/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include "rsdCore.h" #include "rsdAllocation.h" #include "rsdShader.h" #include "rsdShaderCache.h" using namespace android; using namespace android::renderscript; RsdShader::RsdShader(const Program *p, uint32_t type, const char * shaderText, uint32_t shaderLength) { mUserShader.setTo(shaderText, shaderLength); mRSProgram = p; mType = type; initMemberVars(); initAttribAndUniformArray(); init(); } RsdShader::~RsdShader() { if (mShaderID) { glDeleteShader(mShaderID); } delete[] mAttribNames; delete[] mUniformNames; delete[] mUniformArraySizes; } void RsdShader::initMemberVars() { mDirty = true; mShaderID = 0; mAttribCount = 0; mUniformCount = 0; mAttribNames = NULL; mUniformNames = NULL; mUniformArraySizes = NULL; mIsValid = false; } void RsdShader::init() { uint32_t attribCount = 0; uint32_t uniformCount = 0; for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) { initAddUserElement(mRSProgram->mHal.state.inputElements[ct].get(), mAttribNames, NULL, &attribCount, RS_SHADER_ATTR); } for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) { initAddUserElement(mRSProgram->mHal.state.constantTypes[ct]->getElement(), mUniformNames, mUniformArraySizes, &uniformCount, RS_SHADER_UNI); } mTextureUniformIndexStart = uniformCount; char buf[256]; for (uint32_t ct=0; ct < mRSProgram->mHal.state.texturesCount; ct++) { snprintf(buf, sizeof(buf), "UNI_Tex%i", ct); mUniformNames[uniformCount].setTo(buf); mUniformArraySizes[uniformCount] = 1; uniformCount++; } } String8 RsdShader::getGLSLInputString() const { String8 s; for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) { const Element *e = mRSProgram->mHal.state.inputElements[ct].get(); for (uint32_t field=0; field < e->getFieldCount(); field++) { const Element *f = e->getField(field); // Cannot be complex rsAssert(!f->getFieldCount()); switch (f->getComponent().getVectorSize()) { case 1: s.append("attribute float ATTRIB_"); break; case 2: s.append("attribute vec2 ATTRIB_"); break; case 3: s.append("attribute vec3 ATTRIB_"); break; case 4: s.append("attribute vec4 ATTRIB_"); break; default: rsAssert(0); } s.append(e->getFieldName(field)); s.append(";\n"); } } return s; } void RsdShader::appendAttributes() { for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) { const Element *e = mRSProgram->mHal.state.inputElements[ct].get(); for (uint32_t field=0; field < e->getFieldCount(); field++) { const Element *f = e->getField(field); const char *fn = e->getFieldName(field); if (fn[0] == '#') { continue; } // Cannot be complex rsAssert(!f->getFieldCount()); switch (f->getComponent().getVectorSize()) { case 1: mShader.append("attribute float ATTRIB_"); break; case 2: mShader.append("attribute vec2 ATTRIB_"); break; case 3: mShader.append("attribute vec3 ATTRIB_"); break; case 4: mShader.append("attribute vec4 ATTRIB_"); break; default: rsAssert(0); } mShader.append(fn); mShader.append(";\n"); } } } void RsdShader::appendTextures() { char buf[256]; for (uint32_t ct=0; ct < mRSProgram->mHal.state.texturesCount; ct++) { if (mRSProgram->mHal.state.textureTargets[ct] == RS_TEXTURE_2D) { snprintf(buf, sizeof(buf), "uniform sampler2D UNI_Tex%i;\n", ct); } else { snprintf(buf, sizeof(buf), "uniform samplerCube UNI_Tex%i;\n", ct); } mShader.append(buf); } } bool RsdShader::createShader() { if (mType == GL_FRAGMENT_SHADER) { mShader.append("precision mediump float;\n"); } appendUserConstants(); appendAttributes(); appendTextures(); mShader.append(mUserShader); return true; } bool RsdShader::loadShader(const Context *rsc) { mShaderID = glCreateShader(mType); rsAssert(mShaderID); if (rsc->props.mLogShaders) { LOGV("Loading shader type %x, ID %i", mType, mShaderID); LOGV("%s", mShader.string()); } if (mShaderID) { const char * ss = mShader.string(); glShaderSource(mShaderID, 1, &ss, NULL); glCompileShader(mShaderID); GLint compiled = 0; glGetShaderiv(mShaderID, GL_COMPILE_STATUS, &compiled); if (!compiled) { GLint infoLen = 0; glGetShaderiv(mShaderID, GL_INFO_LOG_LENGTH, &infoLen); if (infoLen) { char* buf = (char*) malloc(infoLen); if (buf) { glGetShaderInfoLog(mShaderID, infoLen, NULL, buf); LOGE("Could not compile shader \n%s\n", buf); free(buf); } glDeleteShader(mShaderID); mShaderID = 0; rsc->setError(RS_ERROR_BAD_SHADER, "Error returned from GL driver loading shader text,"); return false; } } } if (rsc->props.mLogShaders) { LOGV("--Shader load result %x ", glGetError()); } mIsValid = true; return true; } void RsdShader::appendUserConstants() { for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) { const Element *e = mRSProgram->mHal.state.constantTypes[ct]->getElement(); for (uint32_t field=0; field < e->getFieldCount(); field++) { const Element *f = e->getField(field); const char *fn = e->getFieldName(field); if (fn[0] == '#') { continue; } // Cannot be complex rsAssert(!f->getFieldCount()); if (f->getType() == RS_TYPE_MATRIX_4X4) { mShader.append("uniform mat4 UNI_"); } else if (f->getType() == RS_TYPE_MATRIX_3X3) { mShader.append("uniform mat3 UNI_"); } else if (f->getType() == RS_TYPE_MATRIX_2X2) { mShader.append("uniform mat2 UNI_"); } else { switch (f->getComponent().getVectorSize()) { case 1: mShader.append("uniform float UNI_"); break; case 2: mShader.append("uniform vec2 UNI_"); break; case 3: mShader.append("uniform vec3 UNI_"); break; case 4: mShader.append("uniform vec4 UNI_"); break; default: rsAssert(0); } } mShader.append(fn); if (e->getFieldArraySize(field) > 1) { mShader.appendFormat("[%d]", e->getFieldArraySize(field)); } mShader.append(";\n"); } } } void RsdShader::logUniform(const Element *field, const float *fd, uint32_t arraySize ) { RsDataType dataType = field->getType(); uint32_t elementSize = field->getSizeBytes() / sizeof(float); for (uint32_t i = 0; i < arraySize; i ++) { if (arraySize > 1) { LOGV("Array Element [%u]", i); } if (dataType == RS_TYPE_MATRIX_4X4) { LOGV("Matrix4x4"); LOGV("{%f, %f, %f, %f", fd[0], fd[4], fd[8], fd[12]); LOGV(" %f, %f, %f, %f", fd[1], fd[5], fd[9], fd[13]); LOGV(" %f, %f, %f, %f", fd[2], fd[6], fd[10], fd[14]); LOGV(" %f, %f, %f, %f}", fd[3], fd[7], fd[11], fd[15]); } else if (dataType == RS_TYPE_MATRIX_3X3) { LOGV("Matrix3x3"); LOGV("{%f, %f, %f", fd[0], fd[3], fd[6]); LOGV(" %f, %f, %f", fd[1], fd[4], fd[7]); LOGV(" %f, %f, %f}", fd[2], fd[5], fd[8]); } else if (dataType == RS_TYPE_MATRIX_2X2) { LOGV("Matrix2x2"); LOGV("{%f, %f", fd[0], fd[2]); LOGV(" %f, %f}", fd[1], fd[3]); } else { switch (field->getComponent().getVectorSize()) { case 1: LOGV("Uniform 1 = %f", fd[0]); break; case 2: LOGV("Uniform 2 = %f %f", fd[0], fd[1]); break; case 3: LOGV("Uniform 3 = %f %f %f", fd[0], fd[1], fd[2]); break; case 4: LOGV("Uniform 4 = %f %f %f %f", fd[0], fd[1], fd[2], fd[3]); break; default: rsAssert(0); } } LOGE("Element size %u data=%p", elementSize, fd); fd += elementSize; LOGE("New data=%p", fd); } } void RsdShader::setUniform(const Context *rsc, const Element *field, const float *fd, int32_t slot, uint32_t arraySize ) { RsDataType dataType = field->getType(); if (dataType == RS_TYPE_MATRIX_4X4) { glUniformMatrix4fv(slot, arraySize, GL_FALSE, fd); } else if (dataType == RS_TYPE_MATRIX_3X3) { glUniformMatrix3fv(slot, arraySize, GL_FALSE, fd); } else if (dataType == RS_TYPE_MATRIX_2X2) { glUniformMatrix2fv(slot, arraySize, GL_FALSE, fd); } else { switch (field->getComponent().getVectorSize()) { case 1: glUniform1fv(slot, arraySize, fd); break; case 2: glUniform2fv(slot, arraySize, fd); break; case 3: glUniform3fv(slot, arraySize, fd); break; case 4: glUniform4fv(slot, arraySize, fd); break; default: rsAssert(0); } } } void RsdShader::setupSampler(const Context *rsc, const Sampler *s, const Allocation *tex) { RsdHal *dc = (RsdHal *)rsc->mHal.drv; GLenum trans[] = { GL_NEAREST, //RS_SAMPLER_NEAREST, GL_LINEAR, //RS_SAMPLER_LINEAR, GL_LINEAR_MIPMAP_LINEAR, //RS_SAMPLER_LINEAR_MIP_LINEAR, GL_REPEAT, //RS_SAMPLER_WRAP, GL_CLAMP_TO_EDGE, //RS_SAMPLER_CLAMP GL_LINEAR_MIPMAP_NEAREST, //RS_SAMPLER_LINEAR_MIP_NEAREST }; GLenum transNP[] = { GL_NEAREST, //RS_SAMPLER_NEAREST, GL_LINEAR, //RS_SAMPLER_LINEAR, GL_LINEAR, //RS_SAMPLER_LINEAR_MIP_LINEAR, GL_CLAMP_TO_EDGE, //RS_SAMPLER_WRAP, GL_CLAMP_TO_EDGE, //RS_SAMPLER_CLAMP GL_LINEAR, //RS_SAMPLER_LINEAR_MIP_NEAREST, }; // This tells us the correct texture type DrvAllocation *drvTex = (DrvAllocation *)tex->mHal.drv; const GLenum target = drvTex->glTarget; if (!dc->gl.gl.OES_texture_npot && tex->getType()->getIsNp2()) { if (tex->getHasGraphicsMipmaps() && (dc->gl.gl.GL_NV_texture_npot_2D_mipmap || dc->gl.gl.GL_IMG_texture_npot)) { if (dc->gl.gl.GL_NV_texture_npot_2D_mipmap) { glTexParameteri(target, GL_TEXTURE_MIN_FILTER, trans[s->mHal.state.minFilter]); } else { switch (trans[s->mHal.state.minFilter]) { case GL_LINEAR_MIPMAP_LINEAR: glTexParameteri(target, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); break; default: glTexParameteri(target, GL_TEXTURE_MIN_FILTER, trans[s->mHal.state.minFilter]); break; } } } else { glTexParameteri(target, GL_TEXTURE_MIN_FILTER, transNP[s->mHal.state.minFilter]); } glTexParameteri(target, GL_TEXTURE_MAG_FILTER, transNP[s->mHal.state.magFilter]); glTexParameteri(target, GL_TEXTURE_WRAP_S, transNP[s->mHal.state.wrapS]); glTexParameteri(target, GL_TEXTURE_WRAP_T, transNP[s->mHal.state.wrapT]); } else { if (tex->getHasGraphicsMipmaps()) { glTexParameteri(target, GL_TEXTURE_MIN_FILTER, trans[s->mHal.state.minFilter]); } else { glTexParameteri(target, GL_TEXTURE_MIN_FILTER, transNP[s->mHal.state.minFilter]); } glTexParameteri(target, GL_TEXTURE_MAG_FILTER, trans[s->mHal.state.magFilter]); glTexParameteri(target, GL_TEXTURE_WRAP_S, trans[s->mHal.state.wrapS]); glTexParameteri(target, GL_TEXTURE_WRAP_T, trans[s->mHal.state.wrapT]); } float anisoValue = rsMin(dc->gl.gl.EXT_texture_max_aniso, s->mHal.state.aniso); if (dc->gl.gl.EXT_texture_max_aniso > 1.0f) { glTexParameterf(target, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisoValue); } rsdGLCheckError(rsc, "Sampler::setup tex env"); } void RsdShader::setupTextures(const Context *rsc, RsdShaderCache *sc) { if (mRSProgram->mHal.state.texturesCount == 0) { return; } RsdHal *dc = (RsdHal *)rsc->mHal.drv; uint32_t numTexturesToBind = mRSProgram->mHal.state.texturesCount; uint32_t numTexturesAvailable = dc->gl.gl.maxFragmentTextureImageUnits; if (numTexturesToBind >= numTexturesAvailable) { LOGE("Attempting to bind %u textures on shader id %u, but only %u are available", mRSProgram->mHal.state.texturesCount, (uint32_t)this, numTexturesAvailable); rsc->setError(RS_ERROR_BAD_SHADER, "Cannot bind more textuers than available"); numTexturesToBind = numTexturesAvailable; } for (uint32_t ct=0; ct < numTexturesToBind; ct++) { glActiveTexture(GL_TEXTURE0 + ct); if (!mRSProgram->mHal.state.textures[ct].get()) { LOGE("No texture bound for shader id %u, texture unit %u", (uint)this, ct); rsc->setError(RS_ERROR_BAD_SHADER, "No texture bound"); continue; } DrvAllocation *drvTex = (DrvAllocation *)mRSProgram->mHal.state.textures[ct]->mHal.drv; if (drvTex->glTarget != GL_TEXTURE_2D && drvTex->glTarget != GL_TEXTURE_CUBE_MAP) { LOGE("Attempting to bind unknown texture to shader id %u, texture unit %u", (uint)this, ct); rsc->setError(RS_ERROR_BAD_SHADER, "Non-texture allocation bound to a shader"); } glBindTexture(drvTex->glTarget, drvTex->textureID); rsdGLCheckError(rsc, "ProgramFragment::setup tex bind"); if (mRSProgram->mHal.state.samplers[ct].get()) { setupSampler(rsc, mRSProgram->mHal.state.samplers[ct].get(), mRSProgram->mHal.state.textures[ct].get()); } else { glTexParameteri(drvTex->glTarget, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(drvTex->glTarget, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(drvTex->glTarget, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(drvTex->glTarget, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); rsdGLCheckError(rsc, "ProgramFragment::setup tex env"); } glUniform1i(sc->fragUniformSlot(mTextureUniformIndexStart + ct), ct); rsdGLCheckError(rsc, "ProgramFragment::setup uniforms"); } glActiveTexture(GL_TEXTURE0); mDirty = false; rsdGLCheckError(rsc, "ProgramFragment::setup"); } void RsdShader::setupUserConstants(const Context *rsc, RsdShaderCache *sc, bool isFragment) { uint32_t uidx = 0; for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) { Allocation *alloc = mRSProgram->mHal.state.constants[ct].get(); if (!alloc) { LOGE("Attempting to set constants on shader id %u, but alloc at slot %u is not set", (uint32_t)this, ct); rsc->setError(RS_ERROR_BAD_SHADER, "No constant allocation bound"); continue; } const uint8_t *data = static_cast(alloc->getPtr()); const Element *e = mRSProgram->mHal.state.constantTypes[ct]->getElement(); for (uint32_t field=0; field < e->getFieldCount(); field++) { const Element *f = e->getField(field); const char *fieldName = e->getFieldName(field); // If this field is padding, skip it if (fieldName[0] == '#') { continue; } uint32_t offset = e->getFieldOffsetBytes(field); const float *fd = reinterpret_cast(&data[offset]); int32_t slot = -1; uint32_t arraySize = 1; if (!isFragment) { slot = sc->vtxUniformSlot(uidx); arraySize = sc->vtxUniformSize(uidx); } else { slot = sc->fragUniformSlot(uidx); arraySize = sc->fragUniformSize(uidx); } if (rsc->props.mLogShadersUniforms) { LOGV("Uniform slot=%i, offset=%i, constant=%i, field=%i, uidx=%i, name=%s", slot, offset, ct, field, uidx, fieldName); } uidx ++; if (slot < 0) { continue; } if (rsc->props.mLogShadersUniforms) { logUniform(f, fd, arraySize); } setUniform(rsc, f, fd, slot, arraySize); } } } void RsdShader::setup(const android::renderscript::Context *rsc, RsdShaderCache *sc) { setupUserConstants(rsc, sc, mType == GL_FRAGMENT_SHADER); setupTextures(rsc, sc); } void RsdShader::initAttribAndUniformArray() { mAttribCount = 0; for (uint32_t ct=0; ct < mRSProgram->mHal.state.inputElementsCount; ct++) { const Element *elem = mRSProgram->mHal.state.inputElements[ct].get(); for (uint32_t field=0; field < elem->getFieldCount(); field++) { if (elem->getFieldName(field)[0] != '#') { mAttribCount ++; } } } mUniformCount = 0; for (uint32_t ct=0; ct < mRSProgram->mHal.state.constantsCount; ct++) { const Element *elem = mRSProgram->mHal.state.constantTypes[ct]->getElement(); for (uint32_t field=0; field < elem->getFieldCount(); field++) { if (elem->getFieldName(field)[0] != '#') { mUniformCount ++; } } } mUniformCount += mRSProgram->mHal.state.texturesCount; if (mAttribCount) { mAttribNames = new String8[mAttribCount]; } if (mUniformCount) { mUniformNames = new String8[mUniformCount]; mUniformArraySizes = new uint32_t[mUniformCount]; } } void RsdShader::initAddUserElement(const Element *e, String8 *names, uint32_t *arrayLengths, uint32_t *count, const char *prefix) { rsAssert(e->getFieldCount()); for (uint32_t ct=0; ct < e->getFieldCount(); ct++) { const Element *ce = e->getField(ct); if (ce->getFieldCount()) { initAddUserElement(ce, names, arrayLengths, count, prefix); } else if (e->getFieldName(ct)[0] != '#') { String8 tmp(prefix); tmp.append(e->getFieldName(ct)); names[*count].setTo(tmp.string()); if (arrayLengths) { arrayLengths[*count] = e->getFieldArraySize(ct); } (*count)++; } } }