/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #define LOG_TAG "OpenGLRenderer" #include #include "Blur.h" #include "MathUtils.h" namespace android { namespace uirenderer { // This constant approximates the scaling done in the software path's // "high quality" mode, in SkBlurMask::Blur() (1 / sqrt(3)). static const float BLUR_SIGMA_SCALE = 0.57735f; float Blur::convertRadiusToSigma(float radius) { return radius > 0 ? BLUR_SIGMA_SCALE * radius + 0.5f : 0.0f; } float Blur::convertSigmaToRadius(float sigma) { return sigma > 0.5f ? (sigma - 0.5f) / BLUR_SIGMA_SCALE : 0.0f; } // if the original radius was on an integer boundary and the resulting radius // is within the conversion error tolerance then we attempt to snap to the // original integer boundary. uint32_t Blur::convertRadiusToInt(float radius) { const float radiusCeil = ceilf(radius); if (MathUtils::areEqual(radiusCeil, radius)) { return radiusCeil; } return radius; } /** * HWUI has used a slightly different equation than Skia to generate the value * for sigma and to preserve compatibility we have kept that logic. * * Based on some experimental radius and sigma values we approximate the * equation sigma = f(radius) as sigma = radius * 0.3 + 0.6. The larger the * radius gets, the more our gaussian blur will resemble a box blur since with * large sigma the gaussian curve begins to lose its shape. */ static float legacyConvertRadiusToSigma(float radius) { return radius > 0 ? 0.3f * radius + 0.6f : 0.0f; } void Blur::generateGaussianWeights(float* weights, int32_t radius) { // Compute gaussian weights for the blur // e is the euler's number static float e = 2.718281828459045f; static float pi = 3.1415926535897932f; // g(x) = ( 1 / sqrt( 2 * pi ) * sigma) * e ^ ( -x^2 / 2 * sigma^2 ) // x is of the form [-radius .. 0 .. radius] // and sigma varies with radius. float sigma = legacyConvertRadiusToSigma((float) radius); // Now compute the coefficints // We will store some redundant values to save some math during // the blur calculations // precompute some values float coeff1 = 1.0f / (sqrt(2.0f * pi) * sigma); float coeff2 = - 1.0f / (2.0f * sigma * sigma); float normalizeFactor = 0.0f; for (int32_t r = -radius; r <= radius; r ++) { float floatR = (float) r; weights[r + radius] = coeff1 * pow(e, floatR * floatR * coeff2); normalizeFactor += weights[r + radius]; } //Now we need to normalize the weights because all our coefficients need to add up to one normalizeFactor = 1.0f / normalizeFactor; for (int32_t r = -radius; r <= radius; r ++) { weights[r + radius] *= normalizeFactor; } } void Blur::horizontal(float* weights, int32_t radius, const uint8_t* source, uint8_t* dest, int32_t width, int32_t height) { float blurredPixel = 0.0f; float currentPixel = 0.0f; for (int32_t y = 0; y < height; y ++) { const uint8_t* input = source + y * width; uint8_t* output = dest + y * width; for (int32_t x = 0; x < width; x ++) { blurredPixel = 0.0f; const float* gPtr = weights; // Optimization for non-border pixels if (x > radius && x < (width - radius)) { const uint8_t *i = input + (x - radius); for (int r = -radius; r <= radius; r ++) { currentPixel = (float) (*i); blurredPixel += currentPixel * gPtr[0]; gPtr++; i++; } } else { for (int32_t r = -radius; r <= radius; r ++) { // Stepping left and right away from the pixel int validW = x + r; if (validW < 0) { validW = 0; } if (validW > width - 1) { validW = width - 1; } currentPixel = (float) input[validW]; blurredPixel += currentPixel * gPtr[0]; gPtr++; } } *output = (uint8_t)blurredPixel; output ++; } } } void Blur::vertical(float* weights, int32_t radius, const uint8_t* source, uint8_t* dest, int32_t width, int32_t height) { float blurredPixel = 0.0f; float currentPixel = 0.0f; for (int32_t y = 0; y < height; y ++) { uint8_t* output = dest + y * width; for (int32_t x = 0; x < width; x ++) { blurredPixel = 0.0f; const float* gPtr = weights; const uint8_t* input = source + x; // Optimization for non-border pixels if (y > radius && y < (height - radius)) { const uint8_t *i = input + ((y - radius) * width); for (int32_t r = -radius; r <= radius; r ++) { currentPixel = (float) (*i); blurredPixel += currentPixel * gPtr[0]; gPtr++; i += width; } } else { for (int32_t r = -radius; r <= radius; r ++) { int validH = y + r; // Clamp to zero and width if (validH < 0) { validH = 0; } if (validH > height - 1) { validH = height - 1; } const uint8_t *i = input + validH * width; currentPixel = (float) (*i); blurredPixel += currentPixel * gPtr[0]; gPtr++; } } *output = (uint8_t) blurredPixel; output++; } } } }; // namespace uirenderer }; // namespace android