/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #define ATRACE_TAG ATRACE_TAG_VIEW #include #include #include #include "AmbientShadow.h" #include "Caches.h" #include "ShadowTessellator.h" #include "SpotShadow.h" namespace android { namespace uirenderer { template static inline T max(T a, T b) { return a > b ? a : b; } VertexBufferMode ShadowTessellator::tessellateAmbientShadow(bool isCasterOpaque, const Vector3* casterPolygon, int casterVertexCount, const Vector3& centroid3d, const Rect& casterBounds, const Rect& localClip, float maxZ, VertexBuffer& shadowVertexBuffer) { ATRACE_CALL(); // A bunch of parameters to tweak the shadow. // TODO: Allow some of these changable by debug settings or APIs. float heightFactor = 1.0f / 128; const float geomFactor = 64; Caches& caches = Caches::getInstance(); if (CC_UNLIKELY(caches.propertyAmbientRatio > 0.0f)) { heightFactor *= caches.propertyAmbientRatio; } Rect ambientShadowBounds(casterBounds); ambientShadowBounds.outset(maxZ * geomFactor * heightFactor); if (!localClip.intersects(ambientShadowBounds)) { #if DEBUG_SHADOW ALOGD("Ambient shadow is out of clip rect!"); #endif return kVertexBufferMode_OnePolyRingShadow; } return AmbientShadow::createAmbientShadow(isCasterOpaque, casterPolygon, casterVertexCount, centroid3d, heightFactor, geomFactor, shadowVertexBuffer); } VertexBufferMode ShadowTessellator::tessellateSpotShadow(bool isCasterOpaque, const Vector3* casterPolygon, int casterVertexCount, const mat4& receiverTransform, const Vector3& lightCenter, int lightRadius, const Rect& casterBounds, const Rect& localClip, VertexBuffer& shadowVertexBuffer) { ATRACE_CALL(); Caches& caches = Caches::getInstance(); Vector3 adjustedLightCenter(lightCenter); if (CC_UNLIKELY(caches.propertyLightPosY > 0)) { adjustedLightCenter.y = - caches.propertyLightPosY; // negated since this shifts up } if (CC_UNLIKELY(caches.propertyLightPosZ > 0)) { adjustedLightCenter.z = caches.propertyLightPosZ; } #if DEBUG_SHADOW ALOGD("light center %f %f %f", adjustedLightCenter.x, adjustedLightCenter.y, adjustedLightCenter.z); #endif // light position (because it's in local space) needs to compensate for receiver transform // TODO: should apply to light orientation, not just position Matrix4 reverseReceiverTransform; reverseReceiverTransform.loadInverse(receiverTransform); reverseReceiverTransform.mapPoint3d(adjustedLightCenter); const int lightVertexCount = 8; if (CC_UNLIKELY(caches.propertyLightDiameter > 0)) { lightRadius = caches.propertyLightDiameter; } // Now light and caster are both in local space, we will check whether // the shadow is within the clip area. Rect lightRect = Rect(adjustedLightCenter.x - lightRadius, adjustedLightCenter.y - lightRadius, adjustedLightCenter.x + lightRadius, adjustedLightCenter.y + lightRadius); lightRect.unionWith(localClip); if (!lightRect.intersects(casterBounds)) { #if DEBUG_SHADOW ALOGD("Spot shadow is out of clip rect!"); #endif return kVertexBufferMode_OnePolyRingShadow; } VertexBufferMode mode = SpotShadow::createSpotShadow(isCasterOpaque, casterPolygon, casterVertexCount, adjustedLightCenter, lightRadius, lightVertexCount, shadowVertexBuffer); #if DEBUG_SHADOW if(shadowVertexBuffer.getVertexCount() <= 0) { ALOGD("Spot shadow generation failed %d", shadowVertexBuffer.getVertexCount()); } #endif return mode; } void ShadowTessellator::generateShadowIndices(uint16_t* shadowIndices) { int currentIndex = 0; const int rays = SHADOW_RAY_COUNT; // For the penumbra area. for (int layer = 0; layer < 2; layer ++) { int baseIndex = layer * rays; for (int i = 0; i < rays; i++) { shadowIndices[currentIndex++] = i + baseIndex; shadowIndices[currentIndex++] = rays + i + baseIndex; } // To close the loop, back to the ray 0. shadowIndices[currentIndex++] = 0 + baseIndex; // Note this is the same as the first index of next layer loop. shadowIndices[currentIndex++] = rays + baseIndex; } #if DEBUG_SHADOW if (currentIndex != MAX_SHADOW_INDEX_COUNT) { ALOGW("vertex index count is wrong. current %d, expected %d", currentIndex, MAX_SHADOW_INDEX_COUNT); } for (int i = 0; i < MAX_SHADOW_INDEX_COUNT; i++) { ALOGD("vertex index is (%d, %d)", i, shadowIndices[i]); } #endif } /** * Calculate the centroid of a 2d polygon. * * @param poly The polygon, which is represented in a Vector2 array. * @param polyLength The length of the polygon in terms of number of vertices. * @return the centroid of the polygon. */ Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) { double sumx = 0; double sumy = 0; int p1 = polyLength - 1; double area = 0; for (int p2 = 0; p2 < polyLength; p2++) { double x1 = poly[p1].x; double y1 = poly[p1].y; double x2 = poly[p2].x; double y2 = poly[p2].y; double a = (x1 * y2 - x2 * y1); sumx += (x1 + x2) * a; sumy += (y1 + y2) * a; area += a; p1 = p2; } Vector2 centroid = poly[0]; if (area != 0) { centroid = Vector2(sumx / (3 * area), sumy / (3 * area)); } else { ALOGW("Area is 0 while computing centroid!"); } return centroid; } /** * Test whether the polygon is order in clockwise. * * @param polygon the polygon as a Vector2 array * @param len the number of points of the polygon */ bool ShadowTessellator::isClockwise(const Vector2* polygon, int len) { if (len < 2 || polygon == NULL) { ALOGW("Invalid polygon %p, length is %d @ isClockwise()", polygon, len); return true; } double sum = 0; double p1x = polygon[len - 1].x; double p1y = polygon[len - 1].y; for (int i = 0; i < len; i++) { double p2x = polygon[i].x; double p2y = polygon[i].y; sum += p1x * p2y - p2x * p1y; p1x = p2x; p1y = p2y; } return sum < 0; } bool ShadowTessellator::isClockwisePath(const SkPath& path) { SkPath::Iter iter(path, false); SkPoint pts[4]; SkPath::Verb v; Vector arrayForDirection; while (SkPath::kDone_Verb != (v = iter.next(pts))) { switch (v) { case SkPath::kMove_Verb: arrayForDirection.add(Vector2(pts[0].x(), pts[0].y())); break; case SkPath::kLine_Verb: arrayForDirection.add(Vector2(pts[1].x(), pts[1].y())); break; case SkPath::kQuad_Verb: arrayForDirection.add(Vector2(pts[1].x(), pts[1].y())); arrayForDirection.add(Vector2(pts[2].x(), pts[2].y())); break; case SkPath::kCubic_Verb: arrayForDirection.add(Vector2(pts[1].x(), pts[1].y())); arrayForDirection.add(Vector2(pts[2].x(), pts[2].y())); arrayForDirection.add(Vector2(pts[3].x(), pts[3].y())); break; default: break; } } return isClockwise(arrayForDirection.array(), arrayForDirection.size()); } void ShadowTessellator::reverseVertexArray(Vertex* polygon, int len) { int n = len / 2; for (int i = 0; i < n; i++) { Vertex tmp = polygon[i]; int k = len - 1 - i; polygon[i] = polygon[k]; polygon[k] = tmp; } } }; // namespace uirenderer }; // namespace android