/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #define SHADOW_SHRINK_SCALE 0.1f #include #include #include #include "ShadowTessellator.h" #include "SpotShadow.h" #include "Vertex.h" namespace android { namespace uirenderer { static const double EPSILON = 1e-7; /** * Calculate the angle between and x and a y coordinate. * The atan2 range from -PI to PI. */ static float angle(const Vector2& point, const Vector2& center) { return atan2(point.y - center.y, point.x - center.x); } /** * Calculate the intersection of a ray with the line segment defined by two points. * * Returns a negative value in error conditions. * @param rayOrigin The start of the ray * @param dx The x vector of the ray * @param dy The y vector of the ray * @param p1 The first point defining the line segment * @param p2 The second point defining the line segment * @return The distance along the ray if it intersects with the line segment, negative if otherwise */ static float rayIntersectPoints(const Vector2& rayOrigin, float dx, float dy, const Vector2& p1, const Vector2& p2) { // The math below is derived from solving this formula, basically the // intersection point should stay on both the ray and the edge of (p1, p2). // solve([p1x+t*(p2x-p1x)=dx*t2+px,p1y+t*(p2y-p1y)=dy*t2+py],[t,t2]); double divisor = (dx * (p1.y - p2.y) + dy * p2.x - dy * p1.x); if (divisor == 0) return -1.0f; // error, invalid divisor #if DEBUG_SHADOW double interpVal = (dx * (p1.y - rayOrigin.y) + dy * rayOrigin.x - dy * p1.x) / divisor; if (interpVal < 0 || interpVal > 1) { ALOGW("rayIntersectPoints is hitting outside the segment %f", interpVal); } #endif double distance = (p1.x * (rayOrigin.y - p2.y) + p2.x * (p1.y - rayOrigin.y) + rayOrigin.x * (p2.y - p1.y)) / divisor; return distance; // may be negative in error cases } /** * Sort points by their X coordinates * * @param points the points as a Vector2 array. * @param pointsLength the number of vertices of the polygon. */ void SpotShadow::xsort(Vector2* points, int pointsLength) { quicksortX(points, 0, pointsLength - 1); } /** * compute the convex hull of a collection of Points * * @param points the points as a Vector2 array. * @param pointsLength the number of vertices of the polygon. * @param retPoly pre allocated array of floats to put the vertices * @return the number of points in the polygon 0 if no intersection */ int SpotShadow::hull(Vector2* points, int pointsLength, Vector2* retPoly) { xsort(points, pointsLength); int n = pointsLength; Vector2 lUpper[n]; lUpper[0] = points[0]; lUpper[1] = points[1]; int lUpperSize = 2; for (int i = 2; i < n; i++) { lUpper[lUpperSize] = points[i]; lUpperSize++; while (lUpperSize > 2 && !ccw( lUpper[lUpperSize - 3].x, lUpper[lUpperSize - 3].y, lUpper[lUpperSize - 2].x, lUpper[lUpperSize - 2].y, lUpper[lUpperSize - 1].x, lUpper[lUpperSize - 1].y)) { // Remove the middle point of the three last lUpper[lUpperSize - 2].x = lUpper[lUpperSize - 1].x; lUpper[lUpperSize - 2].y = lUpper[lUpperSize - 1].y; lUpperSize--; } } Vector2 lLower[n]; lLower[0] = points[n - 1]; lLower[1] = points[n - 2]; int lLowerSize = 2; for (int i = n - 3; i >= 0; i--) { lLower[lLowerSize] = points[i]; lLowerSize++; while (lLowerSize > 2 && !ccw( lLower[lLowerSize - 3].x, lLower[lLowerSize - 3].y, lLower[lLowerSize - 2].x, lLower[lLowerSize - 2].y, lLower[lLowerSize - 1].x, lLower[lLowerSize - 1].y)) { // Remove the middle point of the three last lLower[lLowerSize - 2] = lLower[lLowerSize - 1]; lLowerSize--; } } // output points in CW ordering const int total = lUpperSize + lLowerSize - 2; int outIndex = total - 1; for (int i = 0; i < lUpperSize; i++) { retPoly[outIndex] = lUpper[i]; outIndex--; } for (int i = 1; i < lLowerSize - 1; i++) { retPoly[outIndex] = lLower[i]; outIndex--; } // TODO: Add test harness which verify that all the points are inside the hull. return total; } /** * Test whether the 3 points form a counter clockwise turn. * * @return true if a right hand turn */ bool SpotShadow::ccw(double ax, double ay, double bx, double by, double cx, double cy) { return (bx - ax) * (cy - ay) - (by - ay) * (cx - ax) > EPSILON; } /** * Calculates the intersection of poly1 with poly2 and put in poly2. * Note that both poly1 and poly2 must be in CW order already! * * @param poly1 The 1st polygon, as a Vector2 array. * @param poly1Length The number of vertices of 1st polygon. * @param poly2 The 2nd and output polygon, as a Vector2 array. * @param poly2Length The number of vertices of 2nd polygon. * @return number of vertices in output polygon as poly2. */ int SpotShadow::intersection(const Vector2* poly1, int poly1Length, Vector2* poly2, int poly2Length) { #if DEBUG_SHADOW if (!ShadowTessellator::isClockwise(poly1, poly1Length)) { ALOGW("Poly1 is not clockwise! Intersection is wrong!"); } if (!ShadowTessellator::isClockwise(poly2, poly2Length)) { ALOGW("Poly2 is not clockwise! Intersection is wrong!"); } #endif Vector2 poly[poly1Length * poly2Length + 2]; int count = 0; int pcount = 0; // If one vertex from one polygon sits inside another polygon, add it and // count them. for (int i = 0; i < poly1Length; i++) { if (testPointInsidePolygon(poly1[i], poly2, poly2Length)) { poly[count] = poly1[i]; count++; pcount++; } } int insidePoly2 = pcount; for (int i = 0; i < poly2Length; i++) { if (testPointInsidePolygon(poly2[i], poly1, poly1Length)) { poly[count] = poly2[i]; count++; } } int insidePoly1 = count - insidePoly2; // If all vertices from poly1 are inside poly2, then just return poly1. if (insidePoly2 == poly1Length) { memcpy(poly2, poly1, poly1Length * sizeof(Vector2)); return poly1Length; } // If all vertices from poly2 are inside poly1, then just return poly2. if (insidePoly1 == poly2Length) { return poly2Length; } // Since neither polygon fully contain the other one, we need to add all the // intersection points. Vector2 intersection; for (int i = 0; i < poly2Length; i++) { for (int j = 0; j < poly1Length; j++) { int poly2LineStart = i; int poly2LineEnd = ((i + 1) % poly2Length); int poly1LineStart = j; int poly1LineEnd = ((j + 1) % poly1Length); bool found = lineIntersection( poly2[poly2LineStart].x, poly2[poly2LineStart].y, poly2[poly2LineEnd].x, poly2[poly2LineEnd].y, poly1[poly1LineStart].x, poly1[poly1LineStart].y, poly1[poly1LineEnd].x, poly1[poly1LineEnd].y, intersection); if (found) { poly[count].x = intersection.x; poly[count].y = intersection.y; count++; } else { Vector2 delta = poly2[i] - poly1[j]; if (delta.lengthSquared() < EPSILON) { poly[count] = poly2[i]; count++; } } } } if (count == 0) { return 0; } // Sort the result polygon around the center. Vector2 center(0.0f, 0.0f); for (int i = 0; i < count; i++) { center += poly[i]; } center /= count; sort(poly, count, center); #if DEBUG_SHADOW // Since poly2 is overwritten as the result, we need to save a copy to do // our verification. Vector2 oldPoly2[poly2Length]; int oldPoly2Length = poly2Length; memcpy(oldPoly2, poly2, sizeof(Vector2) * poly2Length); #endif // Filter the result out from poly and put it into poly2. poly2[0] = poly[0]; int lastOutputIndex = 0; for (int i = 1; i < count; i++) { Vector2 delta = poly[i] - poly2[lastOutputIndex]; if (delta.lengthSquared() >= EPSILON) { poly2[++lastOutputIndex] = poly[i]; } else { // If the vertices are too close, pick the inner one, because the // inner one is more likely to be an intersection point. Vector2 delta1 = poly[i] - center; Vector2 delta2 = poly2[lastOutputIndex] - center; if (delta1.lengthSquared() < delta2.lengthSquared()) { poly2[lastOutputIndex] = poly[i]; } } } int resultLength = lastOutputIndex + 1; #if DEBUG_SHADOW testConvex(poly2, resultLength, "intersection"); testConvex(poly1, poly1Length, "input poly1"); testConvex(oldPoly2, oldPoly2Length, "input poly2"); testIntersection(poly1, poly1Length, oldPoly2, oldPoly2Length, poly2, resultLength); #endif return resultLength; } /** * Sort points about a center point * * @param poly The in and out polyogon as a Vector2 array. * @param polyLength The number of vertices of the polygon. * @param center the center ctr[0] = x , ctr[1] = y to sort around. */ void SpotShadow::sort(Vector2* poly, int polyLength, const Vector2& center) { quicksortCirc(poly, 0, polyLength - 1, center); } /** * Swap points pointed to by i and j */ void SpotShadow::swap(Vector2* points, int i, int j) { Vector2 temp = points[i]; points[i] = points[j]; points[j] = temp; } /** * quick sort implementation about the center. */ void SpotShadow::quicksortCirc(Vector2* points, int low, int high, const Vector2& center) { int i = low, j = high; int p = low + (high - low) / 2; float pivot = angle(points[p], center); while (i <= j) { while (angle(points[i], center) > pivot) { i++; } while (angle(points[j], center) < pivot) { j--; } if (i <= j) { swap(points, i, j); i++; j--; } } if (low < j) quicksortCirc(points, low, j, center); if (i < high) quicksortCirc(points, i, high, center); } /** * Sort points by x axis * * @param points points to sort * @param low start index * @param high end index */ void SpotShadow::quicksortX(Vector2* points, int low, int high) { int i = low, j = high; int p = low + (high - low) / 2; float pivot = points[p].x; while (i <= j) { while (points[i].x < pivot) { i++; } while (points[j].x > pivot) { j--; } if (i <= j) { swap(points, i, j); i++; j--; } } if (low < j) quicksortX(points, low, j); if (i < high) quicksortX(points, i, high); } /** * Test whether a point is inside the polygon. * * @param testPoint the point to test * @param poly the polygon * @return true if the testPoint is inside the poly. */ bool SpotShadow::testPointInsidePolygon(const Vector2 testPoint, const Vector2* poly, int len) { bool c = false; double testx = testPoint.x; double testy = testPoint.y; for (int i = 0, j = len - 1; i < len; j = i++) { double startX = poly[j].x; double startY = poly[j].y; double endX = poly[i].x; double endY = poly[i].y; if (((endY > testy) != (startY > testy)) && (testx < (startX - endX) * (testy - endY) / (startY - endY) + endX)) { c = !c; } } return c; } /** * Make the polygon turn clockwise. * * @param polygon the polygon as a Vector2 array. * @param len the number of points of the polygon */ void SpotShadow::makeClockwise(Vector2* polygon, int len) { if (polygon == 0 || len == 0) { return; } if (!ShadowTessellator::isClockwise(polygon, len)) { reverse(polygon, len); } } /** * Reverse the polygon * * @param polygon the polygon as a Vector2 array * @param len the number of points of the polygon */ void SpotShadow::reverse(Vector2* polygon, int len) { int n = len / 2; for (int i = 0; i < n; i++) { Vector2 tmp = polygon[i]; int k = len - 1 - i; polygon[i] = polygon[k]; polygon[k] = tmp; } } /** * Intersects two lines in parametric form. This function is called in a tight * loop, and we need double precision to get things right. * * @param x1 the x coordinate point 1 of line 1 * @param y1 the y coordinate point 1 of line 1 * @param x2 the x coordinate point 2 of line 1 * @param y2 the y coordinate point 2 of line 1 * @param x3 the x coordinate point 1 of line 2 * @param y3 the y coordinate point 1 of line 2 * @param x4 the x coordinate point 2 of line 2 * @param y4 the y coordinate point 2 of line 2 * @param ret the x,y location of the intersection * @return true if it found an intersection */ inline bool SpotShadow::lineIntersection(double x1, double y1, double x2, double y2, double x3, double y3, double x4, double y4, Vector2& ret) { double d = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4); if (d == 0.0) return false; double dx = (x1 * y2 - y1 * x2); double dy = (x3 * y4 - y3 * x4); double x = (dx * (x3 - x4) - (x1 - x2) * dy) / d; double y = (dx * (y3 - y4) - (y1 - y2) * dy) / d; // The intersection should be in the middle of the point 1 and point 2, // likewise point 3 and point 4. if (((x - x1) * (x - x2) > EPSILON) || ((x - x3) * (x - x4) > EPSILON) || ((y - y1) * (y - y2) > EPSILON) || ((y - y3) * (y - y4) > EPSILON)) { // Not interesected return false; } ret.x = x; ret.y = y; return true; } /** * Compute a horizontal circular polygon about point (x , y , height) of radius * (size) * * @param points number of the points of the output polygon. * @param lightCenter the center of the light. * @param size the light size. * @param ret result polygon. */ void SpotShadow::computeLightPolygon(int points, const Vector3& lightCenter, float size, Vector3* ret) { // TODO: Caching all the sin / cos values and store them in a look up table. for (int i = 0; i < points; i++) { double angle = 2 * i * M_PI / points; ret[i].x = cosf(angle) * size + lightCenter.x; ret[i].y = sinf(angle) * size + lightCenter.y; ret[i].z = lightCenter.z; } } /** * Generate the shadow from a spot light. * * @param poly x,y,z vertexes of a convex polygon that occludes the light source * @param polyLength number of vertexes of the occluding polygon * @param lightCenter the center of the light * @param lightSize the radius of the light source * @param lightVertexCount the vertex counter for the light polygon * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return * empty strip if error. * */ void SpotShadow::createSpotShadow(bool isCasterOpaque, const Vector3* poly, int polyLength, const Vector3& lightCenter, float lightSize, int lightVertexCount, VertexBuffer& retStrips) { Vector3 light[lightVertexCount * 3]; computeLightPolygon(lightVertexCount, lightCenter, lightSize, light); computeSpotShadow(isCasterOpaque, light, lightVertexCount, lightCenter, poly, polyLength, retStrips); retStrips.setMode(VertexBuffer::kTwoPolyRingShadow); } /** * Generate the shadow spot light of shape lightPoly and a object poly * * @param lightPoly x,y,z vertex of a convex polygon that is the light source * @param lightPolyLength number of vertexes of the light source polygon * @param poly x,y,z vertexes of a convex polygon that occludes the light source * @param polyLength number of vertexes of the occluding polygon * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return * empty strip if error. */ void SpotShadow::computeSpotShadow(bool isCasterOpaque, const Vector3* lightPoly, int lightPolyLength, const Vector3& lightCenter, const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) { // Point clouds for all the shadowed vertices Vector2 shadowRegion[lightPolyLength * polyLength]; // Shadow polygon from one point light. Vector2 outline[polyLength]; Vector2 umbraMem[polyLength * lightPolyLength]; Vector2* umbra = umbraMem; int umbraLength = 0; // Validate input, receiver is always at z = 0 plane. bool inputPolyPositionValid = true; for (int i = 0; i < polyLength; i++) { if (poly[i].z >= lightPoly[0].z) { inputPolyPositionValid = false; ALOGW("polygon above the light"); break; } } // If the caster's position is invalid, don't draw anything. if (!inputPolyPositionValid) { return; } // Calculate the umbra polygon based on intersections of all outlines int k = 0; for (int j = 0; j < lightPolyLength; j++) { int m = 0; for (int i = 0; i < polyLength; i++) { // After validating the input, deltaZ is guaranteed to be positive. float deltaZ = lightPoly[j].z - poly[i].z; float ratioZ = lightPoly[j].z / deltaZ; float x = lightPoly[j].x - ratioZ * (lightPoly[j].x - poly[i].x); float y = lightPoly[j].y - ratioZ * (lightPoly[j].y - poly[i].y); Vector2 newPoint = Vector2(x, y); shadowRegion[k] = newPoint; outline[m] = newPoint; k++; m++; } // For the first light polygon's vertex, use the outline as the umbra. // Later on, use the intersection of the outline and existing umbra. if (umbraLength == 0) { for (int i = 0; i < polyLength; i++) { umbra[i] = outline[i]; } umbraLength = polyLength; } else { int col = ((j * 255) / lightPolyLength); umbraLength = intersection(outline, polyLength, umbra, umbraLength); if (umbraLength == 0) { break; } } } // Generate the penumbra area using the hull of all shadow regions. int shadowRegionLength = k; Vector2 penumbra[k]; int penumbraLength = hull(shadowRegion, shadowRegionLength, penumbra); Vector2 fakeUmbra[polyLength]; if (umbraLength < 3) { // If there is no real umbra, make a fake one. for (int i = 0; i < polyLength; i++) { float deltaZ = lightCenter.z - poly[i].z; float ratioZ = lightCenter.z / deltaZ; float x = lightCenter.x - ratioZ * (lightCenter.x - poly[i].x); float y = lightCenter.y - ratioZ * (lightCenter.y - poly[i].y); fakeUmbra[i].x = x; fakeUmbra[i].y = y; } // Shrink the centroid's shadow by 10%. // TODO: Study the magic number of 10%. Vector2 shadowCentroid = ShadowTessellator::centroid2d(fakeUmbra, polyLength); for (int i = 0; i < polyLength; i++) { fakeUmbra[i] = shadowCentroid * (1.0f - SHADOW_SHRINK_SCALE) + fakeUmbra[i] * SHADOW_SHRINK_SCALE; } #if DEBUG_SHADOW ALOGD("No real umbra make a fake one, centroid2d = %f , %f", shadowCentroid.x, shadowCentroid.y); #endif // Set the fake umbra, whose size is the same as the original polygon. umbra = fakeUmbra; umbraLength = polyLength; } generateTriangleStrip(isCasterOpaque, penumbra, penumbraLength, umbra, umbraLength, poly, polyLength, shadowTriangleStrip); } /** * Converts a polygon specified with CW vertices into an array of distance-from-centroid values. * * Returns false in error conditions * * @param poly Array of vertices. Note that these *must* be CW. * @param polyLength The number of vertices in the polygon. * @param polyCentroid The centroid of the polygon, from which rays will be cast * @param rayDist The output array for the calculated distances, must be SHADOW_RAY_COUNT in size */ bool convertPolyToRayDist(const Vector2* poly, int polyLength, const Vector2& polyCentroid, float* rayDist) { const int rays = SHADOW_RAY_COUNT; const float step = M_PI * 2 / rays; const Vector2* lastVertex = &(poly[polyLength - 1]); float startAngle = angle(*lastVertex, polyCentroid); // Start with the ray that's closest to and less than startAngle int rayIndex = floor((startAngle - EPSILON) / step); rayIndex = (rayIndex + rays) % rays; // ensure positive for (int polyIndex = 0; polyIndex < polyLength; polyIndex++) { /* * For a given pair of vertices on the polygon, poly[i-1] and poly[i], the rays that * intersect these will be those that are between the two angles from the centroid that the * vertices define. * * Because the polygon vertices are stored clockwise, the closest ray with an angle * *smaller* than that defined by angle(poly[i], centroid) will be the first ray that does * not intersect with poly[i-1], poly[i]. */ float currentAngle = angle(poly[polyIndex], polyCentroid); // find first ray that will not intersect the line segment poly[i-1] & poly[i] int firstRayIndexOnNextSegment = floor((currentAngle - EPSILON) / step); firstRayIndexOnNextSegment = (firstRayIndexOnNextSegment + rays) % rays; // ensure positive // Iterate through all rays that intersect with poly[i-1], poly[i] line segment. // This may be 0 rays. while (rayIndex != firstRayIndexOnNextSegment) { float distanceToIntersect = rayIntersectPoints(polyCentroid, cos(rayIndex * step), sin(rayIndex * step), *lastVertex, poly[polyIndex]); if (distanceToIntersect < 0) { #if DEBUG_SHADOW ALOGW("ERROR: convertPolyToRayDist failed"); #endif return false; // error case, abort } rayDist[rayIndex] = distanceToIntersect; rayIndex = (rayIndex - 1 + rays) % rays; } lastVertex = &poly[polyIndex]; } return true; } int SpotShadow::calculateOccludedUmbra(const Vector2* umbra, int umbraLength, const Vector3* poly, int polyLength, Vector2* occludedUmbra) { // Occluded umbra area is computed as the intersection of the projected 2D // poly and umbra. for (int i = 0; i < polyLength; i++) { occludedUmbra[i].x = poly[i].x; occludedUmbra[i].y = poly[i].y; } // Both umbra and incoming polygon are guaranteed to be CW, so we can call // intersection() directly. return intersection(umbra, umbraLength, occludedUmbra, polyLength); } #define OCLLUDED_UMBRA_SHRINK_FACTOR 0.95f /** * Generate a triangle strip given two convex polygons * * @param penumbra The outer polygon x,y vertexes * @param penumbraLength The number of vertexes in the outer polygon * @param umbra The inner outer polygon x,y vertexes * @param umbraLength The number of vertexes in the inner polygon * @param shadowTriangleStrip return an (x,y,alpha) triangle strip representing the shadow. Return * empty strip if error. **/ void SpotShadow::generateTriangleStrip(bool isCasterOpaque, const Vector2* penumbra, int penumbraLength, const Vector2* umbra, int umbraLength, const Vector3* poly, int polyLength, VertexBuffer& shadowTriangleStrip) { const int rays = SHADOW_RAY_COUNT; const int size = 2 * rays; const float step = M_PI * 2 / rays; // Centroid of the umbra. Vector2 centroid = ShadowTessellator::centroid2d(umbra, umbraLength); #if DEBUG_SHADOW ALOGD("centroid2d = %f , %f", centroid.x, centroid.y); #endif // Intersection to the penumbra. float penumbraDistPerRay[rays]; // Intersection to the umbra. float umbraDistPerRay[rays]; // Intersection to the occluded umbra area. float occludedUmbraDistPerRay[rays]; // convert CW polygons to ray distance encoding, aborting on conversion failure if (!convertPolyToRayDist(umbra, umbraLength, centroid, umbraDistPerRay)) return; if (!convertPolyToRayDist(penumbra, penumbraLength, centroid, penumbraDistPerRay)) return; bool hasOccludedUmbraArea = false; if (isCasterOpaque) { Vector2 occludedUmbra[polyLength + umbraLength]; int occludedUmbraLength = calculateOccludedUmbra(umbra, umbraLength, poly, polyLength, occludedUmbra); // Make sure the centroid is inside the umbra, otherwise, fall back to the // approach as if there is no occluded umbra area. if (testPointInsidePolygon(centroid, occludedUmbra, occludedUmbraLength)) { hasOccludedUmbraArea = true; // Shrink the occluded umbra area to avoid pixel level artifacts. for (int i = 0; i < occludedUmbraLength; i ++) { occludedUmbra[i] = centroid + (occludedUmbra[i] - centroid) * OCLLUDED_UMBRA_SHRINK_FACTOR; } if (!convertPolyToRayDist(occludedUmbra, occludedUmbraLength, centroid, occludedUmbraDistPerRay)) { return; } } } AlphaVertex* shadowVertices = shadowTriangleStrip.alloc(SHADOW_VERTEX_COUNT); // Calculate the vertices (x, y, alpha) in the shadow area. AlphaVertex centroidXYA; AlphaVertex::set(¢roidXYA, centroid.x, centroid.y, 1.0f); for (int rayIndex = 0; rayIndex < rays; rayIndex++) { float dx = cosf(step * rayIndex); float dy = sinf(step * rayIndex); // penumbra ring float penumbraDistance = penumbraDistPerRay[rayIndex]; AlphaVertex::set(&shadowVertices[rayIndex], dx * penumbraDistance + centroid.x, dy * penumbraDistance + centroid.y, 0.0f); // umbra ring float umbraDistance = umbraDistPerRay[rayIndex]; AlphaVertex::set(&shadowVertices[rays + rayIndex], dx * umbraDistance + centroid.x, dy * umbraDistance + centroid.y, 1.0f); // occluded umbra ring if (hasOccludedUmbraArea) { float occludedUmbraDistance = occludedUmbraDistPerRay[rayIndex]; AlphaVertex::set(&shadowVertices[2 * rays + rayIndex], dx * occludedUmbraDistance + centroid.x, dy * occludedUmbraDistance + centroid.y, 1.0f); } else { // Put all vertices of the occluded umbra ring at the centroid. shadowVertices[2 * rays + rayIndex] = centroidXYA; } } } /** * This is only for experimental purpose. * After intersections are calculated, we could smooth the polygon if needed. * So far, we don't think it is more appealing yet. * * @param level The level of smoothness. * @param rays The total number of rays. * @param rayDist (In and Out) The distance for each ray. * */ void SpotShadow::smoothPolygon(int level, int rays, float* rayDist) { for (int k = 0; k < level; k++) { for (int i = 0; i < rays; i++) { float p1 = rayDist[(rays - 1 + i) % rays]; float p2 = rayDist[i]; float p3 = rayDist[(i + 1) % rays]; rayDist[i] = (p1 + p2 * 2 + p3) / 4; } } } #if DEBUG_SHADOW #define TEST_POINT_NUMBER 128 /** * Calculate the bounds for generating random test points. */ void SpotShadow::updateBound(const Vector2 inVector, Vector2& lowerBound, Vector2& upperBound ) { if (inVector.x < lowerBound.x) { lowerBound.x = inVector.x; } if (inVector.y < lowerBound.y) { lowerBound.y = inVector.y; } if (inVector.x > upperBound.x) { upperBound.x = inVector.x; } if (inVector.y > upperBound.y) { upperBound.y = inVector.y; } } /** * For debug purpose, when things go wrong, dump the whole polygon data. */ static void dumpPolygon(const Vector2* poly, int polyLength, const char* polyName) { for (int i = 0; i < polyLength; i++) { ALOGD("polygon %s i %d x %f y %f", polyName, i, poly[i].x, poly[i].y); } } /** * Test whether the polygon is convex. */ bool SpotShadow::testConvex(const Vector2* polygon, int polygonLength, const char* name) { bool isConvex = true; for (int i = 0; i < polygonLength; i++) { Vector2 start = polygon[i]; Vector2 middle = polygon[(i + 1) % polygonLength]; Vector2 end = polygon[(i + 2) % polygonLength]; double delta = (double(middle.x) - start.x) * (double(end.y) - start.y) - (double(middle.y) - start.y) * (double(end.x) - start.x); bool isCCWOrCoLinear = (delta >= EPSILON); if (isCCWOrCoLinear) { ALOGW("(Error Type 2): polygon (%s) is not a convex b/c start (x %f, y %f)," "middle (x %f, y %f) and end (x %f, y %f) , delta is %f !!!", name, start.x, start.y, middle.x, middle.y, end.x, end.y, delta); isConvex = false; break; } } return isConvex; } /** * Test whether or not the polygon (intersection) is within the 2 input polygons. * Using Marte Carlo method, we generate a random point, and if it is inside the * intersection, then it must be inside both source polygons. */ void SpotShadow::testIntersection(const Vector2* poly1, int poly1Length, const Vector2* poly2, int poly2Length, const Vector2* intersection, int intersectionLength) { // Find the min and max of x and y. Vector2 lowerBound(FLT_MAX, FLT_MAX); Vector2 upperBound(-FLT_MAX, -FLT_MAX); for (int i = 0; i < poly1Length; i++) { updateBound(poly1[i], lowerBound, upperBound); } for (int i = 0; i < poly2Length; i++) { updateBound(poly2[i], lowerBound, upperBound); } bool dumpPoly = false; for (int k = 0; k < TEST_POINT_NUMBER; k++) { // Generate a random point between minX, minY and maxX, maxY. double randomX = rand() / double(RAND_MAX); double randomY = rand() / double(RAND_MAX); Vector2 testPoint; testPoint.x = lowerBound.x + randomX * (upperBound.x - lowerBound.x); testPoint.y = lowerBound.y + randomY * (upperBound.y - lowerBound.y); // If the random point is in both poly 1 and 2, then it must be intersection. if (testPointInsidePolygon(testPoint, intersection, intersectionLength)) { if (!testPointInsidePolygon(testPoint, poly1, poly1Length)) { dumpPoly = true; ALOGW("(Error Type 1): one point (%f, %f) in the intersection is" " not in the poly1", testPoint.x, testPoint.y); } if (!testPointInsidePolygon(testPoint, poly2, poly2Length)) { dumpPoly = true; ALOGW("(Error Type 1): one point (%f, %f) in the intersection is" " not in the poly2", testPoint.x, testPoint.y); } } } if (dumpPoly) { dumpPolygon(intersection, intersectionLength, "intersection"); for (int i = 1; i < intersectionLength; i++) { Vector2 delta = intersection[i] - intersection[i - 1]; ALOGD("Intersetion i, %d Vs i-1 is delta %f", i, delta.lengthSquared()); } dumpPolygon(poly1, poly1Length, "poly 1"); dumpPolygon(poly2, poly2Length, "poly 2"); } } #endif }; // namespace uirenderer }; // namespace android