/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #define ATRACE_TAG ATRACE_TAG_VIEW #include #include #include #include "AmbientShadow.h" #include "Caches.h" #include "ShadowTessellator.h" #include "SpotShadow.h" namespace android { namespace uirenderer { void ShadowTessellator::tessellateAmbientShadow(bool isCasterOpaque, const Vector3* casterPolygon, int casterVertexCount, const Vector3& centroid3d, const Rect& casterBounds, const Rect& localClip, float maxZ, VertexBuffer& shadowVertexBuffer) { ATRACE_CALL(); // A bunch of parameters to tweak the shadow. // TODO: Allow some of these changable by debug settings or APIs. float heightFactor = 1.0f / 128; const float geomFactor = 64; Caches& caches = Caches::getInstance(); if (CC_UNLIKELY(caches.propertyAmbientRatio > 0.0f)) { heightFactor *= caches.propertyAmbientRatio; } Rect ambientShadowBounds(casterBounds); ambientShadowBounds.outset(maxZ * geomFactor * heightFactor); if (!localClip.intersects(ambientShadowBounds)) { #if DEBUG_SHADOW ALOGD("Ambient shadow is out of clip rect!"); #endif return; } AmbientShadow::createAmbientShadow(isCasterOpaque, casterPolygon, casterVertexCount, centroid3d, heightFactor, geomFactor, shadowVertexBuffer); } void ShadowTessellator::tessellateSpotShadow(bool isCasterOpaque, const Vector3* casterPolygon, int casterVertexCount, const Vector3& casterCentroid, const mat4& receiverTransform, const Vector3& lightCenter, int lightRadius, const Rect& casterBounds, const Rect& localClip, VertexBuffer& shadowVertexBuffer) { ATRACE_CALL(); Caches& caches = Caches::getInstance(); Vector3 adjustedLightCenter(lightCenter); if (CC_UNLIKELY(caches.propertyLightPosY > 0)) { adjustedLightCenter.y = - caches.propertyLightPosY; // negated since this shifts up } if (CC_UNLIKELY(caches.propertyLightPosZ > 0)) { adjustedLightCenter.z = caches.propertyLightPosZ; } #if DEBUG_SHADOW ALOGD("light center %f %f %f", adjustedLightCenter.x, adjustedLightCenter.y, adjustedLightCenter.z); #endif // light position (because it's in local space) needs to compensate for receiver transform // TODO: should apply to light orientation, not just position Matrix4 reverseReceiverTransform; reverseReceiverTransform.loadInverse(receiverTransform); reverseReceiverTransform.mapPoint3d(adjustedLightCenter); if (CC_UNLIKELY(caches.propertyLightRadius > 0)) { lightRadius = caches.propertyLightRadius; } // Now light and caster are both in local space, we will check whether // the shadow is within the clip area. Rect lightRect = Rect(adjustedLightCenter.x - lightRadius, adjustedLightCenter.y - lightRadius, adjustedLightCenter.x + lightRadius, adjustedLightCenter.y + lightRadius); lightRect.unionWith(localClip); if (!lightRect.intersects(casterBounds)) { #if DEBUG_SHADOW ALOGD("Spot shadow is out of clip rect!"); #endif return; } SpotShadow::createSpotShadow(isCasterOpaque, adjustedLightCenter, lightRadius, casterPolygon, casterVertexCount, casterCentroid, shadowVertexBuffer); #if DEBUG_SHADOW if(shadowVertexBuffer.getVertexCount() <= 0) { ALOGD("Spot shadow generation failed %d", shadowVertexBuffer.getVertexCount()); } #endif } /** * Calculate the centroid of a 2d polygon. * * @param poly The polygon, which is represented in a Vector2 array. * @param polyLength The length of the polygon in terms of number of vertices. * @return the centroid of the polygon. */ Vector2 ShadowTessellator::centroid2d(const Vector2* poly, int polyLength) { double sumx = 0; double sumy = 0; int p1 = polyLength - 1; double area = 0; for (int p2 = 0; p2 < polyLength; p2++) { double x1 = poly[p1].x; double y1 = poly[p1].y; double x2 = poly[p2].x; double y2 = poly[p2].y; double a = (x1 * y2 - x2 * y1); sumx += (x1 + x2) * a; sumy += (y1 + y2) * a; area += a; p1 = p2; } Vector2 centroid = poly[0]; if (area != 0) { centroid = (Vector2){static_cast(sumx / (3 * area)), static_cast(sumy / (3 * area))}; } else { ALOGW("Area is 0 while computing centroid!"); } return centroid; } // Make sure p1 -> p2 is going CW around the poly. Vector2 ShadowTessellator::calculateNormal(const Vector2& p1, const Vector2& p2) { Vector2 result = p2 - p1; if (result.x != 0 || result.y != 0) { result.normalize(); // Calculate the normal , which is CCW 90 rotate to the delta. float tempy = result.y; result.y = result.x; result.x = -tempy; } return result; } /** * Test whether the polygon is order in clockwise. * * @param polygon the polygon as a Vector2 array * @param len the number of points of the polygon */ bool ShadowTessellator::isClockwise(const Vector2* polygon, int len) { if (len < 2 || polygon == nullptr) { return true; } double sum = 0; double p1x = polygon[len - 1].x; double p1y = polygon[len - 1].y; for (int i = 0; i < len; i++) { double p2x = polygon[i].x; double p2y = polygon[i].y; sum += p1x * p2y - p2x * p1y; p1x = p2x; p1y = p2y; } return sum < 0; } bool ShadowTessellator::isClockwisePath(const SkPath& path) { SkPath::Iter iter(path, false); SkPoint pts[4]; SkPath::Verb v; Vector arrayForDirection; while (SkPath::kDone_Verb != (v = iter.next(pts))) { switch (v) { case SkPath::kMove_Verb: arrayForDirection.add((Vector2){pts[0].x(), pts[0].y()}); break; case SkPath::kLine_Verb: arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()}); break; case SkPath::kQuad_Verb: arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()}); arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()}); break; case SkPath::kCubic_Verb: arrayForDirection.add((Vector2){pts[1].x(), pts[1].y()}); arrayForDirection.add((Vector2){pts[2].x(), pts[2].y()}); arrayForDirection.add((Vector2){pts[3].x(), pts[3].y()}); break; default: break; } } return isClockwise(arrayForDirection.array(), arrayForDirection.size()); } void ShadowTessellator::reverseVertexArray(Vertex* polygon, int len) { int n = len / 2; for (int i = 0; i < n; i++) { Vertex tmp = polygon[i]; int k = len - 1 - i; polygon[i] = polygon[k]; polygon[k] = tmp; } } int ShadowTessellator::getExtraVertexNumber(const Vector2& vector1, const Vector2& vector2, float divisor) { // When there is no distance difference, there is no need for extra vertices. if (vector1.lengthSquared() == 0 || vector2.lengthSquared() == 0) { return 0; } // The formula is : // extraNumber = floor(acos(dot(n1, n2)) / (M_PI / EXTRA_VERTEX_PER_PI)) // The value ranges for each step are: // dot( ) --- [-1, 1] // acos( ) --- [0, M_PI] // floor(...) --- [0, EXTRA_VERTEX_PER_PI] float dotProduct = vector1.dot(vector2); // TODO: Use look up table for the dotProduct to extraVerticesNumber // computation, if needed. float angle = acosf(dotProduct); return (int) floor(angle / divisor); } void ShadowTessellator::checkOverflow(int used, int total, const char* bufferName) { LOG_ALWAYS_FATAL_IF(used > total, "Error: %s overflow!!! used %d, total %d", bufferName, used, total); } }; // namespace uirenderer }; // namespace android