/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "rsContext.h" #include "rsProgramVertex.h" #include #include #include #include using namespace android; using namespace android::renderscript; ProgramVertex::ProgramVertex(Context *rsc, Element *in, Element *out) : Program(rsc, in, out) { mAllocFile = __FILE__; mAllocLine = __LINE__; mTextureMatrixEnable = false; mLightCount = 0; } ProgramVertex::~ProgramVertex() { } static void logMatrix(const char *txt, const float *f) { LOGV("Matrix %s, %p", txt, f); LOGV("%6.2f, %6.2f, %6.2f, %6.2f", f[0], f[4], f[8], f[12]); LOGV("%6.2f, %6.2f, %6.2f, %6.2f", f[1], f[5], f[9], f[13]); LOGV("%6.2f, %6.2f, %6.2f, %6.2f", f[2], f[6], f[10], f[14]); LOGV("%6.2f, %6.2f, %6.2f, %6.2f", f[3], f[7], f[11], f[15]); } void ProgramVertex::setupGL(const Context *rsc, ProgramVertexState *state) { if ((state->mLast.get() == this) && !mDirty) { return; } state->mLast.set(this); const float *f = static_cast(mConstants->getPtr()); glMatrixMode(GL_TEXTURE); if (mTextureMatrixEnable) { glLoadMatrixf(&f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET]); } else { glLoadIdentity(); } glMatrixMode(GL_MODELVIEW); glLoadIdentity(); if (mLightCount) { int v = 0; glEnable(GL_LIGHTING); glLightModelxv(GL_LIGHT_MODEL_TWO_SIDE, &v); for (uint32_t ct = 0; ct < mLightCount; ct++) { const Light *l = mLights[ct].get(); glEnable(GL_LIGHT0 + ct); l->setupGL(ct); } for (uint32_t ct = mLightCount; ct < MAX_LIGHTS; ct++) { glDisable(GL_LIGHT0 + ct); } } else { glDisable(GL_LIGHTING); } if (!f) { LOGE("Must bind constants to vertex program"); } glMatrixMode(GL_PROJECTION); glLoadMatrixf(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]); glMatrixMode(GL_MODELVIEW); glLoadMatrixf(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET]); mDirty = false; } void ProgramVertex::loadShader() { Program::loadShader(GL_VERTEX_SHADER); } void ProgramVertex::createShader() { mShader.setTo(""); for (uint32_t ct=0; ct < mAttribCount; ct++) { mShader.append("attribute vec4 "); mShader.append(mAttribNames[ct]); mShader.append(";\n"); } for (uint32_t ct=0; ct < mUniformCount; ct++) { mShader.append("uniform mat4 "); mShader.append(mUniformNames[ct]); mShader.append(";\n"); } mShader.append("varying vec4 varColor;\n"); mShader.append("varying vec4 varTex0;\n"); mShader.append("void main() {\n"); mShader.append(" gl_Position = uni_MVP * attrib_Position;\n"); mShader.append(" varColor = attrib_Color;\n"); if (mTextureMatrixEnable) { mShader.append(" varTex0 = uni_TexMatrix * attrib_T0;\n"); } else { mShader.append(" varTex0 = attrib_T0;\n"); } //mShader.append(" pos.x = pos.x / 480.0;\n"); //mShader.append(" pos.y = pos.y / 800.0;\n"); //mShader.append(" gl_Position = pos;\n"); mShader.append("}\n"); } void ProgramVertex::setupGL2(const Context *rsc, ProgramVertexState *state, ShaderCache *sc) { //LOGE("sgl2 vtx1 %x", glGetError()); if ((state->mLast.get() == this) && !mDirty) { //return; } const float *f = static_cast(mConstants->getPtr()); Matrix mvp; mvp.load(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]); Matrix t; t.load(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET]); mvp.multiply(&t); glUniformMatrix4fv(sc->vtxUniformSlot(0), 1, GL_FALSE, mvp.m); if (mTextureMatrixEnable) { glUniformMatrix4fv(sc->vtxUniformSlot(1), 1, GL_FALSE, &f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET]); } state->mLast.set(this); //LOGE("sgl2 vtx2 %x", glGetError()); } void ProgramVertex::addLight(const Light *l) { if (mLightCount < MAX_LIGHTS) { mLights[mLightCount].set(l); mLightCount++; } } void ProgramVertex::setProjectionMatrix(const rsc_Matrix *m) const { float *f = static_cast(mConstants->getPtr()); memcpy(&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET], m, sizeof(rsc_Matrix)); mDirty = true; } void ProgramVertex::setModelviewMatrix(const rsc_Matrix *m) const { float *f = static_cast(mConstants->getPtr()); memcpy(&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET], m, sizeof(rsc_Matrix)); mDirty = true; } void ProgramVertex::setTextureMatrix(const rsc_Matrix *m) const { float *f = static_cast(mConstants->getPtr()); memcpy(&f[RS_PROGRAM_VERTEX_TEXTURE_OFFSET], m, sizeof(rsc_Matrix)); mDirty = true; } void ProgramVertex::transformToScreen(const Context *rsc, float *v4out, const float *v3in) const { float *f = static_cast(mConstants->getPtr()); Matrix mvp; mvp.loadMultiply((Matrix *)&f[RS_PROGRAM_VERTEX_MODELVIEW_OFFSET], (Matrix *)&f[RS_PROGRAM_VERTEX_PROJECTION_OFFSET]); mvp.vectorMultiply(v4out, v3in); } void ProgramVertex::init(Context *rsc) { mAttribCount = 6; mAttribNames[VertexArray::POSITION].setTo("attrib_Position"); mAttribNames[VertexArray::COLOR].setTo("attrib_Color"); mAttribNames[VertexArray::NORMAL].setTo("attrib_Normal"); mAttribNames[VertexArray::POINT_SIZE].setTo("attrib_PointSize"); mAttribNames[VertexArray::TEXTURE_0].setTo("attrib_T0"); mAttribNames[VertexArray::TEXTURE_1].setTo("attrib_T1"); mUniformCount = 2; mUniformNames[0].setTo("uni_MVP"); mUniformNames[1].setTo("uni_TexMatrix"); createShader(); } /////////////////////////////////////////////////////////////////////// ProgramVertexState::ProgramVertexState() { mPV = NULL; } ProgramVertexState::~ProgramVertexState() { delete mPV; } void ProgramVertexState::init(Context *rsc, int32_t w, int32_t h) { rsi_ElementBegin(rsc); rsi_ElementAdd(rsc, RS_KIND_USER, RS_TYPE_FLOAT, false, 32, NULL); RsElement e = rsi_ElementCreate(rsc); rsi_TypeBegin(rsc, e); rsi_TypeAdd(rsc, RS_DIMENSION_X, 48); mAllocType.set((Type *)rsi_TypeCreate(rsc)); ProgramVertex *pv = new ProgramVertex(rsc, NULL, NULL); Allocation *alloc = (Allocation *)rsi_AllocationCreateTyped(rsc, mAllocType.get()); mDefaultAlloc.set(alloc); mDefault.set(pv); pv->init(rsc); pv->bindAllocation(alloc); updateSize(rsc, w, h); } void ProgramVertexState::updateSize(Context *rsc, int32_t w, int32_t h) { Matrix m; m.loadOrtho(0,w, h,0, -1,1); mDefaultAlloc->subData(RS_PROGRAM_VERTEX_PROJECTION_OFFSET, 16, &m.m[0], 16*4); m.loadIdentity(); mDefaultAlloc->subData(RS_PROGRAM_VERTEX_MODELVIEW_OFFSET, 16, &m.m[0], 16*4); } void ProgramVertexState::deinit(Context *rsc) { mDefaultAlloc.clear(); mDefault.clear(); mAllocType.clear(); mLast.clear(); delete mPV; mPV = NULL; } namespace android { namespace renderscript { void rsi_ProgramVertexBegin(Context *rsc, RsElement in, RsElement out) { delete rsc->mStateVertex.mPV; rsc->mStateVertex.mPV = new ProgramVertex(rsc, (Element *)in, (Element *)out); } RsProgramVertex rsi_ProgramVertexCreate(Context *rsc) { ProgramVertex *pv = rsc->mStateVertex.mPV; pv->incUserRef(); pv->init(rsc); rsc->mStateVertex.mPV = 0; return pv; } void rsi_ProgramVertexBindAllocation(Context *rsc, RsProgramVertex vpgm, RsAllocation constants) { ProgramVertex *pv = static_cast(vpgm); pv->bindAllocation(static_cast(constants)); } void rsi_ProgramVertexSetTextureMatrixEnable(Context *rsc, bool enable) { rsc->mStateVertex.mPV->setTextureMatrixEnable(enable); } void rsi_ProgramVertexAddLight(Context *rsc, RsLight light) { rsc->mStateVertex.mPV->addLight(static_cast(light)); } } }