/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define ATRACE_TAG ATRACE_TAG_VIEW #include "RenderNode.h" #include #include #include #include "Debug.h" #include "DisplayListOp.h" #include "DisplayListLogBuffer.h" namespace android { namespace uirenderer { void RenderNode::outputLogBuffer(int fd) { DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance(); if (logBuffer.isEmpty()) { return; } FILE *file = fdopen(fd, "a"); fprintf(file, "\nRecent DisplayList operations\n"); logBuffer.outputCommands(file); String8 cachesLog; Caches::getInstance().dumpMemoryUsage(cachesLog); fprintf(file, "\nCaches:\n%s", cachesLog.string()); fprintf(file, "\n"); fflush(file); } RenderNode::RenderNode() : mDestroyed(false), mNeedsPropertiesSync(false), mDisplayListData(0) { } RenderNode::~RenderNode() { LOG_ALWAYS_FATAL_IF(mDestroyed, "Double destroyed DisplayList %p", this); mDestroyed = true; delete mDisplayListData; } void RenderNode::destroyDisplayListDeferred(RenderNode* displayList) { if (displayList) { DISPLAY_LIST_LOGD("Deferring display list destruction"); Caches::getInstance().deleteDisplayListDeferred(displayList); } } void RenderNode::setData(DisplayListData* data) { delete mDisplayListData; mDisplayListData = data; if (mDisplayListData) { Caches::getInstance().registerFunctors(mDisplayListData->functorCount); } } /** * This function is a simplified version of replay(), where we simply retrieve and log the * display list. This function should remain in sync with the replay() function. */ void RenderNode::output(uint32_t level) { ALOGD("%*sStart display list (%p, %s, render=%d)", (level - 1) * 2, "", this, mName.string(), isRenderable()); ALOGD("%*s%s %d", level * 2, "", "Save", SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); properties().debugOutputProperties(level); int flags = DisplayListOp::kOpLogFlag_Recurse; for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) { mDisplayListData->displayListOps[i]->output(level, flags); } ALOGD("%*sDone (%p, %s)", (level - 1) * 2, "", this, mName.string()); } void RenderNode::updateProperties() { if (mNeedsPropertiesSync) { mNeedsPropertiesSync = false; mProperties = mStagingProperties; } if (mDisplayListData) { for (size_t i = 0; i < mDisplayListData->children.size(); i++) { RenderNode* childNode = mDisplayListData->children[i]->mDisplayList; childNode->updateProperties(); } } } bool RenderNode::hasFunctors() { if (!mDisplayListData) return false; if (mDisplayListData->functorCount) { return true; } for (size_t i = 0; i < mDisplayListData->children.size(); i++) { RenderNode* childNode = mDisplayListData->children[i]->mDisplayList; if (childNode->hasFunctors()) { return true; } } return false; } /* * For property operations, we pass a savecount of 0, since the operations aren't part of the * displaylist, and thus don't have to compensate for the record-time/playback-time discrepancy in * base saveCount (i.e., how RestoreToCount uses saveCount + properties().getCount()) */ #define PROPERTY_SAVECOUNT 0 template void RenderNode::setViewProperties(OpenGLRenderer& renderer, T& handler, const int level) { #if DEBUG_DISPLAY_LIST properties().debugOutputProperties(level); #endif if (properties().getLeft() != 0 || properties().getTop() != 0) { renderer.translate(properties().getLeft(), properties().getTop()); } if (properties().getStaticMatrix()) { renderer.concatMatrix(properties().getStaticMatrix()); } else if (properties().getAnimationMatrix()) { renderer.concatMatrix(properties().getAnimationMatrix()); } if (properties().getMatrixFlags() != 0) { if (properties().getMatrixFlags() == TRANSLATION) { renderer.translate(properties().getTranslationX(), properties().getTranslationY()); } else { renderer.concatMatrix(*properties().getTransformMatrix()); } } bool clipToBoundsNeeded = properties().getCaching() ? false : properties().getClipToBounds(); if (properties().getAlpha() < 1) { if (properties().getCaching()) { renderer.setOverrideLayerAlpha(properties().getAlpha()); } else if (!properties().getHasOverlappingRendering()) { renderer.scaleAlpha(properties().getAlpha()); } else { // TODO: should be able to store the size of a DL at record time and not // have to pass it into this call. In fact, this information might be in the // location/size info that we store with the new native transform data. int saveFlags = SkCanvas::kHasAlphaLayer_SaveFlag; if (clipToBoundsNeeded) { saveFlags |= SkCanvas::kClipToLayer_SaveFlag; clipToBoundsNeeded = false; // clipping done by saveLayer } SaveLayerOp* op = new (handler.allocator()) SaveLayerOp( 0, 0, properties().getWidth(), properties().getHeight(), properties().getAlpha() * 255, saveFlags); handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); } } if (clipToBoundsNeeded) { ClipRectOp* op = new (handler.allocator()) ClipRectOp( 0, 0, properties().getWidth(), properties().getHeight(), SkRegion::kIntersect_Op); handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); } if (CC_UNLIKELY(properties().hasClippingPath())) { // TODO: optimize for round rect/circle clipping const SkPath* path = properties().getClippingPath(); ClipPathOp* op = new (handler.allocator()) ClipPathOp(path, SkRegion::kIntersect_Op); handler(op, PROPERTY_SAVECOUNT, properties().getClipToBounds()); } } /** * Apply property-based transformations to input matrix * * If true3dTransform is set to true, the transform applied to the input matrix will use true 4x4 * matrix computation instead of the Skia 3x3 matrix + camera hackery. */ void RenderNode::applyViewPropertyTransforms(mat4& matrix, bool true3dTransform) { if (properties().getLeft() != 0 || properties().getTop() != 0) { matrix.translate(properties().getLeft(), properties().getTop()); } if (properties().getStaticMatrix()) { mat4 stat(*properties().getStaticMatrix()); matrix.multiply(stat); } else if (properties().getAnimationMatrix()) { mat4 anim(*properties().getAnimationMatrix()); matrix.multiply(anim); } if (properties().getMatrixFlags() != 0) { if (properties().getMatrixFlags() == TRANSLATION) { matrix.translate(properties().getTranslationX(), properties().getTranslationY(), true3dTransform ? properties().getTranslationZ() : 0.0f); } else { if (!true3dTransform) { matrix.multiply(*properties().getTransformMatrix()); } else { mat4 true3dMat; true3dMat.loadTranslate( properties().getPivotX() + properties().getTranslationX(), properties().getPivotY() + properties().getTranslationY(), properties().getTranslationZ()); true3dMat.rotate(properties().getRotationX(), 1, 0, 0); true3dMat.rotate(properties().getRotationY(), 0, 1, 0); true3dMat.rotate(properties().getRotation(), 0, 0, 1); true3dMat.scale(properties().getScaleX(), properties().getScaleY(), 1); true3dMat.translate(-properties().getPivotX(), -properties().getPivotY()); matrix.multiply(true3dMat); } } } } /** * Organizes the DisplayList hierarchy to prepare for background projection reordering. * * This should be called before a call to defer() or drawDisplayList() * * Each DisplayList that serves as a 3d root builds its list of composited children, * which are flagged to not draw in the standard draw loop. */ void RenderNode::computeOrdering() { ATRACE_CALL(); mProjectedNodes.clear(); // TODO: create temporary DDLOp and call computeOrderingImpl on top DisplayList so that // transform properties are applied correctly to top level children if (mDisplayListData == NULL) return; for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) { DrawDisplayListOp* childOp = mDisplayListData->children[i]; childOp->mDisplayList->computeOrderingImpl(childOp, &mProjectedNodes, &mat4::identity()); } } void RenderNode::computeOrderingImpl( DrawDisplayListOp* opState, Vector* compositedChildrenOfProjectionSurface, const mat4* transformFromProjectionSurface) { mProjectedNodes.clear(); if (mDisplayListData == NULL || mDisplayListData->isEmpty()) return; // TODO: should avoid this calculation in most cases // TODO: just calculate single matrix, down to all leaf composited elements Matrix4 localTransformFromProjectionSurface(*transformFromProjectionSurface); localTransformFromProjectionSurface.multiply(opState->mTransformFromParent); if (properties().getProjectBackwards()) { // composited projectee, flag for out of order draw, save matrix, and store in proj surface opState->mSkipInOrderDraw = true; opState->mTransformFromCompositingAncestor.load(localTransformFromProjectionSurface); compositedChildrenOfProjectionSurface->add(opState); } else { // standard in order draw opState->mSkipInOrderDraw = false; } if (mDisplayListData->children.size() > 0) { const bool isProjectionReceiver = mDisplayListData->projectionReceiveIndex >= 0; bool haveAppliedPropertiesToProjection = false; for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) { DrawDisplayListOp* childOp = mDisplayListData->children[i]; RenderNode* child = childOp->mDisplayList; Vector* projectionChildren = NULL; const mat4* projectionTransform = NULL; if (isProjectionReceiver && !child->properties().getProjectBackwards()) { // if receiving projections, collect projecting descendent // Note that if a direct descendent is projecting backwards, we pass it's // grandparent projection collection, since it shouldn't project onto it's // parent, where it will already be drawing. projectionChildren = &mProjectedNodes; projectionTransform = &mat4::identity(); } else { if (!haveAppliedPropertiesToProjection) { applyViewPropertyTransforms(localTransformFromProjectionSurface); haveAppliedPropertiesToProjection = true; } projectionChildren = compositedChildrenOfProjectionSurface; projectionTransform = &localTransformFromProjectionSurface; } child->computeOrderingImpl(childOp, projectionChildren, projectionTransform); } } } class DeferOperationHandler { public: DeferOperationHandler(DeferStateStruct& deferStruct, int level) : mDeferStruct(deferStruct), mLevel(level) {} inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) { operation->defer(mDeferStruct, saveCount, mLevel, clipToBounds); } inline LinearAllocator& allocator() { return *(mDeferStruct.mAllocator); } private: DeferStateStruct& mDeferStruct; const int mLevel; }; void RenderNode::defer(DeferStateStruct& deferStruct, const int level) { DeferOperationHandler handler(deferStruct, level); iterate(deferStruct.mRenderer, handler, level); } class ReplayOperationHandler { public: ReplayOperationHandler(ReplayStateStruct& replayStruct, int level) : mReplayStruct(replayStruct), mLevel(level) {} inline void operator()(DisplayListOp* operation, int saveCount, bool clipToBounds) { #if DEBUG_DISPLAY_LIST_OPS_AS_EVENTS properties().getReplayStruct().mRenderer.eventMark(operation->name()); #endif operation->replay(mReplayStruct, saveCount, mLevel, clipToBounds); } inline LinearAllocator& allocator() { return *(mReplayStruct.mAllocator); } private: ReplayStateStruct& mReplayStruct; const int mLevel; }; void RenderNode::replay(ReplayStateStruct& replayStruct, const int level) { ReplayOperationHandler handler(replayStruct, level); replayStruct.mRenderer.startMark(mName.string()); iterate(replayStruct.mRenderer, handler, level); replayStruct.mRenderer.endMark(); DISPLAY_LIST_LOGD("%*sDone (%p, %s), returning %d", level * 2, "", this, mName.string(), replayStruct.mDrawGlStatus); } void RenderNode::buildZSortedChildList(Vector& zTranslatedNodes) { if (mDisplayListData == NULL || mDisplayListData->children.size() == 0) return; for (unsigned int i = 0; i < mDisplayListData->children.size(); i++) { DrawDisplayListOp* childOp = mDisplayListData->children[i]; RenderNode* child = childOp->mDisplayList; float childZ = child->properties().getTranslationZ(); if (childZ != 0.0f) { zTranslatedNodes.add(ZDrawDisplayListOpPair(childZ, childOp)); childOp->mSkipInOrderDraw = true; } else if (!child->properties().getProjectBackwards()) { // regular, in order drawing DisplayList childOp->mSkipInOrderDraw = false; } } // Z sort 3d children (stable-ness makes z compare fall back to standard drawing order) std::stable_sort(zTranslatedNodes.begin(), zTranslatedNodes.end()); } #define SHADOW_DELTA 0.1f template void RenderNode::iterate3dChildren(const Vector& zTranslatedNodes, ChildrenSelectMode mode, OpenGLRenderer& renderer, T& handler) { const int size = zTranslatedNodes.size(); if (size == 0 || (mode == kNegativeZChildren && zTranslatedNodes[0].key > 0.0f) || (mode == kPositiveZChildren && zTranslatedNodes[size - 1].key < 0.0f)) { // no 3d children to draw return; } int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); LinearAllocator& alloc = handler.allocator(); ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, properties().getWidth(), properties().getHeight(), SkRegion::kIntersect_Op); // clip to 3d root bounds handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); /** * Draw shadows and (potential) casters mostly in order, but allow the shadows of casters * with very similar Z heights to draw together. * * This way, if Views A & B have the same Z height and are both casting shadows, the shadows are * underneath both, and neither's shadow is drawn on top of the other. */ const size_t nonNegativeIndex = findNonNegativeIndex(zTranslatedNodes); size_t drawIndex, shadowIndex, endIndex; if (mode == kNegativeZChildren) { drawIndex = 0; endIndex = nonNegativeIndex; shadowIndex = endIndex; // draw no shadows } else { drawIndex = nonNegativeIndex; endIndex = size; shadowIndex = drawIndex; // potentially draw shadow for each pos Z child } float lastCasterZ = 0.0f; while (shadowIndex < endIndex || drawIndex < endIndex) { if (shadowIndex < endIndex) { DrawDisplayListOp* casterOp = zTranslatedNodes[shadowIndex].value; RenderNode* caster = casterOp->mDisplayList; const float casterZ = zTranslatedNodes[shadowIndex].key; // attempt to render the shadow if the caster about to be drawn is its caster, // OR if its caster's Z value is similar to the previous potential caster if (shadowIndex == drawIndex || casterZ - lastCasterZ < SHADOW_DELTA) { if (caster->properties().getAlpha() > 0.0f) { mat4 shadowMatrixXY(casterOp->mTransformFromParent); caster->applyViewPropertyTransforms(shadowMatrixXY); // Z matrix needs actual 3d transformation, so mapped z values will be correct mat4 shadowMatrixZ(casterOp->mTransformFromParent); caster->applyViewPropertyTransforms(shadowMatrixZ, true); const SkPath* outlinePath = caster->properties().getOutline().getPath(); const RevealClip& revealClip = caster->properties().getRevealClip(); const SkPath* revealClipPath = revealClip.hasConvexClip() ? revealClip.getPath() : NULL; // only pass the reveal clip's path if it's convex DisplayListOp* shadowOp = new (alloc) DrawShadowOp( shadowMatrixXY, shadowMatrixZ, caster->properties().getAlpha(), caster->properties().getWidth(), caster->properties().getHeight(), outlinePath, revealClipPath); handler(shadowOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); } lastCasterZ = casterZ; // must do this even if current caster not casting a shadow shadowIndex++; continue; } } // only the actual child DL draw needs to be in save/restore, // since it modifies the renderer's matrix int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); DrawDisplayListOp* childOp = zTranslatedNodes[drawIndex].value; RenderNode* child = childOp->mDisplayList; renderer.concatMatrix(childOp->mTransformFromParent); childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds()); childOp->mSkipInOrderDraw = true; renderer.restoreToCount(restoreTo); drawIndex++; } handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, properties().getClipToBounds()); } template void RenderNode::iterateProjectedChildren(OpenGLRenderer& renderer, T& handler, const int level) { int rootRestoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag); LinearAllocator& alloc = handler.allocator(); ClipRectOp* clipOp = new (alloc) ClipRectOp(0, 0, properties().getWidth(), properties().getHeight(), SkRegion::kReplace_Op); // clip to projection surface root bounds handler(clipOp, PROPERTY_SAVECOUNT, properties().getClipToBounds()); for (size_t i = 0; i < mProjectedNodes.size(); i++) { DrawDisplayListOp* childOp = mProjectedNodes[i]; // matrix save, concat, and restore can be done safely without allocating operations int restoreTo = renderer.save(SkCanvas::kMatrix_SaveFlag); renderer.concatMatrix(childOp->mTransformFromCompositingAncestor); childOp->mSkipInOrderDraw = false; // this is horrible, I'm so sorry everyone handler(childOp, renderer.getSaveCount() - 1, properties().getClipToBounds()); childOp->mSkipInOrderDraw = true; renderer.restoreToCount(restoreTo); } handler(new (alloc) RestoreToCountOp(rootRestoreTo), PROPERTY_SAVECOUNT, properties().getClipToBounds()); } /** * This function serves both defer and replay modes, and will organize the displayList's component * operations for a single frame: * * Every 'simple' state operation that affects just the matrix and alpha (or other factors of * DeferredDisplayState) may be issued directly to the renderer, but complex operations (with custom * defer logic) and operations in displayListOps are issued through the 'handler' which handles the * defer vs replay logic, per operation */ template void RenderNode::iterate(OpenGLRenderer& renderer, T& handler, const int level) { if (CC_UNLIKELY(mDestroyed)) { // temporary debug logging ALOGW("Error: %s is drawing after destruction", mName.string()); CRASH(); } if (mDisplayListData->isEmpty() || properties().getAlpha() <= 0) { DISPLAY_LIST_LOGD("%*sEmpty display list (%p, %s)", level * 2, "", this, mName.string()); return; } #if DEBUG_DISPLAY_LIST Rect* clipRect = renderer.getClipRect(); DISPLAY_LIST_LOGD("%*sStart display list (%p, %s), clipRect: %.0f, %.0f, %.0f, %.0f", level * 2, "", this, mName.string(), clipRect->left, clipRect->top, clipRect->right, clipRect->bottom); #endif LinearAllocator& alloc = handler.allocator(); int restoreTo = renderer.getSaveCount(); handler(new (alloc) SaveOp(SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag), PROPERTY_SAVECOUNT, properties().getClipToBounds()); DISPLAY_LIST_LOGD("%*sSave %d %d", (level + 1) * 2, "", SkCanvas::kMatrix_SaveFlag | SkCanvas::kClip_SaveFlag, restoreTo); setViewProperties(renderer, handler, level + 1); bool quickRejected = properties().getClipToBounds() && renderer.quickRejectConservative(0, 0, properties().getWidth(), properties().getHeight()); if (!quickRejected) { Vector zTranslatedNodes; buildZSortedChildList(zTranslatedNodes); // for 3d root, draw children with negative z values iterate3dChildren(zTranslatedNodes, kNegativeZChildren, renderer, handler); DisplayListLogBuffer& logBuffer = DisplayListLogBuffer::getInstance(); const int saveCountOffset = renderer.getSaveCount() - 1; const int projectionReceiveIndex = mDisplayListData->projectionReceiveIndex; for (unsigned int i = 0; i < mDisplayListData->displayListOps.size(); i++) { DisplayListOp *op = mDisplayListData->displayListOps[i]; #if DEBUG_DISPLAY_LIST op->output(level + 1); #endif logBuffer.writeCommand(level, op->name()); handler(op, saveCountOffset, properties().getClipToBounds()); if (CC_UNLIKELY(i == projectionReceiveIndex && mProjectedNodes.size() > 0)) { iterateProjectedChildren(renderer, handler, level); } } // for 3d root, draw children with positive z values iterate3dChildren(zTranslatedNodes, kPositiveZChildren, renderer, handler); } DISPLAY_LIST_LOGD("%*sRestoreToCount %d", (level + 1) * 2, "", restoreTo); handler(new (alloc) RestoreToCountOp(restoreTo), PROPERTY_SAVECOUNT, properties().getClipToBounds()); renderer.setOverrideLayerAlpha(1.0f); } } /* namespace uirenderer */ } /* namespace android */