFudgeFactor()); top = floorf(top + Vertex::GeometryFudgeFactor()); right = ceilf(right - Vertex::GeometryFudgeFactor()); bottom = ceilf(bottom - Vertex::GeometryFudgeFactor()); } else { /* For other geometry, we do the regular rounding in order to snap, but also outset the * bounds by a fudge factor. This ensures that ambiguous geometry (e.g. a non-AA Rect * with top left at (0.5, 0.5)) will err on the side of a larger damage rect. */ left = floorf(left + 0.5f - Vertex::GeometryFudgeFactor()); top = floorf(top + 0.5f - Vertex::GeometryFudgeFactor()); right = floorf(right + 0.5f + Vertex::GeometryFudgeFactor()); bottom = floorf(bottom + 0.5f + Vertex::GeometryFudgeFactor()); } } void snapToPixelBoundaries() { left = floorf(left + 0.5f); top = floorf(top + 0.5f); right = floorf(right + 0.5f); bottom = floorf(bottom + 0.5f); } void roundOut() { left = floorf(left); top = floorf(top); right = ceilf(right); bottom = ceilf(bottom); } void expandToCoverVertex(float x, float y) { left = std::min(left, x); top = std::min(top, y); right = std::max(right, x); bottom = std::max(bottom, y); } void expandToCoverRect(float otherLeft, float otherTop, float otherRight, float otherBottom) { left = std::min(left, otherLeft); top = std::min(top, otherTop); right = std::max(right, otherRight); bottom = std::max(bottom, otherBottom); } SkRect toSkRect() const { return SkRect::MakeLTRB(left, top, right, bottom); } SkIRect toSkIRect() const { return SkIRect::MakeLTRB(left, top, right, bottom); } void dump(const char* label = nullptr) const { ALOGD("%s[l=%f t=%f r=%f b=%f]", label ? label : "Rect", left, top, right, bottom); } private: void intersectWith(Rect& tmp) const { tmp.left = std::max(left, tmp.left); tmp.top = std::max(top, tmp.top); tmp.right = std::min(right, tmp.right); tmp.bottom = std::min(bottom, tmp.bottom); } Rect intersectWith(float l, float t, float r, float b) const { Rect tmp; tmp.left = std::max(left, l); tmp.top = std::max(top, t); tmp.right = std::min(right, r); tmp.bottom = std::min(bottom, b); return tmp; } }; // class Rect }; // namespace uirenderer }; // namespace android #endif // ANDROID_HWUI_RECT_H