/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_VIEW #define LOG_TAG "RenderNode" #include "RenderNode.h" #include #include #include #include #include "DamageAccumulator.h" #include "Debug.h" #include "DisplayListOp.h" #include "DisplayListLogBuffer.h" #include "LayerRenderer.h" #include "OpenGLRenderer.h" #include "utils/MathUtils.h" namespace android { namespace uirenderer { void RenderNode::outputLogBuffer(int fd) { DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance(); if (logBuffer.isEmpty()) { return; } FILE *file = fdopen(fd, "a"); fprintf(file, "\nRecent DisplayList operations\n"); logBuffer.outputCommands(file); String8 cachesLog; Caches::getInstance().dumpMemoryUsage(cachesLog); fprintf(file, "\nCaches:\n%s", cachesLog.string()); fprintf(file, "\n"); fflush(file); } RenderNode::RenderNode() : mDirtyPropertyFields(0) , mNeedsDisplayListDataSync(false) , mDisplayListData(0) , mStagingDisplayListData(0) , mNeedsAnimatorsSync(false) , mLayer(0) { } RenderNode::~RenderNode() { delete mDisplayListData; delete mStagingDisplayListData; LayerRenderer::destroyLayerDeferred(mLayer); } void RenderNode::setStagingDisplayList(DisplayListData* data) { mNeedsDisplayListDataSync = true; delete mStagingDisplayListData; mStagingDisplayListData = data; if (mStagingDisplayListData) { Caches::getInstance().registerFunctors(mStagingDisplayListData->functorCount); } } /** * This function is a simplified version of replay(), where we simply retrieve and log the * display list. This function should remain in sync with the replay() function. */ void RenderNode::output(uint32_t level) { ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this, getName(), isRenderable()); ALOGD("%*s%s %d", level * 2, "", "Save", SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); properties().debugOutputProperties(level); int flags = DisplayListOp::kOpLogFlag_Recurse; for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) { mDisplayListData->displayListOps[i]->output(level, flags); } ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, getName()); } int RenderNode::getDebugSize() { int size = sizeof(RenderNode); if (mStagingDisplayListData) { size += mStagingDisplayListData->allocator.usedSize(); } if (mDisplayListData && mDisplayListData != mStagingDisplayListData) { size += mDisplayListData->allocator.usedSize(); } return size; } void RenderNode::prepareTree(TreeInfo& info) { ATRACE_CALL(); prepareTreeImpl(info); } void RenderNode::damageSelf(TreeInfo& info) { if (isRenderable()) { if (properties().getClipDamageToBounds()) { info.damageAccumulator->dirty(0, 0, properties().getWidth(), properties().getHeight()); } else { // Hope this is big enough? // TODO: Get this from the display list ops or something info.damageAccumulator->dirty(INT_MIN, INT_MIN, INT_MAX, INT_MAX); } } } void RenderNode::prepareLayer(TreeInfo& info) { LayerType layerType = properties().layerProperties().type(); if (CC_UNLIKELY(layerType == kLayerTypeRenderLayer)) { // We push a null transform here as we don't care what the existing dirty // area is, only what our display list dirty is as well as our children's // dirty area info.damageAccumulator->pushNullTransform(); } } void RenderNode::pushLayerUpdate(TreeInfo& info) { LayerType layerType = properties().layerProperties().type(); // If we are not a layer OR we cannot be rendered (eg, view was detached) // we need to destroy any Layers we may have had previously if (CC_LIKELY(layerType != kLayerTypeRenderLayer) || CC_UNLIKELY(!isRenderable())) { if (layerType == kLayerTypeRenderLayer) { info.damageAccumulator->popTransform(); } if (CC_UNLIKELY(mLayer)) { LayerRenderer::destroyLayer(mLayer); mLayer = NULL; } return; } if (!mLayer) { mLayer = LayerRenderer::createRenderLayer(getWidth(), getHeight()); applyLayerPropertiesToLayer(info); damageSelf(info); } else if (mLayer->layer.getWidth() != getWidth() || mLayer->layer.getHeight() != getHeight()) { LayerRenderer::resizeLayer(mLayer, getWidth(), getHeight()); damageSelf(info); } SkRect dirty; info.damageAccumulator->peekAtDirty(&dirty); info.damageAccumulator->popTransform(); if (!dirty.isEmpty()) { mLayer->updateDeferred(this, dirty.fLeft, dirty.fTop, dirty.fRight, dirty.fBottom); } // This is not inside the above if because we may have called // updateDeferred on a previous prepare pass that didn't have a renderer if (info.renderer && mLayer->deferredUpdateScheduled) { info.renderer->pushLayerUpdate(mLayer); } } void RenderNode::prepareTreeImpl(TreeInfo& info) { info.damageAccumulator->pushTransform(this); if (info.mode == TreeInfo::MODE_FULL) { pushStagingPropertiesChanges(info); evaluateAnimations(info); } else if (info.mode == TreeInfo::MODE_MAYBE_DETACHING) { pushStagingPropertiesChanges(info); } else if (info.mode == TreeInfo::MODE_RT_ONLY) { evaluateAnimations(info); } prepareLayer(info); if (info.mode == TreeInfo::MODE_FULL) { pushStagingDisplayListChanges(info); } prepareSubTree(info, mDisplayListData); pushLayerUpdate(info); info.damageAccumulator->popTransform(); } class PushAnimatorsFunctor { public: PushAnimatorsFunctor(RenderNode* target, TreeInfo& info) : mTarget(target), mInfo(info) {} bool operator() (const sp& animator) { animator->setupStartValueIfNecessary(mTarget, mInfo); return animator->isFinished(); } private: RenderNode* mTarget; TreeInfo& mInfo; }; void RenderNode::pushStagingPropertiesChanges(TreeInfo& info) { // Push the animators first so that setupStartValueIfNecessary() is called // before properties() is trampled by stagingProperties(), as they are // required by some animators. if (mNeedsAnimatorsSync) { mAnimators.resize(mStagingAnimators.size()); std::vector< sp >::iterator it; PushAnimatorsFunctor functor(this, info); // hint: this means copy_if_not() it = std::remove_copy_if(mStagingAnimators.begin(), mStagingAnimators.end(), mAnimators.begin(), functor); mAnimators.resize(std::distance(mAnimators.begin(), it)); } if (mDirtyPropertyFields) { mDirtyPropertyFields = 0; damageSelf(info); info.damageAccumulator->popTransform(); mProperties = mStagingProperties; applyLayerPropertiesToLayer(info); // We could try to be clever and only re-damage if the matrix changed. // However, we don't need to worry about that. The cost of over-damaging // here is only going to be a single additional map rect of this node // plus a rect join(). The parent's transform (and up) will only be // performed once. info.damageAccumulator->pushTransform(this); damageSelf(info); } } void RenderNode::applyLayerPropertiesToLayer(TreeInfo& info) { if (CC_LIKELY(!mLayer)) return; const LayerProperties& props = properties().layerProperties(); mLayer->setAlpha(props.alpha(), props.xferMode()); mLayer->setColorFilter(props.colorFilter()); mLayer->setBlend(props.needsBlending()); } void RenderNode::pushStagingDisplayListChanges(TreeInfo& info) { if (mNeedsDisplayListDataSync) { mNeedsDisplayListDataSync = false; // Do a push pass on the old tree to handle freeing DisplayListData // that are no longer used TreeInfo oldTreeInfo(TreeInfo::MODE_MAYBE_DETACHING); oldTreeInfo.damageAccumulator = info.damageAccumulator; prepareSubTree(oldTreeInfo, mDisplayListData); delete mDisplayListData; mDisplayListData = mStagingDisplayListData; mStagingDisplayListData = 0; damageSelf(info); } } class AnimateFunctor { public: AnimateFunctor(RenderNode* target, TreeInfo& info) : mTarget(target), mInfo(info) {} bool operator() (const sp& animator) { return animator->animate(mTarget, mInfo); } private: RenderNode* mTarget; TreeInfo& mInfo; }; void RenderNode::evaluateAnimations(TreeInfo& info) { if (!mAnimators.size()) return; // TODO: Can we target this better? For now treat it like any other staging // property push and just damage self before and after animators are run damageSelf(info); info.damageAccumulator->popTransform(); AnimateFunctor functor(this, info); std::vector< sp >::iterator newEnd; newEnd = std::remove_if(mAnimators.begin(), mAnimators.end(), functor); mAnimators.erase(newEnd, mAnimators.end()); mProperties.updateMatrix(); info.out.hasAnimations |= mAnimators.size(); info.damageAccumulator->pushTransform(this); damageSelf(info); } void RenderNode::prepareSubTree(TreeInfo& info, DisplayListData* subtree) { if (subtree) { TextureCache& cache = Caches::getInstance().textureCache; info.out.hasFunctors |= subtree->functorCount; // TODO: Fix ownedBitmapResources to not require disabling prepareTextures // and thus falling out of async drawing path. if (subtree->ownedBitmapResources.size()) { info.prepareTextures = false; } for (size_t i = 0; info.prepareTextures && i < subtree->bitmapResources.size(); i++) { info.prepareTextures = cache.prefetchAndMarkInUse(subtree->bitmapResources[i]); } for (size_t i = 0; i < subtree->children().size(); i++) { DrawDisplayListOp* op = subtree->children()[i]; RenderNode* childNode = op->mDisplayList; info.damageAccumulator->pushTransform(&op->mTransformFromParent); childNode->prepareTreeImpl(info); info.damageAccumulator->popTransform(); } } } /* * For property operations, we pass a savecount of 0, since the operations aren't part of the * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in * base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount()) */ #define PROPERTY_SAVECOUNT 0 template void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler) { #if DEBUG_DISPLAY_LIST properties().debugOutputProperties(handler.level() + 1); #endif if (properties().getLeft() != 0 || properties().getTop() != 0) { renderer.translate(properties().getLeft(), properties().getTop()); } if (properties().getStaticMatrix()) { renderer.concatMatrix(*properties().getStaticMatrix()); } else if (properties().getAnimationMatrix()) { renderer.concatMatrix(*properties().getAnimationMatrix()); } if (properties().hasTransformMatrix()) { if (properties().isTransformTranslateOnly()) { renderer.translate(properties().getTranslationX(), properties().getTranslationY()); } else { renderer.concatMatrix(*properties().getTransformMatrix()); } } const bool isLayer = properties().layerProperties().type() != kLayerTypeNone; bool clipToBoundsNeeded = isLayer ? false : properties().getClipToBounds(); if (properties().getAlpha() < 1) { if (isLayer) { renderer.setOverrideLayerAlpha(properties().getAlpha()); } else if (!properties().getHasOverlappingRendering()) { renderer.scaleAlpha(properties().getAlpha()); } else { // TODO: should be able to store the size of a DL at record time and not // have to pass it into this call. In fact, this information might be in the // location/size info that we store with the new native transform data. int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag; if (clipToBoundsNeeded) { saveFlags |= SkCanvas::kClipToLayer_SaveFlag; clipToBoundsNeeded = false; // clipping done by saveLayer } SaveLayerOp* op = new (handler.allocator()) SaveLayerOp( 0, 0, properties().getWidth(), properties().getHeight(), properties().getAlpha() * 255, saveFlags); handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); } } if (clipToBoundsNeeded) { ClipRectOp* op = new (handler.allocator()) ClipRectOp( 0, 0, properties().getWidth(), properties().getHeight(), SkRegion::kIntersect_Op); handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); } if (CC_UNLIKELY(properties().hasClippingPath())) { ClipPathOp* op = new (handler.allocator()) ClipPathOp( properties().getClippingPath(), properties().getClippingPathOp()); handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); } } /** * Apply property-based transformations to input matrix * * If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4 * matrix computation instead of the Skia 3x3 matrix + camera hackery. */ void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) { if (properties().getLeft() != 0 || properties().getTop() != 0) { matrix.translate(properties().getLeft(), properties().getTop()); } if (properties().getStaticMatrix()) { mat4 stat(*properties().getStaticMatrix()); matrix.multiply(stat); } else if (properties().getAnimationMatrix()) { mat4 anim(*properties().getAnimationMatrix()); matrix.multiply(anim); } bool applyTranslationZ = true3dTransform && !MathUtils::isZero(properties().getZ()); if (properties().hasTransformMatrix() || applyTranslationZ) { if (properties().isTransformTranslateOnly()) { matrix.translate(properties().getTranslationX(), properties().getTranslationY(), true3dTransform ? properties().getZ() : 0.0f); } else { if (!true3dTransform) { matrix.multiply(*properties().getTransformMatrix()); } else { mat4 true3dMat; true3dMat.loadTranslate( properties().getPivotX() + properties().getTranslationX(), properties().getPivotY() + properties().getTranslationY(), properties().getZ()); true3dMat.rotate(properties().getRotationX(), 1, 0, 0); true3dMat.rotate(properties().getRotationY(), 0, 1, 0); true3dMat.rotate(properties().getRotation(), 0, 0, 1); true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1); true3dMat.translate(-properties().getPivotX(), -properties().getPivotY()); matrix.multiply(true3dMat); } } } } /** * Organizes the DisplayList hierarchy to prepare for background projection reordering. * * This should be called before a call to defer() or drawDisplayList() * * Each DisplayList that serves as a 3d root builds its list of composited children, * which are flagged to not draw in the standard draw loop. */ void RenderNode::computeOrdering() { ATRACE_CALL(); mProjectedNodes.clear(); // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that // transform properties are applied correctly to top level children if (mDisplayListData == NULL) return; for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { DrawDisplayListOp* childOp = mDisplayListData->children()[i]; childOp->mDisplayList->computeOrderingImpl(childOp, properties().getOutline().getPath(), &mProjectedNodes, &mat4::identity()); } } void RenderNode::computeOrderingImpl( DrawDisplayListOp* opState, const SkPath* outlineOfProjectionSurface, Vector* compositedChildrenOfProjectionSurface, const mat4* transformFromProjectionSurface) { mProjectedNodes.clear(); if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return; // TODO: should avoid this calculation in most cases // TODO: just calculate single matrix, down to all leaf composited elements Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface); localTransformFromProjectionSurface.multiply(opState->mTransformFromParent); if (properties().getProjectBackwards()) { // composited projectee, flag for out of order draw, save matrix, and store in proj surface opState->mSkipInOrderDraw = true; opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface); compositedChildrenOfProjectionSurface->add(opState); } else { // standard in order draw opState->mSkipInOrderDraw = false; } if (mDisplayListData->children().size() > 0) { const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0; bool haveAppliedPropertiesToProjection = false; for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { DrawDisplayListOp* childOp = mDisplayListData->children()[i]; RenderNode* child = childOp->mDisplayList; const SkPath* projectionOutline = NULL; Vector* projectionChildren = NULL; const mat4* projectionTransform = NULL; if (isProjectionReceiver && !child->properties().getProjectBackwards()) { // if receiving projections, collect projecting descendent // Note that if a direct descendent is projecting backwards, we pass it's // grandparent projection collection, since it shouldn't project onto it's // parent, where it will already be drawing. projectionOutline = properties().getOutline().getPath(); projectionChildren = &mProjectedNodes; projectionTransform = &mat4::identity(); } else { if (!haveAppliedPropertiesToProjection) { applyViewPropertyTransforms(localTransformFromProjectionSurface); haveAppliedPropertiesToProjection = true; } projectionOutline = outlineOfProjectionSurface; projectionChildren = compositedChildrenOfProjectionSurface; projectionTransform = &localTransformFromProjectionSurface; } child->computeOrderingImpl(childOp, projectionOutline, projectionChildren, projectionTransform); } } } class DeferOperationHandler { public: DeferOperationHandler(DeferStateStruct& deferStruct, int level) : mDeferStruct(deferStruct), mLevel(level) {} inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) { operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds); } inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); } inline void startMark(const char* name) {} // do nothing inline void endMark() {} inline int level() { return mLevel; } inline int replayFlags() { return mDeferStruct.mReplayFlags; } private: DeferStateStruct& mDeferStruct; const int mLevel; }; void RenderNode::deferNodeTree(DeferStateStruct& deferStruct) { DeferOperationHandler handler(deferStruct, 0); if (MathUtils::isPositive(properties().getZ())) { issueDrawShadowOperation(Matrix4::identity(), handler); } issueOperations(deferStruct.mRenderer, handler); } void RenderNode::deferNodeInParent(DeferStateStruct& deferStruct, const int level) { DeferOperationHandler handler(deferStruct, level); issueOperations(deferStruct.mRenderer, handler); } class ReplayOperationHandler { public: ReplayOperationHandler(ReplayStateStruct& replayStruct, int level) : mReplayStruct(replayStruct), mLevel(level) {} inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) { #if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS mReplayStruct.mRenderer.eventMark(operation->name()); #endif operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds); } inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); } inline void startMark(const char* name) { mReplayStruct.mRenderer.startMark(name); } inline void endMark() { mReplayStruct.mRenderer.endMark(); } inline int level() { return mLevel; } inline int replayFlags() { return mReplayStruct.mReplayFlags; } private: ReplayStateStruct& mReplayStruct; const int mLevel; }; void RenderNode::replayNodeTree(ReplayStateStruct& replayStruct) { ReplayOperationHandler handler(replayStruct, 0); if (MathUtils::isPositive(properties().getZ())) { issueDrawShadowOperation(Matrix4::identity(), handler); } issueOperations(replayStruct.mRenderer, handler); } void RenderNode::replayNodeInParent(ReplayStateStruct& replayStruct, const int level) { ReplayOperationHandler handler(replayStruct, level); issueOperations(replayStruct.mRenderer, handler); } void RenderNode::buildZSortedChildList(Vector& zTranslatedNodes) { if (mDisplayListData == NULL || mDisplayListData->children().size() == 0) return; for (unsigned int i = 0; i < mDisplayListData->children().size(); i++) { DrawDisplayListOp* childOp = mDisplayListData->children()[i]; RenderNode* child = childOp->mDisplayList; float childZ = child->properties().getZ(); if (!MathUtils::isZero(childZ)) { zTranslatedNodes.add(ZDrawDisplayListOpPair(childZ, childOp)); childOp->mSkipInOrderDraw = true; } else if (!child->properties().getProjectBackwards()) { // regular, in order drawing DisplayList childOp->mSkipInOrderDraw = false; } } // Z sort 3d children (stable-ness makes z compare fall back to standard drawing order) std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end()); } template void RenderNode::issueDrawShadowOperation(const Matrix4& transformFromParent, T& handler) { if (properties().getAlpha() <= 0.0f || properties().getOutline().isEmpty()) return; mat4 shadowMatrixXY(transformFromParent); applyViewPropertyTransforms(shadowMatrixXY); // Z matrix needs actual 3d transformation, so mapped z values will be correct mat4 shadowMatrixZ(transformFromParent); applyViewPropertyTransforms(shadowMatrixZ, true); const SkPath* outlinePath = properties().getOutline().getPath(); const RevealClip& revealClip = properties().getRevealClip(); const SkPath* revealClipPath = revealClip.hasConvexClip() ? revealClip.getPath() : NULL; // only pass the reveal clip's path if it's convex if (revealClipPath && revealClipPath->isEmpty()) return; /** * The drawing area of the caster is always the same as the its perimeter (which * the shadow system uses) *except* in the inverse clip case. Inform the shadow * system that the caster's drawing area (as opposed to its perimeter) has been * clipped, so that it knows the caster can't be opaque. */ bool casterUnclipped = !revealClip.willClip() || revealClip.hasConvexClip(); DisplayListOp* shadowOp = new (handler.allocator()) DrawShadowOp( shadowMatrixXY, shadowMatrixZ, properties().getAlpha(), casterUnclipped, outlinePath, revealClipPath); handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); } #define SHADOW_DELTA 0.1f template void RenderNode::issueOperationsOf3dChildren(const Vector& zTranslatedNodes, ChildrenSelectMode mode, OpenGLRenderer& renderer, T& handler) { const int size = zTranslatedNodes.size(); if (size == 0 || (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f) || (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) { // no 3d children to draw return; } /** * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters * with very similar Z heights to draw together. * * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are * underneath both, and neither's shadow is drawn on top of the other. */ const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes); size_t drawIndex, shadowIndex, endIndex; if (mode == kNegativeZChildren) { drawIndex = 0; endIndex = nonNegativeIndex; shadowIndex = endIndex; // draw no shadows } else { drawIndex = nonNegativeIndex; endIndex = size; shadowIndex = drawIndex; // potentially draw shadow for each pos Z child } DISPLAY_LIST_LOGD("%*s%d %s 3d children:", (handler.level() + 1) * 2, "", endIndex - drawIndex, mode == kNegativeZChildren ? "negative" : "positive"); float lastCasterZ = 0.0f; while (shadowIndex < endIndex || drawIndex < endIndex) { if (shadowIndex < endIndex) { DrawDisplayListOp* casterOp = zTranslatedNodes[shadowIndex].value; RenderNode* caster = casterOp->mDisplayList; const float casterZ = zTranslatedNodes[shadowIndex].key; // attempt to render the shadow if the caster about to be drawn is its caster, // OR if its caster's Z value is similar to the previous potential caster if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) { caster->issueDrawShadowOperation(casterOp->mTransformFromParent, handler); lastCasterZ = casterZ; // must do this even if current caster not casting a shadow shadowIndex++; continue; } } // only the actual child DL draw needs to be in save/restore, // since it modifies the renderer's matrix int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); DrawDisplayListOp* childOp = zTranslatedNodes[drawIndex].value; RenderNode* child = childOp->mDisplayList; renderer.concatMatrix(childOp->mTransformFromParent); childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds()); childOp->mSkipInOrderDraw = true; renderer.restoreToCount(restoreTo); drawIndex++; } } template void RenderNode::issueOperationsOfProjectedChildren(OpenGLRenderer& renderer, T& handler) { DISPLAY_LIST_LOGD("%*s%d projected children:", (handler.level() + 1) * 2, "", mProjectedNodes.size()); const SkPath* projectionReceiverOutline = properties().getOutline().getPath(); bool maskProjecteesWithPath = projectionReceiverOutline != NULL && !projectionReceiverOutline->isRect(NULL); int restoreTo = renderer.getSaveCount(); // If the projection reciever has an outline, we mask each of the projected rendernodes to it // Either with clipRect, or special saveLayer masking LinearAllocator& alloc = handler.allocator(); if (projectionReceiverOutline != NULL) { const SkRect& outlineBounds = projectionReceiverOutline->getBounds(); if (projectionReceiverOutline->isRect(NULL)) { // mask to the rect outline simply with clipRect handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag), PROPERTY_SAVECOUNT, properties().getClipToBounds()); ClipRectOp* clipOp = new (alloc) ClipRectOp( outlineBounds.left(), outlineBounds.top(), outlineBounds.right(), outlineBounds.bottom(), SkRegion::kIntersect_Op); handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); } else { // wrap the projected RenderNodes with a SaveLayer that will mask to the outline SaveLayerOp* op = new (alloc) SaveLayerOp( outlineBounds.left(), outlineBounds.top(), outlineBounds.right(), outlineBounds.bottom(), 255, SkCanvas::kARGB_ClipLayer_SaveFlag); op->setMask(projectionReceiverOutline); handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); /* TODO: add optimizations here to take advantage of placement/size of projected * children (which may shrink saveLayer area significantly). This is dependent on * passing actual drawing/dirtying bounds of projected content down to native. */ } } // draw projected nodes for (size_t i = 0; i < mProjectedNodes.size(); i++) { DrawDisplayListOp* childOp = mProjectedNodes[i]; // matrix save, concat, and restore can be done safely without allocating operations int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); renderer.concatMatrix(childOp->mTransformFromCompositingAncestor); childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds()); childOp->mSkipInOrderDraw = true; renderer.restoreToCount(restoreTo); } if (projectionReceiverOutline != NULL) { handler(new (alloc) RestoreToCountOp(restoreTo), PROPERTY_SAVECOUNT, properties().getClipToBounds()); } } /** * This function serves both defer and replay modes, and will organize the displayList's component * operations for a single frame: * * Every 'simple' state operation that affects just the matrix and alpha (or other factors of * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom * defer logic) and operations in displayListOps are issued through the 'handler' which handles the * defer vs replay logic, per operation */ template void RenderNode::issueOperations(OpenGLRenderer& renderer, T& handler) { const bool drawLayer = (mLayer && (&renderer != mLayer->renderer)); // If we are updating the contents of mLayer, we don't want to apply any of // the RenderNode's properties to this issueOperations pass. Those will all // be applied when the layer is drawn, aka when this is true. const bool useViewProperties = (!mLayer || drawLayer); const int level = handler.level(); if (mDisplayListData->isEmpty() || (useViewProperties && properties().getAlpha() <= 0)) { DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, getName()); return; } handler.startMark(getName()); #if DEBUG_DISPLAY_LIST const Rect& clipRect = renderer.getLocalClipBounds(); DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), localClipBounds: %.0f, %.0f, %.0f, %.0f", level * 2, "", this, getName(), clipRect.left, clipRect.top, clipRect.right, clipRect.bottom); #endif LinearAllocator& alloc = handler.allocator(); int restoreTo = renderer.getSaveCount(); handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag), PROPERTY_SAVECOUNT, properties().getClipToBounds()); DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "", SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo); if (useViewProperties) { setViewProperties(renderer, handler); } bool quickRejected = properties().getClipToBounds() && renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight()); if (!quickRejected) { if (mProperties.getOutline().willClip()) { renderer.setClippingOutline(alloc, &(mProperties.getOutline())); } if (drawLayer) { handler(new (alloc) DrawLayerOp(mLayer, 0, 0), renderer.getSaveCount() - 1, properties().getClipToBounds()); } else { Vector zTranslatedNodes; buildZSortedChildList(zTranslatedNodes); // for 3d root, draw children with negative z values issueOperationsOf3dChildren(zTranslatedNodes, kNegativeZChildren, renderer, handler); DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance(); const int saveCountOffset = renderer.getSaveCount() - 1; const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex; for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) { DisplayListOp *op = mDisplayListData->displayListOps[i]; #if DEBUG_DISPLAY_LIST op->output(level + 1); #endif logBuffer.writeCommand(level, op->name()); handler(op, saveCountOffset, properties().getClipToBounds()); if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) { issueOperationsOfProjectedChildren(renderer, handler); } } // for 3d root, draw children with positive z values issueOperationsOf3dChildren(zTranslatedNodes, kPositiveZChildren, renderer, handler); } } DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo); handler(new (alloc) RestoreToCountOp(restoreTo), PROPERTY_SAVECOUNT, properties().getClipToBounds()); renderer.setOverrideLayerAlpha(1.0f); DISPLAY_LIST_LOGD("%*sDone (%p, %s)", level * 2, "", this, getName()); handler.endMark(); } } /* namespace uirenderer */ } /* namespace android */