/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ANDROID_RS_BUILD_FOR_HOST #include "rsContext.h" #include #include #include #else #include "rsContextHostStub.h" #include #include #endif using namespace android; using namespace android::renderscript; Mesh::Mesh(Context *rsc) : ObjectBase(rsc) { mPrimitives = NULL; mPrimitivesCount = 0; mVertexBuffers = NULL; mVertexBufferCount = 0; mAttribs = NULL; mAttribAllocationIndex = NULL; mAttribCount = 0; } Mesh::~Mesh() { if (mVertexBuffers) { delete[] mVertexBuffers; } if (mPrimitives) { for (uint32_t i = 0; i < mPrimitivesCount; i ++) { delete mPrimitives[i]; } delete[] mPrimitives; } if (mAttribs) { delete[] mAttribs; delete[] mAttribAllocationIndex; } } bool Mesh::isValidGLComponent(const Element *elem, uint32_t fieldIdx) { // Do not create attribs for padding if (elem->getFieldName(fieldIdx)[0] == '#') { return false; } // Only GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_FIXED, GL_FLOAT are accepted. // Filter rs types accordingly RsDataType dt = elem->getField(fieldIdx)->getComponent().getType(); if (dt != RS_TYPE_FLOAT_32 && dt != RS_TYPE_UNSIGNED_8 && dt != RS_TYPE_UNSIGNED_16 && dt != RS_TYPE_SIGNED_8 && dt != RS_TYPE_SIGNED_16) { return false; } // Now make sure they are not arrays uint32_t arraySize = elem->getFieldArraySize(fieldIdx); if (arraySize != 1) { return false; } return true; } void Mesh::initVertexAttribs() { // Count the number of gl attrs to initialize mAttribCount = 0; for (uint32_t ct=0; ct < mVertexBufferCount; ct++) { const Element *elem = mVertexBuffers[ct]->getType()->getElement(); for (uint32_t ct=0; ct < elem->getFieldCount(); ct++) { if (isValidGLComponent(elem, ct)) { mAttribCount ++; } } } if (mAttribs) { delete [] mAttribs; delete [] mAttribAllocationIndex; mAttribs = NULL; mAttribAllocationIndex = NULL; } if (!mAttribCount) { return; } mAttribs = new VertexArray::Attrib[mAttribCount]; mAttribAllocationIndex = new uint32_t[mAttribCount]; uint32_t userNum = 0; for (uint32_t ct=0; ct < mVertexBufferCount; ct++) { const Element *elem = mVertexBuffers[ct]->getType()->getElement(); uint32_t stride = elem->getSizeBytes(); for (uint32_t fieldI=0; fieldI < elem->getFieldCount(); fieldI++) { const Component &c = elem->getField(fieldI)->getComponent(); if (!isValidGLComponent(elem, fieldI)) { continue; } mAttribs[userNum].size = c.getVectorSize(); mAttribs[userNum].offset = elem->getFieldOffsetBytes(fieldI); mAttribs[userNum].type = c.getGLType(); mAttribs[userNum].normalized = c.getType() != RS_TYPE_FLOAT_32;//c.getIsNormalized(); mAttribs[userNum].stride = stride; String8 tmp(RS_SHADER_ATTR); tmp.append(elem->getFieldName(fieldI)); mAttribs[userNum].name.setTo(tmp.string()); // Remember which allocation this attribute came from mAttribAllocationIndex[userNum] = ct; userNum ++; } } } void Mesh::render(Context *rsc) const { for (uint32_t ct = 0; ct < mPrimitivesCount; ct ++) { renderPrimitive(rsc, ct); } } void Mesh::renderPrimitive(Context *rsc, uint32_t primIndex) const { if (primIndex >= mPrimitivesCount) { LOGE("Invalid primitive index"); return; } Primitive_t *prim = mPrimitives[primIndex]; if (prim->mIndexBuffer.get()) { renderPrimitiveRange(rsc, primIndex, 0, prim->mIndexBuffer->getType()->getDimX()); return; } renderPrimitiveRange(rsc, primIndex, 0, mVertexBuffers[0]->getType()->getDimX()); } void Mesh::renderPrimitiveRange(Context *rsc, uint32_t primIndex, uint32_t start, uint32_t len) const { if (len < 1 || primIndex >= mPrimitivesCount || mAttribCount == 0) { LOGE("Invalid mesh or parameters"); return; } rsc->checkError("Mesh::renderPrimitiveRange 1"); for (uint32_t ct=0; ct < mVertexBufferCount; ct++) { mVertexBuffers[ct]->uploadCheck(rsc); } // update attributes with either buffer information or data ptr based on their current state for (uint32_t ct=0; ct < mAttribCount; ct++) { uint32_t allocIndex = mAttribAllocationIndex[ct]; Allocation *alloc = mVertexBuffers[allocIndex].get(); if (alloc->getIsBufferObject()) { mAttribs[ct].buffer = alloc->getBufferObjectID(); mAttribs[ct].ptr = NULL; } else { mAttribs[ct].buffer = 0; mAttribs[ct].ptr = (const uint8_t*)alloc->getPtr(); } } VertexArray va(mAttribs, mAttribCount); va.setupGL2(rsc, &rsc->mStateVertexArray, &rsc->mShaderCache); rsc->checkError("Mesh::renderPrimitiveRange 2"); Primitive_t *prim = mPrimitives[primIndex]; if (prim->mIndexBuffer.get()) { prim->mIndexBuffer->uploadCheck(rsc); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, prim->mIndexBuffer->getBufferObjectID()); glDrawElements(prim->mGLPrimitive, len, GL_UNSIGNED_SHORT, (uint16_t *)(start * 2)); } else { glDrawArrays(prim->mGLPrimitive, start, len); } rsc->checkError("Mesh::renderPrimitiveRange"); } void Mesh::uploadAll(Context *rsc) { for (uint32_t ct = 0; ct < mVertexBufferCount; ct ++) { if (mVertexBuffers[ct].get()) { mVertexBuffers[ct]->deferedUploadToBufferObject(rsc); } } for (uint32_t ct = 0; ct < mPrimitivesCount; ct ++) { if (mPrimitives[ct]->mIndexBuffer.get()) { mPrimitives[ct]->mIndexBuffer->deferedUploadToBufferObject(rsc); } } } void Mesh::updateGLPrimitives() { for (uint32_t i = 0; i < mPrimitivesCount; i ++) { switch (mPrimitives[i]->mPrimitive) { case RS_PRIMITIVE_POINT: mPrimitives[i]->mGLPrimitive = GL_POINTS; break; case RS_PRIMITIVE_LINE: mPrimitives[i]->mGLPrimitive = GL_LINES; break; case RS_PRIMITIVE_LINE_STRIP: mPrimitives[i]->mGLPrimitive = GL_LINE_STRIP; break; case RS_PRIMITIVE_TRIANGLE: mPrimitives[i]->mGLPrimitive = GL_TRIANGLES; break; case RS_PRIMITIVE_TRIANGLE_STRIP: mPrimitives[i]->mGLPrimitive = GL_TRIANGLE_STRIP; break; case RS_PRIMITIVE_TRIANGLE_FAN: mPrimitives[i]->mGLPrimitive = GL_TRIANGLE_FAN; break; } } } void Mesh::serialize(OStream *stream) const { // Need to identify ourselves stream->addU32((uint32_t)getClassId()); String8 name(getName()); stream->addString(&name); // Store number of vertex streams stream->addU32(mVertexBufferCount); for (uint32_t vCount = 0; vCount < mVertexBufferCount; vCount ++) { mVertexBuffers[vCount]->serialize(stream); } stream->addU32(mPrimitivesCount); // Store the primitives for (uint32_t pCount = 0; pCount < mPrimitivesCount; pCount ++) { Primitive_t * prim = mPrimitives[pCount]; stream->addU8((uint8_t)prim->mPrimitive); if (prim->mIndexBuffer.get()) { stream->addU32(1); prim->mIndexBuffer->serialize(stream); } else { stream->addU32(0); } } } Mesh *Mesh::createFromStream(Context *rsc, IStream *stream) { // First make sure we are reading the correct object RsA3DClassID classID = (RsA3DClassID)stream->loadU32(); if (classID != RS_A3D_CLASS_ID_MESH) { LOGE("mesh loading skipped due to invalid class id"); return NULL; } Mesh * mesh = new Mesh(rsc); String8 name; stream->loadString(&name); mesh->setName(name.string(), name.size()); mesh->mVertexBufferCount = stream->loadU32(); if (mesh->mVertexBufferCount) { mesh->mVertexBuffers = new ObjectBaseRef[mesh->mVertexBufferCount]; for (uint32_t vCount = 0; vCount < mesh->mVertexBufferCount; vCount ++) { Allocation *vertexAlloc = Allocation::createFromStream(rsc, stream); mesh->mVertexBuffers[vCount].set(vertexAlloc); } } mesh->mPrimitivesCount = stream->loadU32(); if (mesh->mPrimitivesCount) { mesh->mPrimitives = new Primitive_t *[mesh->mPrimitivesCount]; // load all primitives for (uint32_t pCount = 0; pCount < mesh->mPrimitivesCount; pCount ++) { Primitive_t * prim = new Primitive_t; mesh->mPrimitives[pCount] = prim; prim->mPrimitive = (RsPrimitive)stream->loadU8(); // Check to see if the index buffer was stored uint32_t isIndexPresent = stream->loadU32(); if (isIndexPresent) { Allocation *indexAlloc = Allocation::createFromStream(rsc, stream); prim->mIndexBuffer.set(indexAlloc); } } } mesh->updateGLPrimitives(); mesh->initVertexAttribs(); mesh->uploadAll(rsc); return mesh; } void Mesh::computeBBox() { float *posPtr = NULL; uint32_t vectorSize = 0; uint32_t stride = 0; uint32_t numVerts = 0; // First we need to find the position ptr and stride for (uint32_t ct=0; ct < mVertexBufferCount; ct++) { const Type *bufferType = mVertexBuffers[ct]->getType(); const Element *bufferElem = bufferType->getElement(); for (uint32_t ct=0; ct < bufferElem->getFieldCount(); ct++) { if (strcmp(bufferElem->getFieldName(ct), "position") == 0) { vectorSize = bufferElem->getField(ct)->getComponent().getVectorSize(); stride = bufferElem->getSizeBytes() / sizeof(float); uint32_t offset = bufferElem->getFieldOffsetBytes(ct); posPtr = (float*)((uint8_t*)mVertexBuffers[ct]->getPtr() + offset); numVerts = bufferType->getDimX(); break; } } if (posPtr) { break; } } mBBoxMin[0] = mBBoxMin[1] = mBBoxMin[2] = 1e6; mBBoxMax[0] = mBBoxMax[1] = mBBoxMax[2] = -1e6; if (!posPtr) { LOGE("Unable to compute bounding box"); mBBoxMin[0] = mBBoxMin[1] = mBBoxMin[2] = 0.0f; mBBoxMax[0] = mBBoxMax[1] = mBBoxMax[2] = 0.0f; return; } for (uint32_t i = 0; i < numVerts; i ++) { for (uint32_t v = 0; v < vectorSize; v ++) { mBBoxMin[v] = rsMin(mBBoxMin[v], posPtr[v]); mBBoxMax[v] = rsMax(mBBoxMax[v], posPtr[v]); } posPtr += stride; } } MeshContext::MeshContext() { } MeshContext::~MeshContext() { } namespace android { namespace renderscript { RsMesh rsi_MeshCreate(Context *rsc, uint32_t vtxCount, uint32_t idxCount) { Mesh *sm = new Mesh(rsc); sm->incUserRef(); sm->mPrimitivesCount = idxCount; sm->mPrimitives = new Mesh::Primitive_t *[sm->mPrimitivesCount]; for (uint32_t ct = 0; ct < idxCount; ct ++) { sm->mPrimitives[ct] = new Mesh::Primitive_t; } sm->mVertexBufferCount = vtxCount; sm->mVertexBuffers = new ObjectBaseRef[vtxCount]; return sm; } void rsi_MeshBindVertex(Context *rsc, RsMesh mv, RsAllocation va, uint32_t slot) { Mesh *sm = static_cast(mv); rsAssert(slot < sm->mVertexBufferCount); sm->mVertexBuffers[slot].set((Allocation *)va); } void rsi_MeshBindIndex(Context *rsc, RsMesh mv, RsAllocation va, uint32_t primType, uint32_t slot) { Mesh *sm = static_cast(mv); rsAssert(slot < sm->mPrimitivesCount); sm->mPrimitives[slot]->mIndexBuffer.set((Allocation *)va); sm->mPrimitives[slot]->mPrimitive = (RsPrimitive)primType; sm->updateGLPrimitives(); } void rsi_MeshInitVertexAttribs(Context *rsc, RsMesh mv) { Mesh *sm = static_cast(mv); sm->initVertexAttribs(); } }} void rsaMeshGetVertexBufferCount(RsContext con, RsMesh mv, int32_t *numVtx) { Mesh *sm = static_cast(mv); *numVtx = sm->mVertexBufferCount; } void rsaMeshGetIndexCount(RsContext con, RsMesh mv, int32_t *numIdx) { Mesh *sm = static_cast(mv); *numIdx = sm->mPrimitivesCount; } void rsaMeshGetVertices(RsContext con, RsMesh mv, RsAllocation *vtxData, uint32_t vtxDataCount) { Mesh *sm = static_cast(mv); rsAssert(vtxDataCount == sm->mVertexBufferCount); for (uint32_t ct = 0; ct < vtxDataCount; ct ++) { vtxData[ct] = sm->mVertexBuffers[ct].get(); sm->mVertexBuffers[ct]->incUserRef(); } } void rsaMeshGetIndices(RsContext con, RsMesh mv, RsAllocation *va, uint32_t *primType, uint32_t idxDataCount) { Mesh *sm = static_cast(mv); rsAssert(idxDataCount == sm->mPrimitivesCount); for (uint32_t ct = 0; ct < idxDataCount; ct ++) { va[ct] = sm->mPrimitives[ct]->mIndexBuffer.get(); primType[ct] = sm->mPrimitives[ct]->mPrimitive; if (sm->mPrimitives[ct]->mIndexBuffer.get()) { sm->mPrimitives[ct]->mIndexBuffer->incUserRef(); } } }